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Abstract 28 

Many ecological questions require information on species’ optimal conditions or critical 29 

limits along environmental gradients. These attributes can be compared to answer questions 30 

on niche partitioning, species coexistence and niche conservatism. However, these 31 

comparisons are unconvincing when existing methods do not quantify the uncertainty in the 32 

attributes or rely on assumptions about the shape of species’ responses to the environmental 33 

gradient. The aim of this study was to develop a model to quantify the uncertainty in the 34 

attributes of species response curves and allow them to be tested for substantive differences 35 

without making assumptions about the shape of the responses. We developed a model that 36 

used Bayesian penalised splines to produce and compare response curves for any two given 37 

species. These splines allow the data to determine the shape of the response curves rather 38 

than making a priori assumptions. The models were implemented using the R2OpenBUGS 39 

package for R, which uses Markov Chain Monte Carlo simulation to repetitively fit 40 

alternative response curves to the data. As each iteration produces a different curve that 41 

varies in optima, niche breadth and limits, the model estimates the uncertainty in each of 42 

these attributes and the probability that the two curves are different. The models were tested 43 

using two datasets of mosses from Antarctica. Both datasets had a high degree of scatter, 44 

which is typical of ecological research. This noise resulted in considerable uncertainty in the 45 

optima and limits of species response curves, but substantive differences were found. 46 

Schistidium antarctici was found to inhabit wetter habitats than Ceratodon purpureus, and 47 

Polytrichastrum alpinum had a lower optimal temperature for photosynthesis than 48 

Chorisodontium aciphyllum under high light conditions. Our study highlights the importance 49 

of considering uncertainty in physiological optima and other attributes of species response 50 

curves. We found that apparent differences in optima of 7.5 °C were not necessarily 51 

substantive when dealing with noisy ecological data, and it is necessary to consider the 52 
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uncertainty in attributes when comparing the curves for different species. The model 53 

introduced here could increase the robustness of research on niche partitioning, species 54 

coexistence and niche conservatism. 55 

Keywords: Antarctic moss; community ecology; niche partitioning; photosynthesis; 56 

physiological response; uncertainty57 
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1. Introduction 58 

How species respond to environmental gradients is a fundamentally important topic in 59 

ecology, biogeography and evolution (Quintero & Wiens 2013). These responses, known as 60 

species response curves, are at the foundation of species distribution models (Guisan & 61 

Zimmermann 2000; Elith & Leathwick 2009), which have been increasingly used over the 62 

last 15 years to make ecological inferences based on species environmental niches. Recent 63 

machine-learning approaches are in widespread use because of their perceived superior 64 

performance in predicting species distributions (Elith et al. 2006), but the actual response 65 

curves in these complex models can often be difficult to visualise and interpret ecologically 66 

(Elith et al. 2005) and it can be challenging to estimate uncertainty when there is no 67 

underlying parametric model. These issues are problematic as evaluating species response 68 

curves is an integral part of interpreting species distribution models and assessing their 69 

ecological validity (Austin 2002, 2007). 70 

However, despite their fundamental role in species distribution models, interest in 71 

species response curves extends far beyond this specific application. Quantifying the 72 

attributes of species response curves, such as the optima, niche breadth or limits where the 73 

response is above a certain threshold (Fig. 1a), is crucial for answering many physiological, 74 

ecological and evolutionary questions even if the objective is not to predict or explain species 75 

distributions per se. For example, scientists are often interested in species coexistence, niche 76 

separation or overlap (Silvertown 2004); the relative position or critical limits of species’ 77 

niches on environmental gradients (Hernandez & Mulla 2008; Sinervo et al. 2010); niche 78 

conservatism over space and time (Peterson et al. 2009; Pellissier et al. 2013); or niche shifts 79 

of invasive species in new environments (Hill et al. 2013). For these topics, the shape and 80 

attributes of species response curves are the focus of the research, and it is often necessary to 81 
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compare and test for differences between different curves (e.g. niche conservatism, niche 82 

shifts of invasive species, niche separation and overlap). 83 

The attributes of species response curves are difficult to compare using many 84 

common statistical models. Response curves can be presented with 95% confidence intervals 85 

