
Portland State University Portland State University 

PDXScholar PDXScholar 

Physics Faculty Publications and Presentations Physics 

8-1-2009 

A Discrete Impulsive Model for Random Heating and A Discrete Impulsive Model for Random Heating and 

Brownian Motion Brownian Motion 

John D. Ramshaw 
Portland State University, jdramshaw@yahoo.com 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac 

 Part of the Physics Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Ramshaw, J. D. (2010). A discrete impulsive model for random heating and Brownian motion. American 
Journal Of Physics, 78(1), 9-13. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty 
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make 
this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/phy_fac
https://pdxscholar.library.pdx.edu/phy
https://pdxscholar.library.pdx.edu/phy_fac?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/phy_fac/120
mailto:pdxscholar@pdx.edu


A discrete impulsive model for random heating and Brownian motion
John D. Ramshaw
Department of Physics, Portland State University, Portland, Oregon 97207

�Received 14 May 2009; accepted 10 August 2009�

The energy of a mechanical system subjected to a random force with zero mean increases
irreversibly and diverges with time in the absence of friction or dissipation. This random heating
effect is usually encountered in phenomenological theories formulated in terms of stochastic
differential equations, the epitome of which is the Langevin equation of Brownian motion. We
discuss a simple discrete impulsive model that captures the essence of random heating and
Brownian motion. The model may be regarded as a discrete analog of the Langevin equation,
although it is developed ab initio. Its analysis requires only simple algebraic manipulations and
elementary averaging concepts, but no stochastic differential equations �or even calculus�. The
irreversibility in the model is shown to be a consequence of a natural causal stochastic condition that
is closely analogous to Boltzmann’s molecular chaos hypothesis in the kinetic theory of gases. The
model provides a simple introduction to several ostensibly more advanced topics, including random
heating, molecular chaos, irreversibility, Brownian motion, the Langevin equation, and
fluctuation-dissipation theorems. © 2010 American Association of Physics Teachers.

�DOI: 10.1119/1.3213526�

I. INTRODUCTION

The idealization of an isolated physical system is just
that—an idealization. All real physical systems interact with
their surroundings. Those interactions are sometimes negli-
gible, but are frequently of essential importance. Their de-
tails are often intractably complicated, and are commonly
modeled as random perturbations. The classic example of
this approach is the Langevin theory of Brownian motion,1–3

in which the equation of motion of a large particle immersed
in a bath of small particles is taken to be

m
dv

dt
= − �v + F�t� , �1�

where m is the mass of the particle, v is its velocity, ��0 is
a friction coefficient, and F�t� is a random force which rap-
idly fluctuates about a mean value of zero.

The Langevin approach has been very successful and has
been fruitfully generalized in many directions. In doing so, it
has not always been recognized that the friction term is es-
sential to counterbalance the heating produced by the ran-
dom force, thereby enabling the system to approach and at-
tain thermal equilibrium.4–6 In the absence of friction �that is,
when �=0�, the mean kinetic energy of the particle diverges
with time due to the irreversible heating produced by the
random force, but this behavior is not immediately obvious
upon casual inspection of Eq. �1�.

The fact that a random force with zero mean produces
irreversible heating may seem surprising at first—if the ran-
dom force averages to zero, then why does the random heat-
ing it produces not likewise average to zero? And where does
the irreversibility come from? The original motivation for
this paper was to provide a simple physical explanation for
this underappreciated and perhaps counterintuitive effect in
terms of a simple impulsive model. The explanation turned
out to be mathematically simple but conceptually subtle, and
it led to some unexpected insights that are less easily ex-
tracted from more advanced treatments. Those insights may
be of wider interest, and will be discussed in detail.

The frictionless impulsive model that exhibits and ex-
plains random heating is easily generalized to include fric-
tion. It then becomes a discrete impulsive analog of Eq. �1�,
and thereby provides a simple introduction to the ideas of the
Langevin theory of Brownian motion, as well as the essence
of fluctuation-dissipation theorems. However, the model will
be motivated and formulated independently of Eq. �1�, and
thus requires no previous exposure to Brownian motion or
the Langevin equation.

The model has the pedagogical advantage that it requires
only simple algebraic manipulations, thereby minimizing the
danger of the mathematics obscuring the physics. It should
therefore be easily accessible to undergraduate physics and
engineering students. The model requires an intuitive grasp
of some basic probabilistic concepts, namely statistical aver-
aging and correlations between random variables. Readers
lacking this background will find a brief summary of the
essentials in the Appendix.

