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Simultaneous Regional Detection of Land-Use Changes
and Elevated GHG Levels: The Case of Spring
Precipitation in Tropical South America
Armineh Barkhordarian1,2 , Hans von Storch3 , Ali Behrangi2,4 , Paul C. Loikith5 ,
Carlos R. Mechoso1 , and Judah Detzer5

1Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA, 2Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 3Institute of Coastal Research, Helmholtz-
Zentrum Geesthacht, Geesthacht, Germany, 4Department of Hydrology and Atmospheric Sciences, University of Arizona,
Tucson, AZ, USA, 5Department of Geography, Portland State University, Portland, OR, USA

Abstract A decline in dry season precipitation over tropical South America has a large impact on
ecosystem health of the region. Results here indicate that the magnitude of negative trends in dry season
precipitation in the past decades exceeds the estimated range of trends due to natural variability of the
climate system defined in both the preindustrial climate and during the 850–1850 millennium. The observed
drying is associated with an increase in vapor pressure deficit. The univariate detection analysis shows that
greenhouse gas (GHG) forcing has a systematic influence in negative 30-year trends of precipitation ending
in 1998 and later on. The bivariate attribution analysis demonstrates that forcing by elevated GHG levels and
land-use change are attributed as key causes for the observed drying during 1983–2012 over the southern
Amazonia and central Brazil. We further show that the effect of GS signal (GHG and sulfate aerosols) based on
RCP4.5 scenario already has a detectable influence in the observed drying. Thus, we suggest that the recently
observed “drier dry season” is a feature which will continue and intensify in the course of unfolding
anthropogenic climate change. Such change could have profound societal and ecosystem impacts over
the region.

Plain Language Summary This study uses statistical techniques to attribute the recently observed
“drier dry season” over tropical South America to external drivers of climate change, both human-induced
and naturally occurring. A decline in dry season precipitation has a large impact on ecosystem health of the
region. Thus, attributing the forced components of the observed “drier dry season” to external drivers of
climate change is of great practical importance to societies. Results indicate that the observed drying is well
beyond the range of trends due to natural variability of the climate system and is found to be systematically
and externally forced. The forcing by elevated greenhouse gas levels and land-use change (mainly
deforestation) are attributed as key causes for the observed drying over the southern Amazonia and central
Brazil. We further demonstrate that the recently observed “drier dry season” is a feature which will continue
and intensify in the course of unfolding anthropogenic climate change. Such an assessment is critical for
adaptation planning and mitigation strategies.

1. Introduction

The frequency and geographic patterns of rainfall are key climate features for many tropical countries around
the world (Chadwick et al., 2016). Well-planned adaptation and mitigation strategies require knowledge on
how these patterns would change in response to anthropogenic forcing (Sarojini et al., 2016). Bindoff et al.
(2013) concludes that globally, an anthropogenic contribution to precipitation trends over land is likely since
the 1950s. A decrease of the Northern Hemisphere precipitation during the 1950–1980 period and a subse-
quent recovery has been attributed to anthropogenic aerosols (Wu et al., 2013). Human-induced rainfall
changes have also been detected over land in the northern middle to high latitudes (Min et al., 2008; Wan
et al., 2014). To better assess the pace of precipitation change, we will need a better understanding of the
influence of external forcing and natural variation (Stott et al., 2010). In tropical regions (30°S–30°N) the effect
of external forcing has been detected in observed wet region precipitation during 1988–2014 (Polson &
Hegerl, 2017) and in tropical precipitation satellite observations over 1988–2010 (Polson et al., 2013).
Global climate models are projecting that seasonal precipitation response in the tropics to global warming
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is a hybrid of wet-get-wetter and warmer-get-wetter effects (Huang et al., 2013; Seth et al., 2011). In contrast,
sea surface temperature warming reduces continental precipitation in those regions that cannot meet the
increasing demand for near-surface moist static energy (Chou & Neelin, 2004; Dwyer et al., 2014). In the
Amazon rain forest the year 2010 featured a widespread drought (Lewis et al., 2011), which was even more
severe than the “once-in-a-century” drought of 2005 (Marengo et al., 2008, 2011). Cox et al. (2008) suggested
that 2005-like droughts would increase in Amazonia under conditions of increased greenhouse gases (GHGs).
The recently observed warming in the dry seasons over tropical South America (SA) is well beyond the range
of trends due to natural (internal) variability of the climate system (Barkhordarian et al., 2017). Besides the
regional manifestation of GHG forcing, the indirect effect of black carbon aerosols on cloud cover has a
detectable influence on the regional amplification of daytime warming in the dry seasons. However, in the
wet season, recurrent natural modes of variability explain a substantial portion of temperature variability over
SA (Barkhordarian et al., 2017).