(e.g. Fig. 1b), but this only quantifies the uncertainty in the response at a given position on 86 

the environmental gradient. There is generally no indication of uncertainty for the optima, 87 

limits or breadth of the curve as a whole, and there are limitless response curves that fit 88 

within the 95% confidence intervals but vary in optima or other attributes (Fig. 1b). This is an 89 

important limitation because it is problematic to test if the optima of two curves are different 90 

if we have not estimated their uncertainty (Hernandez & Mulla 2008). This would be 91 

analogous to directly comparing the absolute means of two data sets without considering the 92 

variances using Student’s t-test or equivalent. 93 

There are existing methods that can quantify the uncertainty in the optima of a 94 

response curve, but these generally need to make assumptions about the shape of the response 95 

curve and focus only on the attribute of interest (Vetaas 2000; Björnsson et al. 2001; Dreyer 96 

et al. 2001; Hernandez & Mulla 2008). For example, some methods rely on the assumption 97 

that there are Gaussian responses to environmental gradients, even though evidence suggests 98 

skewed or non-normal response curves are common, and even more complex shapes such as 99 

multi-modal curves are possible when dealing with realised rather than fundamental niches 100 

(Austin 2002, 2007; Oksanen & Minchin 2002). Other methods allow skewed responses by 101 

fitting parametric functions (e.g. Higgins et al. 2014), and this also allows scope for the 102 

uncertainty in some attributes of response curves to be quantified. However, there is still 103 

scope to estimate the uncertainty in the optima and other attributes of species response curves 104 

using a semi-parametric method that does not make a priori assumptions about the shape of a 105 

given response. 106 
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Bayesian models have the potential to address this deficiency. Bayesian models 107 

(McCarthy 2007) can be fitted using Markov Chain Monte Carlo (MCMC) random sampling 108 

which iteratively fits alternative species response curves that can explain the observed data. It 109 

does this by simulating sets of parameter values from their Bayesian posterior distributions, 110 

then generating values from the resultant response curves. After repeating this thousands of 111 

times, the collection of simulated values can be used to estimate not just the mean and 95% 112 

credible intervals (the Bayesian equivalent of confidence intervals; McCarthy 2007) for the 113 

species response curves (Fig. 1b), but also the mean and credible intervals for other attributes 114 

of the curve, such as the optima, niche breadth and limits. 115 

In this paper we adapt the Bayesian penalised splines of Crainiceanu et al. (2005) to 116 

predict species response curves. Similarly to the Generalised Additive Models commonly 117 

used in ecological studies (GAMs; Hastie & Tibshirani 1990; Guisan & Zimmermann 2000; 118 

Austin 2002; Elith et al. 2006), the shape of penalised splines is determined by the data, so 119 

the shape of the response curves can be skewed or even multi-modal. However, the curves 120 

are smooth unlike methods such as classification and regression trees (Elith et al. 2008) and 121 

Maxent (Phillips et al. 2006), which can have discrete steps. The advantage of the Bayesian 122 

implementation of penalised splines is that the iteration involved allows us greater flexibility 123 

to examine the uncertainty in many attributes of the fitted curves. Our model was designed to 124 

estimate the means and 95% credible intervals for the peak and optima, as well as the niche 125 

breadth and limits based on a threshold of 80% of the peak (Fig. 1a). The model could also be 126 

modified to examine other attributes of species response curves or to use predefined response 127 

shapes such as Gaussian, Beta distribution, Huisman—Olff—Fresco (HOF) models (Oksanen 128 

& Minchin 2002) or the Arrhenius equation. If applied to parametric models it could be used 129 

to estimate the uncertainty in the parameter estimates. 130 
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The overall objective of this study was to develop a model that allowed users to 131 

quantify uncertainty in a wide range of attributes of species response curves and enable 132 

comparison with other curves. This represents an important advance from prior studies that 133 

primarily compare optima or limits of species response curves without considering the 134 

uncertainty in those estimates, or which estimate the uncertainty in a limited number of 135 

attributes by assuming, a priori, the shape of the response curve. Additionally, such a model 136 

also needs to be inherently flexible so that it can be applied to a wide variety of datasets or 137 

modified to address similar research questions. 138 

The model is demonstrated here using two datasets of mosses in Antarctica. The first 139 

example uses an unrestricted continuous response variable, and examines whether the optimal 140 

temperature for photosynthesis varies between two species of moss from maritime Antarctica. 141 

