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Abstract. A theoretical description of decentralized dynamics within linearly

coupled, one–dimensional oscillators (agents) with up to next–nearest–neighbor

interaction is given. Conditions for stability of such system are presented. Our

results indicate that the stable systems have response that grow at least linearly in the

system size. We give criteria when this is the case. The dynamics of these systems

can be described with traveling waves with strong damping in the high frequencies.

Depending on the system parameters, two types of solutions have been found: damped

oscillations and reflectionless waves. The latter is a novel result and a feature of systems

with at least next–nearest–neighbor interactions. Analytical predictions are tested in

numerical simulations.

PACS numbers: 05.45.Pq, 07.07.Tw, 45.30.+s, 73.21.Ac

Keywords: Dynamical Systems, Chaotic Dynamics, Optimization and Control,

Multiagent Systems
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1. Introduction

Linearly coupled oscillators play an important role in almost all areas of science and

technology (see Introduction of Ref. [1]). The phenomena of coupled systems appear on

all length– and time–scales. From synchronization of power generators in power–grid

networks [2, 3], through the traffic control of vehicular platoons [4, 5, 6, 7, 8, 9], collective
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decision-making in biological systems [10, 11, 12, 13, 14] (e.g., transfer of long–range

information in flocks of birds), to the atomic scale lattice vibrations (so–called phonons),

just to name few of them. The nature of communication within such a system crucially

influences the behaviour of it. In the presence of centralized information, like global

damping or knowledge of the desired velocity, the performance of many of these systems

is good [4, 7, 8] in the sense that the trajectories of the agents quickly converge to

coherent (or synchronized) motion [see Equation (1)]. On the other hand, convergence

to coherent motion in decentralized systems is much less obvious, since no overall goal

is observed by all agents. In this case, the only available observations (i.e., position and

velocity) are relative to the agent. The complication of the problem is even greater if

information is locally exchanged by agents in a neighborhood that is small in comparison

to the system size.

It is therefore of significant importance to develop a theory that deals with systems

where agents may interact with few nearby agents. Although such a setup can be

described by a set of linear, first order differential equations, solutions of it are nontrivial.

For example, it is well known [15, 16] that the transients analysis of a system of the form

ż = Mz is extremely difficult unless the square matrix M is normal, i.e., eigenvectors

form a normal basis. In systems that are not normal the spectrum of M only gives

information about the behavior of the trajectories as t → ∞ (where t is the time). In

course of convergence, amplitudes of transient oscillations can still grow exponentially

with system size (number of agents). It is obvious that the latter is not desired for

real applications. Here, we utilize the mathematical conjectures given in References [17]

and [18] and describe the set of parameter values such that the dynamics of the whole

system is described essentially by traveling waves (excitation in the physics language).

Within such a setup, transient parameters grow linearly with the system size.

In this work, we present the theoretical basis for modeling linear, one–dimensional

(1D) systems of many agents, where up to next–nearest–neighbor (NNN) interactions are

allowed. The developed theory is general and is not limited to symmetric interactions

as is common in physics (see Chapter 21 and 22 in Ref. [19]). The circular system

with periodic boundary conditions is used as the basis in order to derive all necessary

stability conditions and quantities which describe the wave–like behaviour. Once the

formulation is completed, the theory is numerically tested for a system on the line,

where rigorous statements are hard or even not possible. Simulations in a parallel

computing environment are carried out in order to verify the results for various system

configurations and different boundary conditions. Furthermore, a new type of solution,

so–called reflectionless waves, was discovered.

The paper is organized as follows. In Section 2 we define the model of interacting

agents. The main method is described in Section 3. In Section 4 we give basic

stability conditions together with analytical expressions for signal velocities of wave–like

propagation. Section 5 is devoted to Routh–Hurwitz stability criteria. The classification

of solutions is given in Section 6. This includes the description of the reflectionless waves

on the line, which to the best of our knowledge is a new result. In fact we find a third type
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of solutions on the circle, but these do not result in solutions on the line. Numerical tests

and error analysis are given in Section 7. Finally, our main conclusions are summarized

in Section 8.

2. The NNN system of coupled agents

We consider a model of an 1D array ofN decentralized agents (linearly damped harmonic

oscillators) on the line, interacting with nearest– and next–nearest–neighbors. At time

t ≤ 0 the agents are in equilibrium (for some a priori fixed ∆ > 0)

xk = −∆k ,

for k ∈ {1, · · ·N}. Here a0, b0 and ∆ are real constants. Then for t > 0 the leader starts

moving forward at velocity v0:

∀t ≥ 0 x0(t) = v0t .

Note that the leader is not influenced by other agents, although other agents (k = 1

and k = 2) are influenced by it.

Coherent motion is defined as:

xk = a0t+ b0 −∆k , (1)

where a0 and b0 are arbitrary real constants. Our aim is not only to find systems

whose trajectories converge to coherent motion, but also to find those systems whose

convergence is quick and whose transients are small. In fact we will show that we can

choose the parameters so that convergence to coherent solutions takes place in times of

order t ∼ O(N) and that the transients also grow as O(N). Such performance can not

be improved for the type of the systems studied in this work.

The general decentralized flock with next–nearest–neighbor interaction can be

linearized by setting zk ≡ xk − v0t + ∆k. Note that in these (zk) coordinates the

leader is stationary when t > 0. The equations of motion for the new variables zk can

be written as [20]:

z̈k =
2∑

j=−2,j 6=0

[pj (zk − zk−j) + vj (żk − żk−j)] , (2)

where pj is position and vj is velocity. Note that in the above equation the right hand

side consists of positions and velocities that are relative to the agent. In order to further

simplify the notation, we introduce constant gx ≡
∑

j pj, define ρx,0 = 1, and for all

other values j = −2,−1, 1, 2 set ρx,j = pj/gx. In similar fashion we define gv and ρv,j
for the velocity coefficient vj. See Figure 1 for a sketch of the information flow.