II. IMPULSIVE MODEL FOR RANDOM HEATING

Consider a particle that is constrained to move along a
horizontal line with no friction. The particle experiences a
sequence of random impulsive forces, or equivalently accel-
erations. Each impulse produces a random discontinuous
jump in the velocity v of the particle. Between impulses, v
remains constant. The random heating effect will manifest
itself as an irreversible increase in the particle’s kinetic en-
ergy per unit mass v2 /2. The value of v after the nth impulse
but before the �n+1�st impulse will be denoted by vn. The
initial velocity of the particle prior to the first impulse is
therefore v0. It is understood that the index n increases with
time, and vice versa. The time intervals between the im-
pulses need not be constant, but they do not explicitly enter
into the model and hence need not be specified.

The velocity jump produced by the nth impulse will be
denoted by �vn. The velocity of the particle therefore satis-
fies the discrete evolution equation
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vn = vn−1 + �vn. �2�

The velocity increments �vn are assumed to be statistically
independent random variables with zero mean values. Statis-
tical averages will be denoted by angular brackets, so that
�V� is the statistical average of the random variable V. The
mean value of �vn is ��vn�=0, and its mean-squared value is
��vn

2�. We further assume that the random increments �vn

are all obtained by sampling from the same probability dis-
tribution, so that ��vn

2� has the same value ��v2� for all n.
Equation �2� is the fundamental equation of the model. It

could hardly be any simpler mathematically, and yet we shall
see that it contains a wealth of interesting physics. We now
proceed to analyze how the irreversible random heating fol-
lows from Eq. �2�. Two complementary derivations will be
given, and a consideration of how they are related will pro-
vide considerable insight into the origin of the irreversibility.

The first derivation proceeds by squaring Eq. �2� to obtain

vn
2 = vn−1

2 + 2vn−1�vn + �vn
2, �3�

followed by taking the statistical average of Eq. �3�. Averag-
ing is a linear operation, so we obtain

�vn
2� = �vn−1

2 � + 2�vn−1�vn� + ��v2� . �4�

Now focus attention on the quantity Cn��vn−1�vn�, which is
the statistical correlation between vn−1 and �vn. If those
quantities were statistically independent, then Cn would fac-
tor into the product of their averages and would have the
value Cn= �vn−1���vn�=0. But vn−1 and �vn are indeed sta-
tistically independent, because vn−1 is the value of v prior to
the arrival of �vn, and therefore has not yet been influenced
by �vn. Moreover, there can be no indirect correlation be-
tween vn−1 and �vn via the previous impulses that have in-
fluenced vn−1 because �vn is statistically independent of all
those previous impulses. That is to say, �vn has no memory
and no knowledge of anything that preceded it, including the
value of v that the particle possessed just prior to its occur-
rence. In essence, this property is a matter of causality; the
impulses �vn are the causes and the velocities vn are their
effects, and the latter cannot precede the former. We there-
fore conclude that Cn=0, so that Eq. �4� reduces to

�vn
2� = �vn−1

2 � + ��v2� . �5�

Because ��v2��0, Eq. �5� implies that the energy of the
particle irreversibly increases with time. This increase is the
phenomenon of random heating, which is therefore seen to
be a straightforward consequence of the simple impulsive
model of Eq. �2�. The relation Cn=0 is closely analogous to
Boltzmann’s famous Stosszahlansatz or molecular chaos hy-
pothesis in the kinetic theory of gases,1,7 according to which
a pair of colliding molecules is assumed to be statistically
uncorrelated just before the collision �but not afterward�.
That hypothesis is now known to be the origin of the irre-
versibility in Boltzmann’s equation, which was not obvious
when that equation was first formulated.

In contrast to Cn, the correlation �vn�vn� is nonzero due to
the fact that vn has just been influenced by �vn via Eq. �2�.
The value of �vn�vn� can be determined by solving Eq. �2�
for vn−1, squaring, averaging, and comparing the result with
Eq. �5�. We thereby obtain

�vn�vn� = ��v2� , �6�

which is positive as expected, because the particle is more
likely to be found moving in the direction it was last pushed
than in the opposite direction. The difference between Cn and
�vn�vn� reflects the asymmetry or distinction between the
forward and backward directions of time �that is, increasing
and decreasing n, respectively�, which is the essence of irre-
versibility.