The second uses a response variable that is constrained to a range of zero to one (proportion 142 

of presences in samples along a moisture gradient), and examines whether two species of 143 

moss from continental Antarctica have different moisture optima. The two examples illustrate 144 

how the model can be used to test for differences between the response curves of different 145 

species using contrasting types of response variables. 146 

 147 

2. Materials and methods 148 

2.1 MODEL DEVELOPMENT 149 

The Bayesian models were developed in R (R Core Team 2014) using the R2OpenBUGS 150 

package. This requires the OpenBUGS software application to be installed, which is a newer 151 

open-source version of WinBUGS. All software is freely available for download. The models 152 

require a data file (cwc2003data.csv, etrdatahigh.csv or etrdatalow.csv in Supplementary 153 

Material), a file which implements the OpenBUGS model (SplineModels.txt or 154 

SplineModelsLogit.txt in Supplementary Material) and a set of R commands to specify model 155 
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parameters, run the model and display results (Rcommands.txt in Supplementary Material). 156 

The analyses in this article can be repeated by downloading the files in the Supplementary 157 

Material, updating the 4th line of Rcommands.txt to point to the directory where the files are 158 

located, and adjusting lines 6–10 to select the desired case study. As the models are 159 

stochastic, results will not necessarily be identical every time the models are run. 160 

 Bayesian penalised splines are semiparametric models that had already been 161 

implemented in a model for WinBUGS in R by Crainiceanu et al. (2005), and this formed the 162 

basis for the model included here. Spline models are developed by fitting a number of 163 

polynomial segments that are joined together at knot points spread evenly along the 164 

environmental gradient. With four knots there is one polynomial from 0% to 20%, another 165 

from 20% to 40%, and so on. The polynomials join together to form a continuous smooth 166 

curve (spline) that has flexibility in its shape. More knots allow more complex shapes to be 167 

fitted, but more data is needed to reduce the potential for overfitting. The original model used 168 

20 knots, although this was reduced to four in our model. Having too many knots allows 169 

complex responses that may be difficult to explain, and increases the uncertainty in the 170 

attributes of response curves as they can take more varied forms (see Results section). 171 

The original model of Crainiceanu et al. (2005) fitted one spline based on a dataset 172 

containing a single response and covariate, but was modified to produce two splines for two 173 

different datasets. The model initially only predicted the response for the environmental 174 

conditions in the samples. To ensure complete response curves were produced for both 175 

species the model was modified to accept three sets of environmental samples: X1 for the 176 

samples for the first response, X2 for the samples for the second response, and X for the 177 

complete gradient. The complete gradient was chosen such that it extended 2% past the 178 

minimum and maximum environmental values from both data sets and was broken up into 179 

300 samples to increase the precision with which the attributes could be estimated. 180 
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 In each iteration of the MCMC algorithm, the two response curves were produced, 181 

and the peak, optima, niche limits and breadth were then calculated deterministically from the 182 

curves. A posterior mean and associated percentiles for these attributes were then calculated 183 

based on a large number of iterations. Similarly, the step function in OpenBUGS was used to 184 

estimate the probability that the attribute of one curve was larger than that of the other. This 185 

is referred to as a P-value in the remainder of this paper, although it is acknowledged that it 186 

does not have the same interpretation as a P-value obtained under a frequentist paradigm. We 187 

considered a result to be substantive if the P-value was less than 5%, which occurs if the 188 

attribute for one curve was higher than the other in 95% of the iterations. We acknowledge 189 

this is different to traditional frequentist P-values, where a P-value of 5% indicates that there 190 

is only a 5% chance that the results could have been obtained if there was actually no 191 

difference. As our model estimates a P-value, thresholds other than 5% could also be used. 192 

 193 

2.2 CASE STUDY 1: CONTINUOUS DATA OF PHOTOSYNTHETIC RATE 194 

The model was tested on an effectively unbounded continuous response variable 195 

(photosynthetic rate) using two species of moss from Ardley Island in the maritime Antarctic 196 

(62.2 °S, 58.9 °W), Polytrichastrum alpinum (Hedw.) G.L. Sm. and Chorisodontium 197 

aciphyllum (Hook.f. & Wilson) Broth. These two species of moss coexist in some 198 

communities and we were interested in comparing their photosynthetic responses to 199 

temperature. The two species have similar habitats, but C. aciphyllum has a very compact turf 200 

structure with its gametophytes densely packed together while the P. alpinum turf is more 201 

open, resulting in more space between adjacent gametophytes (see Fig 2). Antarctic moss 202 

turves can maintain temperatures well above air temperature, especially in sun-exposed but 203 

wind-sheltered sites (Smith 1988; Bramley-Alves et al. 2014). As a more open structure 204 

allows wind to penetrate into the moss beds and potentially keep temperatures lower, we 205 