In this notation, the equation of motion of the flock in R becomes:

Definition 2.1. The equations of motion of the NNN system with N > 4 agents are

(for k ∈ {1, · · ·n}):

z̈k =
2∑

j=−2

(gxρx,jzk+j + gvρv,j żk+j) . (3)



Dynamics of locally coupled oscillators 4

Figure 1. Sketch of information flow. Available information about position ρx,j
and velocity ρv,j of nearest j = k±1 and next–nearest j = k±2 agents for k’th agent.

Exception from this are boundary agents k = 1, N − 1, N on which we comment later.

This system is subject to the constraints

ρx,0 = ρv,0 = 1 ,
2∑

j=−2

ρx,j =
2∑

j=−2

ρv,j = 0 , (4)

and to the conditions:

k > 0 : zk(0) = 0 , żk(0) = −v0 and t ≥ 0 : z0(t) = 0 . (5)

Finally, z1, zN−1, and zN are subject to boundary conditions discussed in the end of

this section. From now on we denote this system by SN , and also the collection of the

systems {SN}N>4 by S.

In view of these constraints, this is effectively an 8–parameter family of systems of

(variable) size N . Notice also that Equation (4) is a consequence of the decentralized

system, where the locality of exchange of information is expressed by the fact that index

j in Equation (3) runs over the four nearest neighbors.

Now we use vector notation and write z ≡ (z1, z2, z3, . . . zN )T together with

ż ≡ (ż1, ż2, ż3, . . . żN )T . Equation (3) may be rewritten as a first order system in 2N

dimensions:
d

dt

(
z

ż

)
=

(
0 I

gxLx gvLv

)
+

(
0

F (t)

)
≡MN

(
z

ż

)
+

(
0

F (t)

)
, (6)

where Lx , Lv ∈ RN×N are matrices - the Laplacians - with standard definition

(Lxz)k =
2∑

j=−2

gxρx,jzk+j , (Lvż)k =
2∑

j=−2

gvρv,j żk+j , (7)

with modifications when k ∈ {1, N − 1, N} and F (t) is the external force that describes

the influence of the leader over its immediate neighbors.

The definition of the system is not yet complete. We we will introduce two sets of

boundary conditions for SN (the system on the line). We will perform numerics with

both types of boundary conditions (see Section 7), in order to support our conclusion

that for stable and flock stable systems the trajectories are independent of the boundary

conditions.
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Definition 2.2. Let SN be the linearized system in Definition 2.1. The boundary

conditions are expressed in the equation for z̈k for k = 1, N − 1 and N ’th agents. To

this end, we will consider two nontrivial BC:

(i) fixed interaction BC:

z̈1 = (gxρx,−1z0 + gvρv,−1ż0)

− [gx (ρx,−1 + ρx,1 + ρx,2) z1 + gv (ρv,−1 + ρv,1 + ρv,2) ż1]

+
2∑

j=1

(gxρx,jz1+j + gvρv,j ż1+j) ,

z̈N−1 =
−1∑

j=−2

(gxρx,jzN−1+j + gvρv,j żN−1+j)

− [gx (ρx,−2 + ρx,−1 + ρx,1) zN−1 + gv (ρv,−2 + ρv,−1 + ρv,1) żN−1]

+ (gxρx,1zN + gvρv,1żN) ,

z̈N =
−1∑

j=−2

(gxρx,jzN+j + gvρv,j żN+j)

− [gx (ρx,−2 + ρx,−1) zN + gv (ρv,−2 + ρv,−1) żN ] . (8)

(ii) fixed mass BC:

z̈1 = [gx (ρx,−2 + ρx,−1) z0 + gv (ρv,−2 + ρv,−1) ż0]

+
2∑

j=0

(gxρx,jz1+j + gvρv,j ż1+j) ,

z̈N−1 =
0∑

j=−2

(gxρx,jzN−1+j + gvρv,j żN−1+j)

+ [gx (ρx,1 + ρx,2) zN + gv (ρv,1 + ρv,2) żN ] ,

z̈N =
0∑

j=−2

(gxρx,jzN+j + gvρv,j żN+j)

+ [gx (ρx,1 + ρx,2) zN + gv (ρv,1 + ρx,2) żN ] . (9)

In the decentralized systems the row sum of the Laplacians equals 0,
∑

j ρx,j =∑
j ρv,j = 0. This implies that for the system SN boundary agents k = 1, N − 1, N ρ’s

have to be modified. In the case of fixed interaction BC the masses, ρx,0 and ρv,0, of the

agent are not equal 1, instead it is the sum of existing interactions. On the other hand,

in fixed mass BC we change the interactions of existing agents and keep the central ρx,0
and ρv,0 equal to 1.

3. Method

As stated before, the analysis of the system of Definition 2.1 is very difficult because

the Laplacians given in Equation (7) are not necessarily simultaneously diagonalizable.
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However, if we impose that the communication structure is not a line graph but a circular

graph, the resulting Laplacians L∗ become circulant matrices. Circulant matrices

are diagonalized by the discrete Fourier transform and therefore are simultaneously

diagonalizable.