At interannual time scale, dry season rainfall over SA is influenced by the increase in the tropical north south
Atlantic sea surface temperature gradient and warmer eastern equatorial Pacific (Fu et al., 2001). The present
study used statistical techniques to assess, for the first time, whether long-term (30-year) trends in dry season
precipitation can be detected as being systematically (externally) forced and investigate to what extent
observed changes can be attributed to external drivers of climate change, both human induced (well-mixed
GHGs, anthropogenic aerosols, and land-use change, LU) and naturally occurring (solar irradiance and
stratospheric aerosols due to volcanoes). A decline in dry season precipitation plays a critical role in hydroe-
cosystem of the region (Cook et al., 2012; Saatchi et al., 2007). Thus, attributing the forced components of the
observed “drier dry season” over tropical SA to external drivers of climate change is of great practical impor-
tance to societies.

In other words, our focus is on the following question: Are we observing systematic trends of rainfall or are we
solely witnessing the effects of natural internal variability of the climate system? Such an assessment has not
been done before for SA precipitation to our knowledge.

2. Data and Methodology

Our studied domain encompasses the tropical SA, defined here as the region from 85°W to 32°W and 25°S to
8°S. We have chosen this region because of the dominance of convective processes and the concurrent regio-
nal emergence of the dry and wet seasons. We investigate precipitation changes in August-September-
October (ASO), which corresponds to dry and transitional months. The observational record for precipitation
is obtained from the monthly Global Precipitation Climatology Centre (GPCC) full v.7 data set for the years
1901–2013 (Schneider et al., 2011) and the monthly satellite-based Global Precipitation Climatology
Project (GPCP) gridded data set (version 2.3; Adler et al., 2017) for the years 1979–2016. The latter data set
uses Special Sensor Microwave/Imager measurements, which results in more reliable trends (Hegerl et al.,
2015). Historical and future climate projections are based on the Coupled Model Intercomparison Project
Phase 5 (CMIP5) archive (see Table S1 in the supporting information; Taylor et al., 2012). In order to address
finer scale features of climate change signals, we also use REMO2009 regional climate model driven by MPI-
ESM-LR fromWCRP CORDEX (Jones et al., 2011). For estimation of natural (internal) variability, we employ the
12,000-yearlong preindustrial control simulations derived from CMIP5 archive. We further use the fourth ver-
sion of the Community Climate SystemModel’s (CCSM4) Millennium simulations over 0850–1850 (Gent et al.,
2011) to obtain an estimate of natural (internal + external) variability.

We follow the same methodology used in Barkhordarian et al. (2013, 2016, 2017). Our first step consists of
assessing whether systematically (externally) forced changes are detectable in the observed precipitation
change. This is achieved by testing the null hypothesis that the observed change is drawn from the popula-
tion of an undisturbed climate. In the second step, we examine the null hypothesis that the observed change
is drawn from a hypothetical population of a climate disturbed by a specific external influence. The determi-
nation of the hypothetical population of a climate disturbed with changes in aerosol loads, GHGs, or LU are
derived from simulations of the response to such forcings. The patterns, which such simulations suggest, are
named “guess patterns” (Hasselmann, 1993). We project the observed changes on these guess patterns by
using univariate and bivariate regression analysis. This provides a plausibility argument that the driver behind
the guess pattern could be the cause for the observed change. We note that this is not a reason to claim that
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the detected signal is the sole or even the dominant forcing. This is in particular so, when the guess patterns
of two different forcings share a markedly spatial similarity. In this case a simultaneous attribution analysis is
required (bivariate regression).