Ashcroft et al. Comparing species response curves 11 

 

were interested in whether the optimal temperature for photosynthesis for P. alpinum was 206 

lower than that for C. aciphyllum. 207 

Samples of moss tissue were collected in January 2015 and maintained in plastic 208 

containers under field conditions for up to 2 days prior to measurements being made in the 209 

laboratory of the Chilean Escudero Base on King George Island. Photosynthetic activity was 210 

measured for both species in a water bath with temperatures varying from 1 to 44 °C. 211 

Hydrated moss plugs (1 cm2; n = 6) were contained in aluminium cups to allow heat transfer 212 

within the water bath but prevent submergence and ensure the photosynthetic surface of the 213 

moss remained exposed to air. Moss was induced prior to measurements using a Dracast 214 

LED160a light source (Dracast, San Jose, CA, USA) which also provided the actinic light 215 

during the experiment. 216 

Measurements were made under both low (non-saturating; 400 µmol photons m-2 s-1) 217 

and high (saturating; 1000 µmol photons m-2 s-1) light. Surface photosynthetically active 218 

radiation (PAR) was measured using an Apogee mq-200 quantum light sensor (Apogee 219 

Instruments, Logan UT, USA). Thermocouples were used to measure temperature of the 220 

photosynthetic tissue at the time of each photosynthetic rate measurement. Photosynthetic 221 

rates were quantified using chlorophyll fluorescence (measured as Electron Transport Rate; 222 

ETR; µmol e m-2 s-1) with a Walz MINI-PAM Photosynthesis Yield Analyser (Walz, 223 

Effeltrich, Germany). ETR was calculated using the equation ETR = ɸPSII × PAR × 0.5 × 224 

0.84 (Maxwell & Johnson 2000), where ɸPSII is the quantum yield of photosystem II, 225 

estimated using chlorophyll fluorescence and PAR is the photosynthetically active radiation. 226 

This widely used equation makes the assumption that the leaf, or gametophyte, absorbs 84% 227 

of the incident light and that this light is shared equally between the two photosystems. 228 

The Bayesian model was used to estimate the peak ETR, the optimal temperature, the 229 

temperature limits corresponding to a threshold of 80% of the maximum ETR, and the 230 
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breadth of the response curve between these limits. The model also tested if the two species 231 

were significantly different in any of these attributes. The model was repeated using the two 232 

response curves for each species to test whether the attributes for either species were 233 

substantively different under low and high light. 234 

 235 

2.3 CASE STUDY 2: PROBABILITY OF PRESENCE ALONG MOISTURE GRADIENT 236 

Sixty quadrats were surveyed in January and February 2003 across two long-term monitoring 237 

sites near the Australian Casey station (66.28 °S, 110.53 °E) in the Windmill Islands, East 238 

Antarctica (detailed site descriptions in Wasley et al. 2012 and Bramley-Alves et al. 2015). 239 

The monitoring of these sites forms Australia’s State of the Environment Indicator 72 240 

(https://data.aad.gov.au/aadc/soe/). Each site contained 10 transects along a moisture 241 

gradient, with three quadrats (25 × 25 cm) per transect. Quadrats were positioned in three 242 

distinct vegetation communities; bryophyte dominated, lichen dominated, and a transitional 243 

community in between (mix of moribund moss and encrusting lichens). In each quadrat, nine 244 

small samples (tweezer pinches of vegetation) were taken and scored for presence or absence 245 

of bryophyte and lichen species. These data were linearly scaled to a range of zero (not found 246 

in any of the nine samples) to one (found in all nine samples). In this analysis, we focus on 247 

how two of the dominant moss species (Schistidium antarctici (Card.) L. Savic. & Smirn. 248 

(syn. Grimmia antarctici (Card.)) and Ceratodon purpureus (Hedw.) Brid.) respond to a 249 

water availability gradient, and test the hypothesis that there is niche separation along this 250 

gradient. 251 

Community water content (CWC) was estimated by inserting a sponge into the 252 

vegetation layer adjacent to each quadrat and measuring the amount of water it absorbed over 253 