Our treatment follows that of Reference [18] where using reasonable conjectures it

is shown that (for nearest neighbor systems) a circular system and a system on the line

evolve in a similar manner. The second step is to analyze the circular system and apply

the conclusions to the systems on the line. We note here that this treatment implies

that the BC on the agents labelled k = 1, N − 1 and N , do not enter the analysis,

and therefore that these BC do not affect our conclusions. Here we do not discuss the

conjectures; we briefly outline how the evolution of the two systems can be compared.

We do this by stating the two main ideas involved in this.

First we need to remind the reader of the two notions of stability that play a crucial

role in our analysis.

Definition 3.1. For given N , the system SN is asymptotically stable if, given any initial

condition, the trajectories always converge to a coherent motion and the convergence is

exponential in time. This is equivalent to: MN has one eigenvalue zero with multiplicity

2, and all other eigenvalues have real part (strictly) less than 0.

Flock stability was introduced in Reference [18]:

Definition 3.2. The collection S is called flock stable if the SN are asymptotically stable

for all N and if maxt∈R|zN(t)| grows sub–exponentially in N .

Note that asymptotic stability is different from flock stability, the former deals with

the growth of the response of a single system for N fixed, while the latter deals with

the growth of the response of a sequence of systems as N tends to infinity.

The first idea is that, if the system on the line is stable and flock stable, then the

behavior of the two systems away from the boundary should be the same. This is similar

to what is commonly known in solid state physics as periodic boundary conditions (see

Chapter 21 in Ref. [19]), though not exactly the same. We need this principle to apply

in more generality than is usual in physics, because we are considering systems that

are not symmetric and are not Hamiltonian. In extending the principle, we need to be

aware that new phenomena may appear (see Section 6) and indeed its validity is not

guaranteed, and needs to be checked (see Section 7). The second idea involved in this

analysis is the assumption that if the system on the circle is asymptotically unstable,

then the system on the line is either asymptotically unstable or flock unstable. These

two ideas follow from more detailed conjectures discussed in References [17] and [18].

Recall that our real interest lies in the system on the line with N agents (plus a

leader) with nontrivial BC (see sketch of dynamics presented in Figure 2).

Definition 3.3. The equations of motion of the system with periodic boundary
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T
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period

second
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first

response timeamplitudes

stationary orbit

of last agent

position of
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(a) (b)

Figure 2. Dynamics of locally coupled arrays. Sketch of time–dependent

dynamics of locally coupled oscillators on the line (system SN ) of (a) Type I and

(b) Type II (see Section 6 for detailed analysis of these solutions). x-axis depicts

relative position with respect to the leader.

conditions (PBC) are:

z̈k =
2∑

j=−2

(gxρx,jzk+j + gvρv,j żk+j) .

This system is subject to the constraints

ρx,0 = ρv,0 = 1 ,
2∑

j=−2

ρx,j =
2∑

j=−2

ρv,j = 0 ,

and to the conditions:

k > 0 : zk(0) = 0 , żk(0) = −v0 , and t ≥ 0 : z0(t) = 0 .

Finally, instead of boundary conditions for z1, zN−1, and zN , we set:

∀j zN+j = zj .

From now on we denote this system by S∗N , and also the collection of the systems

{S∗N}N>4 by S∗.
Definition 3.4. In order to simplify notation, we set αx,0 = αv,0 = 1 and βx,0 = βv,0 =

0. For j > 0 we have:

αx,j = ρx,j + ρx,−j , βx,j = ρx,j − ρx,−j ,
αv,j = ρv,j + ρv,−j , βv,j = ρv,j − ρv,−j . (10)
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Note that the sum of the α’s equals 0 through Equation (4).

We now turn to the study of the stability of the systems in S∗. The Laplacians

L∗ now become circulant matrices and are both diagonalizable by the discrete Fourier

transform. Let wm be the m’th eigenvector of L∗’s, that is the vector whose j’th

component satisfies:

(wm)j = exp

(
ı
2πm

N
j

)
≡ exp(ıφj) , (11)

with the obvious definition of φ. We denote the m’th eigenvalues of gxL
∗
x by λx,m and

those of gvL
∗
v by λv,m. With a slight abuse of notation we also consider these eigenvalues

to be functions λx(φ) and λv(φ) of φ defined above. By using the m’th eigenvector above

to calculate L∗xwm and L∗vwm it is easy to show that:

Lemma 3.1.

λx(φ) = gx

2∑
j=−2

ρx,j exp(ıφj) = gx

2∑
j=0

[αx,j cos(jφ) + ıβx,j sin(jφ)] ,

λv(φ) = gv

2∑
j=−2

ρv,j exp(ıφj) = gv

2∑
j=0

[αv,j cos(jφ) + ıβv,j sin(jφ)] . (12)

The above equations are the discrete Fourier transform of the vectors ρ’s in

Definition 3.3.

Let us now focus now on two eigenpairs of M∗
N [with the same definition as in

Equation (6)] associated with wm. Denoting the eigenvalues by νm,±, we get:(
0 I

gxL
∗
x gvL

∗
v

)(
wm

νm,±wm

)
= νm,±

(
wm

νm,±wm

)
. (13)

For simplicity of notation we drop the subscripts of ν except when ambiguity seems

possible. Evaluating second row of Equation (13), we get:

Lemma 3.2. The eigenvalues of S∗N are given be the roots of the characteristic equation

ν2 − λv(φ)ν − λx(φ) = 0 , (14)

where φ = 2πm/N .