To estimate climate change signals, we use two approaches. The first approach uses the output from transi-
ent historical simulations in the CMIP5 archive. These are organized in four groups, according to where the
forcing includes just a single component, which is either (1) well-mixed GHGs; (2) natural external forcing,
including solar forcing and stratospheric aerosols due to volcanoes (NAT); (3) anthropogenic aerosols
(AAs); or (4) LU. More details on the simulations in these groups are given in Text S1 in the supporting
information. The second approach uses time-slice climate change experiment to define GS signal (GHG
and sulfate aerosols) based on RCP4.5 scenario (see Text S1; Bhend & von Storch, 2009). The strategy is giving
each model equal weight when computing multimodel ensemble mean (Allen & Tett, 1999). In total, we have
24 GS response patterns derived from 23 GCMs from the CMIP5 archive and 1 RCM from CORDEX.

3. Results
3.1. Detection of Systematically Forced Changes in Precipitation

Figure 1a shows the 30-year trend of observed precipitation in ASO for the period 1983–2012 based on the
GPCP data set (for GPCC data set see Figure S1 in the supporting information). Both GPCP and GPCC data sets
agree on a general precipitation decreases over tropical SA, except for local increases over Northeast Brazil. A
general drying in northern Amazonia since the 1970s has also been reported (e.g., Marengo, 2004). Here we
cinvestigate whether systematically forced changes have a detectable influence on the observed record of
precipitation. This is achieved by testing the null hypotheses that the observed trends are within the 5–95th
percentile distribution of unforced trends derived from preindustrial control simulations. Because models
tend to underestimate observed variability in precipitation, particularly in the tropics (Polson et al., 2013;
Zhang et al., 2007), the model variance is doubled in calculation of the internal variability range (Polson &
Hegerl, 2017). The results are shown in Figure 1b, which shows areas where the observed trends are larger
than what could be just due to natural (internal) variability. Externally forced changes are detectable on
the decreasing precipitation trend observed over Brazil, northern Bolivia, southern Colombia, and Ecuador
(with less than 5% risk of error). However, the observed drying trends over Peru, southern Bolivia, and wetting
trends over Northeast Brazil are within the range due to natural (internal) variability of the climate system.

Figure 1. (a) Observed precipitation trends in August-October over the 1983–2012 time period based on Global
Precipitation Climatology Project data set. (b) Regions where externally forced changes are detectable (at 5% level) in
the observed record, based on preindustrial control simulations. (c) Regions where externally forced changes are
detectable (at 5% level) in the observed record, based on millennium simulations of CCSM4 model (0850–1850).
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These results remain robust against comparing the observed trends with the distribution of naturally forced
trends derived from millennium simulations of CCSM4 model (0850–1850; Figure 1c). The similarity between
Figures 1b and 1c suggests a negligible influence of natural external forcing (variation in Solar forcing and
stratospheric aerosols due to volcanoes) in the observed drying over the region. The detection results pre-
sented in the next section using natural-forcing-only simulations (NAT) confirm this statement. However, at
centennial time scale, solar forcing appears to be one the drivers effecting South American monsoon system
intensity (Novello et al., 2017).