24 h (as described in Lucieer et al. 2014). This one-off measurement of water content may 254 

not represent the long-term water availability in any quadrat, but does serve to differentiate 255 
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the moistest and driest quadrats and is a relative estimate of water availability in the 256 

vegetation where the sponge was placed. 257 

 To model the proportion of samples where the species was present some minor 258 

changes were needed in the model. Namely, as the response variable was constrained to a 259 

range of zero to one a logit transform was added to four lines in SplineModelsLogit.txt (see 260 

Supplementary Material) to replace the corresponding lines in SplineModels.txt. These 261 

changes ensured the predicted response was not outside the range of zero to one after back 262 

transformation. The data file was replaced (cwc2003data.csv in Supplementary Material) and 263 

Rcommands.txt was modified to refer to the new data and model. The modified 264 

SplineModelsLogit.txt model would be suitable for analysing a range of presence-absence 265 

data where the response is constrained to zero to one, or percentage data, such as humidity, 266 

where the response is constrained to 0–100% (e.g. Ashcroft & Gollan, 2012). 267 

 268 

3. Results 269 

3.1 PHOTOSYNTHETIC TEMPERATURE RESPONSE CURVES 270 

The ETR data for both species under both high and low light conditions contained a high 271 

degree of scatter, and there was considerable uncertainty in all the attributes for each of the 272 

photosynthetic temperature response curves (Fig. 3, S1). The curves were somewhat skewed 273 

and contained additional points of inflection that were not consistent with Gaussian response 274 

curves. With 20 knots the response curves contained additional complexity, and this 275 

increased the uncertainty in where the optima were located (Fig. S2). We therefore focus on 276 

results from models with four knots in this paper, although the method itself is equally valid 277 

with 20 knots and could be useful if there is sufficient data with less noise. 278 

Under high light conditions, the peak ETR for P. alpinum was higher than that for C. 279 

aciphyllum, but not significantly so (mean peaks of 200.2 and 186.2 µmol e m-2 s-1; P = 280 
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0.096; Fig. 3a). The optimal temperature for photosynthesis in P. alpinum was significantly 281 

lower than for C. aciphyllum (mean optima of 21.7 °C and 28.5 °C; P = 0.012), but there 282 

were no significant differences in the limits (P = 0.122, 0.266) or the breadth of the curves (P 283 

= 0.221; Fig. 3a). 284 

 Under low light conditions the peaks were reversed, with the peak for photosynthesis 285 

in P. alpinum significantly lower than that for C. aciphyllum (mean peaks of 86.6 and 95.4 286 

µmol e m-2 s-1; P = 0.022; Fig. 3b). The optima were not significantly different (mean optima 287 

of 17.4 °C and 24.9 °C; P = 0.055) but there was a difference in the upper limits (mean upper 288 

limits of 31.8 °C and 36.9 °C; P = 0.031). The differences in lower limits and breadths were 289 

not significantly different (P = 0.588, 0.247; Fig. 3b). The hypothesis that the temperature 290 

optima of P. alpinum would be lower than that of C. aciphyllum was supported by both data 291 

sets, but it was only significant under high light conditions (low light 95% CI 12.3–25.0 °C, 292 

20.9–28.6 °C, P = 0.055; high light 95% CI 19.2–25.0 °C, 24.2–34.3 °C, P = 0.012; Fig. 3). 293 

 When the same data were analysed to compare the low and high light photosynthetic 294 

temperature responses for each species (Fig. S1), the peaks and lower limits were 295 

significantly higher under high light conditions (P < 0.05). The temperature optima were also 296 

higher under high light conditions for both species, but these differences were not significant 297 

(P = 0.121, 0.074; Fig. S1). Both curves were noticeably flatter under low light conditions. 298 

 299 

3.2 PRESENCE-ABSENCE ALONG A MOISTURE GRADIENT 300 

The response curves for the presence of C. purpureus and S. antarctici along a moisture 301 

gradient were significantly different in terms of optima, peak, limits and breadth (P ≤ 0.002; 302 

Fig. 4). Ceratodon purpureus presence had an optima at relatively low water availability and 303 

was absent from the moister quadrats, while S. antarctici was much more prevalent in the 304 

moister quadrats. Once again the response curves were noticeably skewed indicating that 305 
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Gaussian responses would not be a good fit. In terms of the niche separation hypothesis, S. 306 

antarctici inhabited significantly wetter microhabitats than C. purpureus (95% CI 0.27–0.57, 307 