Substituting the above expressions for λ’s, Lemma 3.1, we get:

ν2 − gv

[
2∑

j=0

αv cos(jφ) + ıβv,j sin(jφ)

]
ν

− gx

[
2∑

j=0

αx cos(jφ) + ıβx,j sin(jφ)

]
= 0 . (15)

Note that when φ = 0, the characteristic equation becomes ν2 = 0. This gives two zero

eigenvalues. These trivial eigenvalues are associated with the coherent solutions of the

system, zk = 0 (see also Equation 1).
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4. Stability and signal velocities

Some necessary conditions for stability are derived and utilized to formulate our results

for the signal velocities and their consequences. In this section we want to establish

necessary and sufficient conditions, so that all other solutions of Equation (15) have

negative real part, since as was explained in Section 2, this is one of the conditions for

stability of the system.

Definition 4.1. The collection S∗ is asymptotically unstable if at least one eigenvalue

has positive real part.

Note that collection S∗ is stable if 0 eigenvalue has multiplicity 2 and all other

eigenvalues are smaller than 0 (see Lemma 3.2).

Lemma 4.1. The following are necessary conditions for the collection S∗ not to be

unstable:

(i) βx,1 + 2βx,2 = 0,

(ii) gv ≤ 0,

(iii) αv,1 ∈ [−4/3, 0],

(iv) gxαx,1 ≥ 0.

Proof: To prove (i) notice that the roots of characteristic Equation (14) are:

ν±(φ) =
1

2

[
λv(φ)±

√
λv(φ)2 + 4λx(φ)

]
. (16)

For small φ, the λ’s can be approximated by their first order expansion. From

Definition 3.4 and Lemma 3.1 we obtain:

λx(φ→ 0) ≈ ıgxφ
2∑

j=0

jβx,j , λv(φ→ 0) ≈ ıgvφ
2∑

j=0

jβv,j . (17)

Substituting these into equation for ν, Equation (16), we see that for small enough φ,

the term ±
√

4λx(φ) dominates. Since φ can be either positive or negative, this has

four branches meeting at the origin at angles of π/2. Two of these branches contain

eigenvalues with positive real part (for big enough N). Therefore,
∑2

j=0 jβx,j = 0.

For condition (ii) we note that the mean of the two roots of Equation (16) is equal

λv/2. It follows that we must require <[λv(φ)] ≤ 0 for all φ 6= 0. Since the average∫
<[λv(φ)]dφ is gv, there is a φ so that <[λv(φ)] = gv. That of course means that gv must

be nonpositive. In turn, <[λv(φ)] is always nonnegative, therefore
∑
αv,j cos jφ ≥ 0.

For the NNN system, the constraints on the α’s now give

1 + αv,1 cos(φ)− (1 + αv,1) cos(2φ) ≥ 0 . (18)

Since cos(2φ) = 2 cos2 φ− 1, the inequality becomes a quadratic inequality in cos(φ):

− (2 + 2αv,1) cos2(φ) + αv,1 cosφ+ 2 + αv,1 ≥ 0 , (19)

which factors as:

− [(2 + 2αv,1) cos(φ) + 2 + αv,1] (cos(φ)− 1) ≥ 0 . (20)
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By working out three cases, αv,1 < −1, αv,1 = −1, and αv,1 > −1, the conclusion of

(iii) may be verified.

Beside φ = 0, one other case of Equation (14) is easy, namely φ = π with the λ’s

as defined in Lemma (3.1)

ν2 − νgv
2∑

j=0

(−1)jαv,j − gx
2∑

j=0

(−1)jαx,j = 0 . (21)

The roots have nonpositive real part if and only if both coefficients are nonnegative. In

particular, this implies that last term in the above equation is gx
∑2

j=0 (−1)jαx,j ≤ 0.

From Definition 3.4 we know that
∑2

j=0 αx,j = 1 +
∑2

j=1 αx,j = 0, and as a consequence

gxαx,1 ≥ 0, which is condition (iv). Similarly, gvαv,1 ≥ 0 but this already follows from

conditions (ii) and (iii).

Since we are interested in the parameter values for which the collection S∗ is not

unstable, we use the above Lemma 4.1 and Definition 3.4 to eliminate a few parameters

from our equations. This is done in the following definition.

Definition 4.2. In the remainder of this work we will substitute βx,2, αx,2, and αv,2 by

setting:

βx,2 = −1

2
βx,1 , αx,2 = −(1 + αx,1) , αv,2 = −(1 + αv,1) . (22)

Proposition 4.1. If the collection S∗ is stable, the low-frequency expansion of ν±(φ) is

given by

ν±(φ) =
ıφ

2

[
gv(βv,1 + 2βv,2)±

√
g2v(βv,1 + 2βv,2)2 − 2gx(4 + 3αx,1)

]
+
φ2

4

[
gv(4 + 3αv,1)±

g2v(βv,1 + 2βv,2)(4 + 3αv,1) + 2gxβx,1√
g2v(βv,1 + 2βv,2)2 − 2gx(4 + 3αx,1)

]
. (23)

Proof: One can transcribe the first two terms of the corresponding expansion given

in [17], or one can find the result by substituting power series in φ in Equation (15) or

Equation (16).

This result immediately implies two other necessary criteria for stability. It is

unclear whether together with the earlier criteria from Lemma 4.1 these constitute a

necessary and sufficient set of criteria for the stability of S∗.

Corollary 4.1. The following are necessary conditions for the collection S∗ to not be

unstable:

(i) g2v(βv,1 + 2βv,2)
2 − 2gx(4 + 3αx,1) ≥ 0,

(ii) g2vgx(4 + 3αv,1)
2(4 + 3αx,1) + 2g2vgx(βv,1 + 2βv,2)(4 + 3αv,1)βx,1 + 2g2xβ

2
x,1 ≤ 0.