3.2. Univariate Signal Detection

The drying over tropical SA is observed and also simulated in GHG-forcing only simulations (Figure S2a). In
addition, both GCMs (Figure S3, CMIP5) and RCM (Figure S2c, CORDEX) show widespread drying over tropical
SA in response to GS forcing, suggesting agreement among CORDEX RCM-based and CMIP5 GCM-based pro-
jections. These are also consistent features in the previous generation scenarios (A1B, A2; IPCC Climate
Change, 2013; Vera et al., 2006). The LU forcing-only simulations suggest a decrease in precipitation over
Brazil, with areas of increasing precipitation over northern Amazonia (Figure S2b). Dry season rainfall is more
often associated with locally generated convection and is more sensitive to LU (Malhi et al., 2008). In the
tropics, the net impact of deforestation is typically a nonradiative warming due primarily to decreasing eva-
potranspiration and surface roughness (Jackson et al., 2008; Sanderson et al., 2012), which is a decrease in
latent heat flux (larger sensible heating), along with a decrease in precipitation (Lawrence & Vandecar,
2015; Pielke et al., 2002). Based on climate model simulations, deforestation in 2010 decreases the annual
mean rainfall across the Amazon basin by 1.8 ± 0.3% (Spracklen & Garcia-Carreras, 2015). Roy and Avissar
(2002) also demonstrate that large-scale LU tends to reduce rainfall.

Here we examine the null hypothesis that the observed change in precipitation is drawn from a hypothetical
population of a climate disturbed by a specific external influence. With this purpose, we project the observed
changes on the guess patterns of GS, GHG, LU, AA, and NAT forcing. Figure 2 (top) displays the scaling factors
of observed precipitation changes over tropical SA in ASO against 23 GS guess patterns derived from CMIP5
based on the RCP4.5 scenario (black bars), together with those against GHG guess pattern, the NAT guess
pattern, the AA guess pattern, the LU guess pattern, and the GS guess pattern derived from CORDEX. The
whiskers indicate the 95th percentile uncertainty range of scaling factors in a stationary climate based on
400 control run segments, for the raw and double the model variance. Because rainfall over tropical SA is
underestimated in some of the CMIP5 models (Yin et al., 2013), the model variance is doubled in calculation
of the internal variability range.

According to Figure 2 (top), the uncertainty range of scaling factors does not include zero line, in 19 out of 23
GS guess patterns derived from CMIP5 (black bars), the GS derived from CORDEX (red bar), and the GHG (blue
bar). Therefore, we conclude that GS and GHG forced signals are detectable in the observed precipitation
decrease in the 1983–2012 time period. In addition, we can see that the LU forced signal is also detectable
at the 5% significant level. The region in which externally forced changes are detectable over 1983–2012
encompasses the Amazon rainforest. More than 20% of the Amazon rainforest has been cleared in the past
three decades (Khanna et al., 2017). Thus, detection of LU signal is plausible in the region. The AA-only forcing
simulations (purple bar) display negative scaling factor, indicating a response that is opposite to the
observations. Natural-forcing-only simulations (yellow bar) show near zero scaling factor, indicating negligi-
ble influence of natural external forcing (variation in Solar forcing and stratospheric aerosols due to volca-
noes) in the observed drying over the region.

Figure 2 (bottom) shows locations over the southern Amazonia and central Brazil where the effect of GHG,
LU, and GS signals are detectable (at 5% level). The claim that we “detect the LU-signal” means that a pro-
jection on the pattern derived from the LU scenarios leads to two conclusions: (a) The observed signal
contradicts the null hypothesis of “no external forcing,” and (b) the observed signal is not contradicting
the null-hypothesis of “a response to LU.” This does not mean that LU is really the cause—this is in
particular so, when the GHG guess pattern is similar to the LU guess pattern (see Figures S2a and S2b).
In this case a simultaneous (bivariate) attribution analysis is required. In the next section we examine
the attribution of the observed signal to the two possible contributors, GHG and LU, by using two-
dimensional (bivariate) regression analysis.