>1.28, P < 0.001, Fig. 4). This finding is in keeping with previous physiological studies 308 

indicating that C. purpureus is more desiccation tolerant than S. antarctici (Robinson et al. 309 

2000) but less tolerant of submergence (Wasley et al. 2006). 310 

 311 

4. Discussion 312 

A flexible and robust model has been successfully developed as a reliable strategy to compare 313 

species response curves whilst also incorporating uncertainties in the data sets. Ecological 314 

data from two case studies on Antarctic moss was visualised and interpreted using this model 315 

allowing certain ecological niches to be identified. 316 

The data used in this study had a high degree of scatter, which is typical of many 317 

ecological studies. The models identified large differences in the attributes of the species 318 

response curves, but not all of these differences were significant given the uncertainty in the 319 

data and the semiparametric nature of the fitted model. For example, the mean low light 320 

optima for P. alpinum (17.4 °C; Fig. 3b) was 7.5 °C lower than that for C. aciphyllum (24.9 321 

°C), but the models suggested this difference was marginally non-substantive using a 322 

traditional threshold of α = 0.05 (P = 0.055) and there was overlap in the 95% credible 323 

intervals (12.3–25.0 and 20.9–28.6 respectively). This example highlights the importance of 324 

considering uncertainty in the optima and other attributes of species response curves. Our 325 

models produce a P-value for the probability the two optima are different, and with minor 326 

modifications could produce a 95% credible interval for what the difference is. This is much 327 

more informative than taking no account of the uncertainty and simply comparing the 328 

estimates of optima, and asserting a difference of 7.5 °C. Our P-values highlight it would be 329 

premature to make this conclusion with the given data. A larger sample size or broader 330 
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temperature range would be needed to reduce uncertainty and prove that differences between 331 

the curves are substantive. 332 

 The estimated uncertainty in optima is even higher if more complex response curves 333 

are fitted, for example by using 20 knots instead of four (Fig. S2). The uncertainty is 334 

especially high near the extremities of environmental gradients where it is uncertain if splines 335 

may continue to increase or decrease. To reduce this uncertainty, data should be gathered 336 

over as wide a range of environmental conditions as possible, however reducing the number 337 

of knots also limits the amount of extrapolation that is possible. 338 

 Numerous other approaches have been used to estimate the attributes of species 339 

response curves or compare them between different species. Some researchers have 340 

compared response curves by classifying them into a limited number of predefined categories 341 

based on the approximate position of the optima or the shape of the curve (Oksanen & 342 

Minchin 2002; Horsák 2006). Others have estimated the uncertainty in the optima or 343 

compared curves by assuming the shape of the response curve is known (Vetaas 2000; 344 

Björnsson et al. 2001; Dreyer et al. 2001; Hernandez & Mulla 2008). Another approach is to 345 

compare entire curves quantitatively but without considering uncertainty in the curves 346 

(Warren et al. 2008; Hill et al. 2013). Similarly, thermal tolerance limits are often determined 347 

from observational data without any estimate of uncertainty (Pellissier et al. 2013; Gouveia et 348 

al. 2014). The Bayesian semi-parametric model used here is advantageous because it 349 

quantifies the uncertainty in the attributes of species response curves without assuming a 350 

rigorous (parametric) shape of the response. This will increase the robustness of ecological 351 

studies on niche conservatism, niche partitioning and species coexistence. The method could 352 

also be extended to quantify the uncertainty in other attributes of species response curves, 353 

such as the probability the curve is above a certain threshold, determining the ranks of 354 
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multiple curves, or testing multiple curves for substantive differences if one species is used as 355 

a reference class (McCarthy 2007). 356 

 357 

4.1 LIMITATIONS AND FUTURE ENHANCEMENTS 358 

The model as it is currently implemented is restricted to a single covariate. As our 359 

photosynthesis results illustrate, the optima and limits on any gradient (e.g. temperature) may 360 

be affected by other conditions (e.g. light). For example, the optima we observed under low 361 

light were lower than the optima under high light (Fig. S1), even if these differences were 362 

marginally non-substantive (P = 0.074, 0.121). The shapes of the curves were also different: 363 

moss ETR did not change dramatically with temperature under low light conditions (flat red 364 

curves in Fig. S1) but did increase notably near the optimal temperature under high light 365 

conditions. It is possible to examine the optima along a single environmental gradient if other 366 

factors are held constant, but if multiple environmental factors are varied then the position of 367 

the optima may not be constant on any individual gradient. 368 

 Similarly, the current implementation only caters for a single pair of species. 369 