Proof: If condition (i) does not hold, then one branch of the first order expansion

given in Proposition 4.1 will have positive real part. Condition (ii) corresponds to

setting the argument of φ2 in Proposition 4.1 as negative.
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Theorem 4.1. Suppose the collection S is stable and flock stable. Then, under certain

assumptions, as N (the number of agents) tends to infinity, the system SN will behave

as a wave equation with signal velocities given by

c± = −1

2
gv(βv,1 + 2βv,2)±

1

2

√
g2v(βv,1 + 2βv,2)2 − 2gx(4 + 3αx,1) . (24)

Proof: The proof to a large extent is the same as the one given in the simpler case

of nearest–neighbor presented in Reference [17].

As a final comment in this section we want to point out that we are interested only

in the cases where S is flock and asymptotically stable. In other cases, the system can

have dynamics not described by the methods used in this study. These cases can have

interesting dynamics in their own right. An example of such a system is presented in

Figure 3 with the configuration

gx = gv = −2 ,

ρx = (4/27,−289/432, 1,−253/432, 23/216) ,

ρv = (47/216,−29/108, 1,−79/108,−47/216) . (25)

S∗N with the above configuration is stable according to Definition 4.1. However, this

does not imply stability of SN . In fact, although above configuration satisfies Lemma 4.1

and Corollary 4.1, the system SN has eigenvalues with positive part, and is therefore

asymptotically unstable. It is evident from Figure 3 that presented results can not be

modeled by simple traveling waves. However, we find that such a configurations - stable

S∗N but unstable SN - are extremely rare.

5. Routh–Hurwitz stability criteria

Recall that we wish to establish conditions that guarantee that the system on the line

is both asymptotically stable and flock stable. A direct verification of this might not

be easy to perform. However, by the assumptions stated in Section 2, we can do this

by finding the conditions that guarantee that the system on the circle is not unstable.

Luckily this is a much simpler problem: we only need to show that roots of Equation (15)

have real part less than or equal to zero.

The Routh-Hurwitz criterion is a standard strategy to derive a concise set of

conditions that is equivalent to the fact that all roots of a given polynomial have negative

real parts. In various systems similar to the ones discussed here, this criterion gives good

results [17, 9]. In our current case the resulting equations are too complicated to give

us much information and we only get one more necessary condition for stability that we

can use (Corollary 4.1). Our discussion is based on Chapter 15, Sections 6, 8, and 13 of

Ref. [21], where more details can be found.

Theorem 5.1. (Routh-Hurwitz) Assume that the determinants given below are nonzero.

Given a real polynomial P = x4+a3x
3+a2x

2+a1x+a0, all roots of P have negative real
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Figure 3. Dynamics of unstable system. Dynamics of example system

SN as calculated for N = 200, ∆ = 1, v0 = 1, gx = gv = −2, ρx =

(4/27,−289/432, 1,−253/432, 23/216), ρv = (47/216,−29/108, 1,−79/108,−47/216)

and fixed interaction BC. Each color represent the orbit of one of the 200 agents.

part if and only if all determinants of the upper-left submatrices (the leading principal

minors) of:

A4 ≡


a3 a1 0 0

1 a2 a0 0

0 a3 a1 0

0 1 a2 a0

 , (26)

are positive. That is: a3 > 0, a0 > 0, a3a2 − a1 > 0, and a3a2a1 − a23a0 − a21 > 0.

An equivalent but less well–known set of conditions is given in the following:

Theorem 5.2. (Liénard-Chipart) Assume that the determinants in Theorem 5.1 are

nonzero. Given a real polynomial Q = x4 + a3x
3 + a2x

2 + a1x+ a0, all roots of P have

negative real part if and only if a3 > 0, a2 > 0, a0 > 0, and a3a2a1 − a23a0 − a21 > 0.

The characteristic polynomial Q of Equation (15) can be turned into a polynomial

with real coefficients

QQ∗ ≡ ν4 − 2<(λv)ν
3 +

[
|λv|2 − 2<(λx)

]
ν2

+ 2 [<(λx)<(λv) + =(λx)=(λv)] ν + |λx|2 , (27)

by taking its product with its complex conjugate. Clearly, all roots of Q have negative

real part if and only if the same is true for QQ∗. Notice that in each of the two
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criteria, one of the equations is trivially satisfied, namely a0 > 0 (where we are assuming

nondegeneracy). Therefore, in the Routh-Hurwitz case three equations are obtained.

The first two are:

<(λv) < 0 , (28)

<(λv)
[
|λv|2 − 2<(λx)

]
− [<(λx)<(λv) + =(λx)=(λv)] > 0 . (29)

The third inequality we do not utilize, since it is extremely complicated containing fifth

order terms. We are left with the above two, which are now necessary conditions for all

roots to have negative real part.

Similarly, the Liénard-Chipart stability criterion also gives two necessary conditions

for all roots to have negative real part:

<(λv) < 0 , (30)

2<(λx)− |λv|2 < 0 . (31)

The third inequality is the same as before and will not be utilized, as mentioned earlier.

Since the second inequality of the Liénard-Chipart conditions seems less complicated

than the corresponding one of the Routh-Hurwitz conditions, we will continue with the

former.

Substituting the expressions for the λ’s (Lemma 3.1) we get:

(i) gv

[∑2
j=0 αv,j cos(jφ)

]
< 0,

(ii) gx

[∑2
j=0 αx,j cos(jφ)

]
− g2v

{[∑2
j=0 αv,j cos(jφ)

]2
−
[∑2

j=0 βv,j sin(jφ)
]2}

< 0.

These are complicated relations therefore we will use the equivalent relations averaged

over φ. The first of these equations was already used in Lemma 4.1. After some

calculations we can work out the average over φ of the second relation. This gives the

final necessary condition for all roots to have negative real part.