10.1029/2018GL078041Geophysical Research Letters
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3.3. Bivariate Signal Attribution

In order to consider the combined influence of GHG and LU signals, we carry out a two-dimensional
attribution analysis when observed data are projected onto two guess patterns of GHG (Figure S2a) and
LU (Figure S2b) simultaneously during 1983–2012 time period. The attribution of two hypothetical signals
is shown in Figure 3a. When we do the attribution part separately for the two suspected drivers, GHG and
LU, we get an intervals of the univariately estimated scaling factors (blue whiskers), which are added into
the diagram of the bivariate ellipse of the simultaneous attribution analysis. The one-dimensional uncertainty
intervals for the univariate and bivariate analysis for two signals are shown as blue and black whiskers, respec-
tively. GHG is detected since the horizontal whiskers lies to the right of y axes and LU is detected since the
vertical whiskers lies above the x axes. The two-dimensional (bivariate) uncertainty contour for the GHG
and LU is shown with an ellipse. The ellipse containing 90% of the estimated joint distribution of scaling fac-
tors for two signals excludes the origin (0,0), indicating that the effects of GHG and LU signals are detectable
simultaneously. In addition, the scaling factors are consistent with unit amplitude since the point (1,1) lies

Figure 2. (top) Scaling factors of observed precipitation changes over tropical South America in August-October against 23
greenhouse gas (GHG) and sulfate aerosol signal guess patterns (Coupled Model Intercomparison Project Phase 5)
based on the RCP4.5 scenario (black bars), against the simulated GHG signal (blue bars), the anthropogenic aerosol signal
(purple bar), the land-use change signal (green bar), the natural external forcing signal (yellow bar), and the GHG and
sulfate aerosol signal derived from CORDEX (red bar). The whiskers show the 95th percentile range of uncertainties asso-
ciated with scaling factors for the raw and double the model variance, derived from 12,000-year control simulations.
Detection of a climate change signal can be claimed in those cases where the whiskers do not include the zero line.
(bottom) Regions where scaling factors are significantly greater than zero compared with natural variations, indicating
locations where the effect of climate change signals is detectable in observed precipitation record (at 5% level).
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within the ellipse. Thus, we conclude here simultaneous regional detection and attribution of LU and GHG
forced signals over tropical SA.

In order to decide if our attribution study is complete, we derive the unexplained part in local scale. We
subtract the attributed changes from the observed change and examine if we detect a remaining external
forcing. We do it univariately, that is, for all grid points separately. We examine if the remaining trends are
larger than could be expected from natural variations (as provided by the control simulations). Figure 3b
shows small regions mainly located over Amazon basin, of the order of ~8% of all grid points, where system-
atically forced changes are still detectable in the remaining trend after removing the effect of GHG and LU.
We note here that we adopt a risk of false rejection (<5%) of the null hypothesis of “no external forcing.”
As suggested by von Storch (1982) when the regional null hypothesis is valid, on an average n = 0.05 m
(m number of grid points), local alternatives will falsely be rejected.

3.4. Assessing the Drivers in Linear Trends of Precipitation Over Time

Here we analyze the drivers in linear trends of precipitation over time. The GPCC data set suggests an early
period (in 1980s) with increasing precipitation over Tropical SA (Figure S4). The significant positive trends
observed in 1980s, which is beyond the 90th percentile range of natural (internal) variability, could be due
to effects of small-scale deforestation (a few kilometers in extent) in the 1980s over Amazon. This has caused
thermally triggered atmospheric circulations (Roy & Avissar, 2002) that contributed to enhance regional clou-
diness (Wang et al., 2009) and rainfall (Chagnon & Bras, 2005). However, the rate of change toward wetter
conditions decreases with time and again exceeds the limits of natural variability for 30-year trends ending
in 1997 and later on (Figure S4). The strongest drying is during 1972–2003 with about �18 mm/month
decrease in the amount of precipitation over tropical SA.

The 1-year moving scaling factors of precipitation over the period 1952–2012 in GPCC (1979–2016 in GPCP),
onto the guess patterns of GS, GHG, NAT, AA, and LU, are displayed in Figures 4a–4e, respectively. The gray
shaded area indicates the 95th percentile uncertainty range based on 400 control run segments, for the raw
and double themodel variance. Detection of a climate change signal can be claimed in those cases where the
gray shaded area excludes “0.”We find that the GS signal derived from CORDEX (Figure 4a) and also the GHG
signal derived from CMIP5 (Figure 4b) have a constant and systematic influence in the observed 30-year

Figure 3. (a) The ellipse displays the joint two-dimensional 90% uncertainty interval for the greenhouse gas (GHG) and
land-use change (LU) when observed data are regressed onto two signals simultaneously during 1983–2012. The black
and blue whiskers indicate the bivariate and univariate one-dimensional 95th percentile uncertainty intervals for the two
signals, respectively. (b) Regions where externally forced changes are still detectable after removing the effect of GHG and
LU forcing (at 5% level).
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trends of precipitation ending in 1998 and later on (with less than 5% risk of error, one-sided test). The scaling
factors of the NAT and AA signals are, with a few exceptions, never significantly different from zero.

