Individual and Group Differences in Sound Category Learning

Ben Carlstrom
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

Part of the Cognition and Perception Commons, Cognitive Psychology Commons, and the Phonetics and Phonology Commons

Let us know how access to this document benefits you.

https://pdxscholar.library.pdx.edu/studentsymposium/2017/posters/9

This Poster is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Individual and Group Differences in Sound Category Learning

Ben Carlstrom, Chelsea McGrath, Carolyn Quam, Alisa Wang, Andrew Lotto

Child Language Learning Center | 724 SW Harrison St. Portland, OR 97201

Abstract

There is growing interest in the idea that certain aspects of language are best learned implicitly/procedurally, and models of impaired language like the Procedural Deficit Hypothesis suggest that procedural deficits are predictive of language learning outcomes (Ref. 1).

To test the hypothesis that language structure is best learned implicitly/procedurally, we created a sound categorization task in which optimal learning required participants to integrate information from two different cues (pitch and vowel quality). Similar tasks in the visual domain have been shown to be best learned implicitly (Ref. 2).

In Experiment 1, 31 undergraduate participants completed procedural, declarative, working-memory assessments, and a sound categorization task.

In Experiment 2, 43 undergraduate participants completed the same memory assessments, but the sound categorization task consisted of twice as much speech-sound training distributed over 2 days, and highlighted the training at the category boundary.

Experiment 1 sound categorization accuracy and cue balance was predicted by procedural memory skills. Experiment 2 showed significant effects of both procedural-memory skills and working-memory skills.

Methods

Stimuli varied along two dimensions (pitch, F2). Feedback was provided.

In Experiment 1: 18.65 ± 8.30 story details (SD), Experiment 2: 18.65 ± 6.61 story details (SD).

Experiment 1 Day 1

Experiment 2 Day 1

Experiment 2 Day 2

Y/N Questions

Delayed Recall

Immediate Recall

Stimulus / Response

Stimulus / Response

Stimulus / Response

Letter 1:

Letter 2:

Letter 3:

Sentence

Type your response below:

Response

Type your response below:

20 minute delay

Type your response below:

Cue Weight Balance

1 S.D.

Mean Cue Balance Ratio (+/- 1 S.D.)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

0.0

0.2

0.4

0.6

0.8

1.0

Experiment 1

Experiment 2 Day 1

Experiment 2 Day 2

Results

Declarative Recall

Experiment 1: mean = 22.16 ± 7.71 story details (SD)

Experiment 2: mean = 18.65 ± 6.61 story details (SD)

Working Memory Letter-recall Accuracy

Experiment 1: mean = 95% ± 4%

Experiment 2: mean = 94% ± 6%

Procedural Prediction Accuracy

Experiment 1: mean = 56% ± 25%

Experiment 2: mean = 50% ± 23%

Analysis

Independent variables

Procedural Prediction Accuracy

Declarative Recall

Working Memory Letter-recall Accuracy

Cue-weight balance

Multiple Linear Regression Analysis

Category-learning Accuracy

Experiment 1: significant effect of procedural prediction accuracy (p = .012)

Experiment 2: trend for procedural prediction accuracy (p = .077)

Cue-balance Ratio

Experiment 1: trend for procedural prediction accuracy (p = .066)

Experiment 2: no significant effects.

Citations


Future Directions

• Although the results are mixed, they support the Procedural Deficit Hypothesis and our original research question.

• The trend for category-learning accuracy in Experiment 2 day 1 was not present on day 2. Instead, a significant effect of working-memory was observed. This may suggest that procedural memory was predictive of category-learning accuracy, but the sound-category training participants received before day 2 eliminated those individual differences.

• All trends and significant effects were observed in procedural memory tasks, except for the significant effect of working-memory in category-learning accuracy in Experiment 2 day 1.

• An upcoming collaboration with Dr. Todd Maddox at the University of Texas, Austin may provide greater sensitivity in the dependent measures.

• It is possible that considering the dynamics of learning over the course of the training could help reveal the time-course of contributions of these memory systems (Ref. 3).

Conclusion

Funding provided by: K99-R00 DC013795