Corollary 5.1. The following is a necessary condition for the collection S∗ to not be

unstable:

gx − g2v
2∑

j=−2

ρ2v,j ≤ 0 . (32)

6. Solution classification

In Theorem 4.1 we saw that if S is stable and flock stable, the systems SN will behave

like a wave equation if N is large. This implies that transients will grow linearly in the

number of agents of the flock. If these conditions are not met, then for N large, SN
may be unstable or transients grow exponentially with the the size of the flock. Thus

linear growth of transients cannot be improved for the type of the systems studied in

this work.

Those solutions whose transients have linear growth, all resemble the solutions of a

wave–like equation, namely they are approximately of the form f+(k−c+t)+f−(k−c−t).
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The constants c− and c+ are the signal velocities given by Theorem 4.1. Their units are

in agent label per unit time. A positive velocity means going from the leader towards

the last agent (labeled N). For the parameter values where this behavior occurs, the

equation of motion Equation (3) behaves like a wave equation. If we choose other

parameter values, transients will grow faster than linear and the behavior will be unlike

the wave equation. Since the application we have in mind is flocking, we are interested

in small transients. Accordingly, in this paper we limit ourselves to investigating the

wave–like solutions only.

Figure 4. Phase diagram of signal velocities. Sketch of three type of solutions.

Type I and Type II are stable with PBC and also on the line. Type III solution is

stable only with PBC.

It turns out there are several types of wave–like solutions. These depend on the

signs of the signal velocities c± given in Theorem 4.1 - see the phase diagram presented

in Figure 4. This is very different from the traditional physical, where signal velocities

do not depend on direction. There are, in principle, three types of wave–like solutions.

When c− < 0 < c+ the solutions resemble the traditional damped wave reflecting

between the ends of the flock. This type of solution was already described in [18].

The difference in the signal velocities causes the wave to be damped (or magnified)

when it reflects in agent N . These solutions are called Type I. When 0 < c− < c+,

that is the signal velocities are both positive, the wave cannot be reflected in the last

agent, because it cannot move with negative velocity. Therefore these solutions are

reflectionless waves. We also call these solutions Type II. It was proved in [18] that
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such solutions cannot occur with only nearest–neighbor interactions. Finally, when

c− < c+ < 0, the perturbation which in our set up starts at the leader, cannot be

transmitted to the flock, because only negative signal velocities are available. Thus,

another solution which does not appear to be wave–like, and which has very large

amplitudes is found for the system (see Figure 7). The only reason for listing this

solution in this work at all, is that if one looks at the system on the circle, wave-like

solutions with negative signal velocities are indeed obtained. We call these solutions

Type III. As with type II, these solutions cannot occur with only nearest neighbor

interactions.

Note that in our analysis we ignore cases when c± = 0 or c+ = c−. These cases are

interesting by themselves, but have properties that make them undesirable for situations

like traffic and other types of flocking. When c− = 0, distances between agents do not

tend to the desired distance ∆, but rather to some value that depends on the initial

conditions. If c+ = c−, which on the line only occurs in Type II solutions, the velocity

of the last agent is unbounded as N tends to infinity. We do not further investigate

these solutions in this paper.

We now turn to the quantitative characterization of the trajectories of Type I and

Type II (the ones with the smallest transients) for systems that are stable and flock

stable. For large N one can show, based on the conjectures, that the orbit of the last

agent is approximately piecewise linear. It can thus be effectively characterized by only a

few parameters. For Type I, we characterize the orbit of the last agent [see Figure 2(a)]

by the k’th amplitude Ak, the period T , and the quotient |Ak+1/Ak| which we refer

to as the attenuation α. For Type II, we characterize the orbit of the last agent [see

Figure 2(b)] by the amplitude A, the first response time T1 and the second response

time T2.

6.1. Type I: c− < 0 < c+

Theorem 6.1. Suppose the collection S is stable. Within Type I solutions the

characteristics of the orbit of the last agent can by given by:

Ak = −v0Nck−1− /ck+ , α = |Ak+1/Ak| = |c−/c+| ,
T = 2N(1/c+ + 1/|c−|) , (33)

where Ak (k ≥ 1) is the amplitude of zN(t) agent from its equilibrium position, α is the

attenuation, and T is the oscillation period.

The proof to a large extent is the same as the one given in the simpler case of

nearest–neighbor case [17].

In order to get optimal behavior, we want |c−/c+| < 1, so that the signal is

attenuated. This means that in order to minimize transients, the emphasis should

be placed on the upstream information in the velocity Laplacian.

Corollary 6.1. If S is asymptotically stable and flock stable then SN is of Type I and

boundary effects will attenuate the signal if (βv,1 + 2βv,2) > 0 and gx (4 + 3αx,1) < 0.



Dynamics of locally coupled oscillators 16

Proof: According to Theorem 4.1, c± has a form c± = 1
2

(
−a±

√
a2 − b

)
, where

a = gv(βv,1 + 2βv,2) and b = gx (4 + 3αx,1). Since c− + c+ > 0, we see that a < 0 [see

Lemma 4.1(ii)]. We also have that c− < 0 thus b < 0.