However, if one species is used as a reference then multiple species can be included in a 370 

Bayesian ANOVA analysis with each tested for substantive differences against the reference 371 

species (McCarthy 2007). This is not implemented in the current script but would be a 372 

relatively straight forward extension. 373 

As noted in the methods section the ETR calculations were based on an assumption 374 

that turf absorbance was 0.84 for both species. This may not be the case. While this is not 375 

important for the methodology introduced in this paper, it may affect the comparisons of the 376 

peak in the first case study. If the actual absorbance has not been measured then it would be 377 

more correct to compare different species on the basis of relative ETR (scaled to % maximum 378 

ETR). This could easily be accommodated by applying the techniques used in the 379 
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presence/absence example where data are scaled to a range of zero to one, or by placing a 380 

prior distribution on the value to represent this uncertainty. This prior will then induce 381 

associated uncertainty in the posterior estimates and associated comparisons and inferences. 382 

 Another limitation is that the model does not predict optima that are outside the range 383 

of the environmental gradient examined. For example, it appears that the peak for 384 

S. antarctici occurred at a log(CWC) higher than 1.28 (Fig. 4). It is relatively simple to 385 

extend the range of the environmental gradient in the model to make predictions at higher 386 

values but this would be highly uncertain, especially given the semiparametric setup of the 387 

model, and was deliberately avoided. In our study it is not clear if the curve would begin to 388 

fall at higher water contents, or whether it becomes limited by water depth, substrate 389 

availability or flow rate once the moss is completely saturated. To accurately predict optima 390 

or limits that are outside the range of observations it would be better to collect data over a 391 

broader range of conditions. Any 95% credible intervals that include either of the extremities 392 

on the environmental gradient may not be accurate and should be interpreted cautiously. 393 

 Despite these limitations the models developed in this study provide ecologists and 394 

physiologists with a powerful tool for assessing species response curves along single 395 

environmental gradients. The methods we present here allow quantification of attribute 396 

uncertainty, which represents an important advance of studies that currently compare species 397 

response curves qualitatively or subjectively without considering the uncertainties involved. 398 
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 520 

Fig. 1 A species response to an environmental gradient (bold line) has attributes such as its 521 

peak (maximum Y value), optima (corresponding X value), and for a given Y threshold, a 522 

niche breadth and upper and lower limit (a). Traditional statistical methods can capture the 523 

uncertainty in response for given environmental conditions (95% confidence interval – grey 524 

shading in (b) but there are limitless alternative curves (e.g. thin lines in (b)) that fit within 525 

this zone of uncertainty and there is no estimate of uncertainty for the optima, peak or other 526 

attributes of the curves unless you make assumptions about the shape of the response. 527 
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 528 

Fig. 2 The open turf structure of Polytrichastrum alpinum (top), with gametophytes more 529 

widely spaced from one another, contrasts with the densely packed Chorisodontium 530 

aciphyllum (bottom) illustrated in cross section as well as from above. We hypothesised that 531 

the different turf structures could influence the photosynthetic temperature response curves of 532 

the two species (Fig. 3). Photographs taken on King George Island by SR and MW. 533 

  534 

535 
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 536 

Fig. 3 Photosynthetic temperature response curves under high (a) and low (b) light. Data 537 
fitted with Bayesian models using splines with four knots. The responses are shown for 538 
Polytrichastrum alpinum (blue crosses, lines and horizontal shading) and Chorisodontium 539 
aciphyllum (red circles, lines and vertical shading). Shaded bands highlight the 95% credible 540 
intervals for the responses. Error bars highlight the 95% credible intervals for the peak and 541 
optima as well as the upper and lower limits based on a threshold of 80% of the peak. The 542 
posterior means and 95% credible intervals are provided in the tables underneath, with a P-543 
value given for the probability that the two curves are different with respect to each attribute.544 
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 545 
 546 

Fig. 4 The proportion of presences in nine pinch samples in a quadrat that contained 547 

Ceratodon purpureus (blue crosses, lines and horizontal shading) or Schistidium antarctici 548 

(red circles, lines and vertical shading) from samples collected over a moisture gradient in 549 

2003. Species response curves have been fitted with Bayesian models using splines with four 550 

knots. See Fig. 3 for full explanation of error bars. 551 
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