4. Discussions and Conclusions

It is shown here that the recently observed “drier dry season” is a feature which is externally and systemati-
cally forced (<5% risk of error). Results are robust against doubling the model variance when estimating
internal variability. The univariate detection analysis shows that GHG forcing has a constant and systematic
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Figure 4. (a) Scaling factors of observed 1-year moving 30-year trends of precipitation in August-October based on Global Precipitation Climatology Centre (red
curves) and Global Precipitation Climatology Project (blue curves) onto the greenhouse gas (GHG) and sulfate aerosol signal guess pattern (CORDEX and RCP4.5),
(b) scaling factors of observed trends onto the historical multimodel mean GHG guess pattern, (c) the natural external forcing guess pattern (NAT), (d) the
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gray shaded area indicates the 95th percentile range in a stationary climate based on 400 control run segments, for the raw and double themodel variance. Detection
of a signal can be claimed in those cases where the gray shaded area excludes “0.”
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influence in negative 30-year trends of precipitation ending 1998 and later on. The bivariate attribution ana-
lysis demonstrates that forcing by elevated GHG levels and LU are attributed (<5% risk of error) as key causes
for the observed drying during 1983–2012 over the southern Amazonia and central Brazil.

At the local scale, after removing the effect of GHG and LU, externally forced changes are still detectable in
the residual trend over center of Brazil. This indicates that either climate models underestimate the response
to the forcing at local scale or other external drivers and/or local feedbacks are at work. Given that over the
residual areas, shown in Figure 3b, continental evapotranspiration provides the mainmoisture source for pre-
cipitation, vapor pressure deficit (VPD) feedback could be a likely candidate as high VPD can inhibit precipita-
tion formation (Behrangi et al., 2016; Seager et al., 2015). The recently observed positive trend in incoming
solar radiation reaching the surface of northern SA in the dry season could partly be attributed to cloud
reduction due to radiatively absorbing aerosols such as black carbon (Barkhordarian et al., 2017). This pro-
duces a daytime warming amplification over tropical SA. Thus, as the climate continues to warm over the
region, further drying over land is expected (Trenberth et al., 2013). This results in two mechanisms: greater
change in potential evapotranspiration over land compared to the ocean (Sherwood & Fu, 2014) and land-
atmosphere feedbacks that amplify aridity increase over land (Berg et al., 2016). This drying will lead to grow-
ing differences between actual and saturation water vapor concentrations, defined as the VPD, and reduction
of relative humidity. The ERA-Interim reanalysis data (Dee et al., 2011) shows an increasing trend of VPD on
the order of +0.2 (KPa/decade) in ASO over 1983–2012, which is more pronounced over Brazil (Figure S5).
The observed increasing VPD (Figure S5) under climatic warming that causes higher atmospheric demand
for water could also reduce forest CO2 uptake (Brzostek et al., 2014; Sulman et al., 2016), representing a posi-
tive climate change feedback (Trenberth et al., 2013).

Taking the ensemble of 24 CMIP5 and CORDEX models as a crude metric of probabilities, we further show
that with 20 out of 24 models analyzed, the effect of GS signal (GHG and AAs) based on RCP4.5 scenario
already has a detectable influence in the observed drying over the region (at 5% significant level). Thus,
we suggest that the observed “drier dry season” over southern Amazonia and central Brazil is a feature which
will continue and intensify in the course of unfolding anthropogenic climate change. Such an assessment is
critical for adaptation planning and mitigation strategies.
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