These systems are typical examples of damped oscillations and we refer the

interested reader to References [17, 18] for more detailed analysis of such solutions in

the nearest–neighbor case. In Figure 5 we present exemplary dynamics of Type I stable

system SN . For the presented configuration of ρ’s [ρx = (−0.5, 0.25, 1,−0.75, 0) and

ρv = (−1, 0.75, 1,−1, 0.25)] predicted characteristics are A1 = 80 , α = 0.4 , T = 560,

where measured A1 = 77.179 , α = 0.3766 , T = 567.63.
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Figure 5. Dynamics of Type I solution. Dynamics of example system SN as

calculated for N = 200, ∆ = 1, v0 = 1, gx = gv = −2, ρx = (−0.5, 0.25, 1,−0.75, 0),

ρv = (−1, 0.75, 1,−1, 0.25) and fixed interaction BC. Each color represent the orbit of

one of the 200 agents.

6.2. Type II: 0 < c− < c+

Corollary 6.2. Both of the velocities will be positive when gv (βv,1 + 2βv,2) is negative

and 2gx (4 + 3αx,1) is positive, see Theorem 4.1.

Proof: Similar to the proof of Corollary 6.1.

Within such a system, start signal travels from the leader to the last agent with

velocity c+, and subsequently second signal velocity c− stops the motion of the agents.

A remarkable aspect of this type of solution is that very briefly after the second response
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time, the trajectory of the last agent is almost exactly in its equilibrium position.

Dynamics within such a system can be described as a traveling wave–package which

does not reflect in the boundary of the system.

Theorem 6.2. Suppose the collection S is stable. Reflectionless waves can be

characterized by

A = −v0N/c+ , T1 = N/c+ , T2 = N/c− , (34)

where A is the amplitude and T1 , T2 are first and second response time, respectively.

In Figure 6 we present typical dynamics of Type II stable system S. For presented

configuration of ρ’s (ρx = (1,−2, 1, 0, 0) and ρv = (−0.5,−1, 1, 0.5, 0)) predicted

characteristics are A = 43.845 , T1 = 43.845 , T2 = 456.16, where measured are

A = 43.182 , T1 = 43.182 , T2 = 453.95.
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Figure 6. Dynamics of Type II solution. Dynamics of example system SN
as calculated for N = 200, ∆ = 1, v0 = 1, gx = gv = −2, ρx = (1,−2, 1, 0, 0),

ρv = (−0.5,−1, 1, 0.5, 0) and fixed interaction BC. Each color represent the orbit of

one of the 200 agents.

The stable Type II solutions zk(t) appear to satisfy a condition

∀ t ≥ 0
∂

∂k
zk(t)

∣∣∣
k=0

= 0. (35)

If we impose this theoretical boundary condition (as opposed to the physical BC

introduced in the end of Section 2), similarly to what was done in Reference [18], we
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can use it to derive an approximate solution for zk(t):

zk(t) =
c+

(c− + c+)
f

(
t− k

c+

)
− c−

(c− + c+)
f

(
t− k

c−

)
, (36)

where f(t) = z0(t) is a prescribed orbit of the leader. This solution is asymptotic in

N →∞ and the relative errors tend to zero as N tends to infinity.

6.3. Type III: c− < c+ < 0

Corollary 6.3. Both of the velocities will be negative when gv (βv,1 + 2βv,2) is positive

and 2gx (4 + 3αx,1) is positive, see Theorem 4.1.

Proof: Similar to the proof of Corollary 6.1.

In such a system, the perturbation emanates from the leader and wave–like solution

could travel to the rest of the flock only if it had a positive velocity (c± is measured in

agent label per unit time). Therefore, it cannot have a wave like solution for a system

on the line (system SN). However, it does exhibit wave–like solution for a system on

the circle (system S∗N).

Within such a setup, on short time scales, the leader simply starts and other agents

do not follow him. On larger time–scales, other phenomena may take place. One of

the possibilities is that systems characteristics, e.g., amplitudes will constantly grow

with time. Thus, the system should be flock unstable or even asymptotically unstable.

However, due to the complicated nature of the stability conditions, we do not have a

proof of this.
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Figure 7. Dynamics of “Type III” solution. Dynamics of example system SN
as calculated for ∆ = 1, v0 = 1, gx = gv = −2, ρx = (−2,−15/4, 1,−21/4, 5/2),

ρv = (−1, 4, 1,−5, 1), fixed interaction BC N = 50 (left panel) and N = 100 (right

panel). Each color represent the orbit of one of the 50 and 100 agents, respectively.

In Figure 7 we present a dynamics of the system SN whose solution on the circle
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(system S∗N) is of Type III. It is obvious from presented results that, i.e., amplitudes do

not grow linearly with system size.

7. Numerical tests

The parameter space P × B of the systems given in Definition 2.1 contains the 8-

dimensional set P of values of g’s and ρ’s and the set B of boundary conditions (for

NNN case B turns out to be a 11–dimensional). The obvious constraints for ρ’s are

coming from Equation (4), i.e., consequence of decentralized system. By varying value

of g’s and ρ’s, we generate sets P which contain |P | ' 106 unique system configurations

p. We also characterize this set by type of solution (see Section 6),

P = P I ∪ P II , (37)

where superscript I and II correspond to Type I and Type II solution, respectively.

It is worth noting that we did not find Type III solutions in our P . These appear to

be quite rare, and in order to analyze them, we had to explicitly search for them (see

Section 6.3).

Our aim is to numerically verify the set of conditions given in Lemma 4.1,

Corollary 4.1 and Corollary 5.1, and for Type I only Corollary 6.1:

(i) βx,1 + 2βx,2 = 0,

(ii) gv ≤ 0,

(iii) αv,1 ∈ [−4/3, 0],

(iv) gxαx,1 ≥ 0,

(v) g2v(βv,1 + 2βv,2)
2 − 2gx(4 + 3αx,1) ≥ 0,

(vi) g2vgx(4 + 3αv,1)
2(4 + 3αx,1) + 2g2vgx(βv,1 + 2βv,2)(4 + 3αv,1)βx,1 + 2g2xβ

2
x,1 ≤ 0,

(vii) gx − g2v
∑2

j=−2 ρ
2
v,j ≤ 0,

for subsets P I , we required that (viii) |c−/c+| < 1.

Our test strategy is as follows:

(1) For each configuration p ∈ P I and p ∈ P II , we have checked the above conditions.

The set of p’s which fulfill all of the conditions is denoted as P I
stable and P II

stable,

correspondingly. The set of unstable configurations has a subscript “unstable”.

(2) For each configuration p ∈ P I and p ∈ P II , we evaluate the system with PBC and

N = 200 agents, system S∗N=200, and calculate the eigenvalues of M∗
N . We denote

as P̃ I
unstable, the collection of p’s for which in the eigenspectrum of M∗

N is at least

one eigenvalue with positive real part or/and more than 2 zero eigenvalues, and

it’s complement as P̃ I
stable. We do the same for P̃ II

unstable/stable. Note that P̃ I
stable and

P̃ II
stable is the collection of configuration p which are, according to Definition 4.1,

asymptotically stable.
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(3) For each configuration p ∈ P I and p ∈ P II , we evaluate the system with fixed

interaction BC (see Section 2) and N = 200 agents, system SN=200, and calculate

the eigenvalues of MN of it. We denote as P̂ I
unstable the collection of p’s for which

in the eigenspectrum of MN is at least one positive eigenvalue or/and more than 2

zero eigenvalues. We do the same for P̂ II
unstable. P̂

I
stable and P̂ II

stable is the collection of

configuration p which are, according to Definition 3.1, asymptotically stable.

In our numerical investigation we have found that

P I
stable ≡ P̃ I

stable ≡ P̂ I
stable , P II

stable ≡ P̃ II
stable ≡ P̂ II

stable ,

P I
unstable ≡ P̃ I

unstable ≡ P̂ I
unstable , P II

unstable ≡ P̃ II
unstable ≡ P̂ II

unstable , (38)

therefore, no exception was found. Note that, although our conditions are for S∗N not

be unstable, they yield quite good predictions for stability of SN .

According to conjectures [17, 18] (see also discussion in Section 2) the BC do not

play any role. In order to validate this we choose two BC ∈ B introduced in Section 2.

Also, as we saw in Section 6, measured values of certain characteristics presented

for N = 200 differ slightly from the predicted ones, Theorem 6.1 and Theorem 6.2,

by small value. This is expected, since our predictions are valid for N → ∞. In

order to test this, we choose 500 configurations from P I
stable and 500 configurations

from P II
stable with period T . O(10N) and second response time T2 . O(10N),

respectively. We put this constraint for T and T2 in order to decrease computation

time of these configurations for large N . Then, we ran each of these configuration for

N ∈ {25 · 2n}n=11
n=0 and fixed interaction and mass BC. We use the ordinary differential

equation solver of Boost library [22, 23] in a parallel computing environment. We

measure the characteristics directly from numerical simulations and compare them with

predictions of Theorem 6.1 and Theorem 6.2. In Figure 8 we present curves of relative

error=|measured − predicted|/|predicted|, of averaged over Nsamp configurations and

maximal one of first amplitude A1, period T , and attenuation α for Type I solution,

together with amplitude A, first T1 and second T2 response time for Type II solution.

As is clearly visible in Figure 8, the relative errors decrease as N grows, as is

predicted by the theory. Our numerical analysis is consistent withe the statement that -

with the exception of period T for Type I orbit - the error decreases as O(1/
√
N). The

error in the period T (for Type I) appears to decrease as O(1/N).

8. Conclusions

We have investigated the dynamics of linearly coupled oscillators with next–nearest–

neighbor interaction on the line. To our knowledge, it seems not possible - or at least

very hard - to characterize the dynamics of this system by analyzing its equations of

motion directly. Here we follow [17] and [18] and study the leaderless systems S∗ with

periodic boundary conditions. The stability of this system, which is easier to establish,

is found to be an effective criterion for the stability and flock stability of the systems
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Figure 8. Relative error size scaling. Size N dependence of average and maximal

relative error of Type I and Type II solutions for fixed interaction and mass boundary

condition (see Definition 2.2) as calculated for N = 25, . . . , 51200 agents. Notice that

the plot has log–log scale, therefore slope corresponds to the power of the decay.

on the line, S. In addition it provides us with the tools to quantitatively completely

characterize the transients of the system on the line.

Our results were numerically tested for two illustrative BC. However, the analysis

presented is valid also for other BC, provided that the system can be successfully

analyzed with PBC, and therefore for large enough N , boundary conditions do not

influence the dynamics of the system.

Similarly to the case of nearest–neighbor systems [18], symmetric interactions are

far from optimal and asymmetric cases show better performance. In fact the smallest

transients tend to occur in the newly found type II solutions. In these wave-like solutions,

the agents accelerate and decelerate only once to join the flock. There are, as it were,

no reflections of these waves.

Wave-like behavior without apparent reflection was recently demonstrated

experimentally to occur in flocks of starling birds [13, 24]. When the flock turns, the

change of the heading of individual birds propagates through the flock in the wave–like

fashion. This appears to happen in the same manner of our reflectionless waves: the

heading of birds accelerates and decelerates only ones to assume its new value. The

question arises whether the same mechanism discussed in this paper that gives rise
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to reflectionless waves one-dimensional flocks, also operates in 2 and 3 dimension to

generate wave-like solution. If that is the case, this mechanism could well operate in

course changes of actual bird flocks. We leave this as a future challenge and motivation

for further study.
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