The correlation �vn�vn� is closely related to the average
work per unit mass done on the particle by �vn, which one
would intuitively expect to be given by �Wn�, where

Wn � 1
2 �vn + vn−1��vn. �7�

One might think that the average velocity at the time of the
impulse should be weighted by the time intervals between
impulses, but that procedure would not be sensible in the
present context because the time intervals are arbitrary and
do not enter into the model in any way. Thus there is no basis
for weighting the particle velocities before and after the im-
pulse unequally, so that the use of the simple arithmetical
average velocity in Eq. �7� is required by symmetry. Because
Cn=0, Eq. �7� implies that

�Wn� = 1
2 ��vn + vn−1��vn� = 1

2 �vn�vn� . �8�

It follows from Eqs. �5�, �6�, and �8� that

�vn
2� − �vn−1

2 � = 2�Wn� , �9�

so that �Wn� is the average change in the kinetic energy per
unit mass of the particle produced by �vn, and is therefore
the mean work per unit mass done on the particle. Similar
questions concerning the correlation between the random
force and the particle velocity, and the average work done by
the random force on the particle, also arise in the continuous
Langevin theory of Eq. �1�, where they are somewhat more
subtle. These issues have been discussed and resolved by
London,8 who obtained results analogous to and consistent
with those derived more easily above.

In many situations of interest the random impulses are
very small but very frequent, and the condition ��vn�
� �vn−1� is usually satisfied. However, if the last term in Eq.
�3� had been neglected on that basis, the random heating
effect would have been lost. Random heating is inherently
quadratic in the random impulses due to the fact that the
kinetic energy of the particle is quadratic in v, which is why
it does not average to zero as the impulses do.

The second derivation is the discrete analog of the usual
procedure for analyzing the differential Langevin equation
�1�.1–3 It proceeds by formally solving Eq. �2� for vn in terms
of its initial value v0. To that end, we set n= i in Eq. �2� and
sum from i=1 to i=n. The intermediate values of vi cancel in
pairs, and we obtain

vn = v0 + 	
i=1

n

�vi. �10�

Squaring both sides of Eq. �10� and averaging the result, we
find
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�vn
2� = v0

2 + 	
i=1

n

	
j=1

n

��vi�v j� , �11�

where use has been made of the fact that ��vi�=0. The ran-
dom increments �vn are statistically independent, so they are
uncorrelated with each other; that is,

��vi�v j� = �ij��vi
2� + �1 − �ij���vi���v j� = �ij��vi

2� ,

�12�

where �ij is the Kronecker delta. Combining Eqs. �11� and
�12�, we obtain

�vn
2� = v0

2 + 	
i=1

n

��vi
2� = v0

2 + n��v2� , �13�

from which Eq. �5� follows directly without the use of Eq.
�4�, and hence without the need to explicitly consider Cn.
Although it has not been used, Eq. �4� remains valid, and a
comparison of Eqs. �4� and �5� confirms that Cn=0, for oth-
erwise those two equations would not be consistent.

Both derivations therefore lead to the same result, Eq. �5�,
and as we have seen both contain the stochastic causality
condition Cn=0 either explicitly or implicitly. This condition
is not readily apparent in the second derivation, which was
designed to circumvent the need to explicitly consider Cn.
The analogous maneuver is advantageous in connection with
Eq. �1� because it avoids the need to deal with the correlation
�v�t� ·F�t��, which is more difficult to evaluate and has been
a source of considerable confusion.8 In the present discrete
context, circumventing Cn has a corresponding disadvantage:
it conceals the stochastic causality condition that implicitly
underlies the formulation and gives rise to its irreversibility,
whereas the first derivation brings that condition to the fore
so that its significance can be appreciated.

The second derivation is so successful at concealing the
stochastic causality condition or hypothesis that it is not ob-
vious where and how the latter enters in. The conundrum is
that the only statistical information used in the derivation is
the correlation in Eq. �12�, which is symmetrical in i and j
and contains no information from which the forward and
backward directions of time can be inferred or distinguished.
The manner in which that distinction infiltrates the derivation
is subtle, and consists in the fact that causality is implicit in
our decision to solve Eq. �2� going forward in time �that is,
for n�0� starting from the initial condition v0, rather than
backward in time �for n�0�. That decision prevents vn from
being influenced by impulses that have not yet occurred; that
is, values of �vi for i�n. We leave it as an exercise for the
reader to verify that if we had instead solved Eq. �2� going
backward in time �that is, for n�0� starting from v0, we
would have obtained �vn

2�=v0
2−n��v2� instead of Eq. �13�, so

that �vn
2� would decrease as n increases, thereby resulting in

random cooling rather than heating. Irreversibility enters into
the usual treatments of the Langevin equation1–3 in exactly
the same way. Thus the Langevin formalism for Brownian
motion is implicitly based on a causal stochastic condition
closely analogous to Boltzmann’s molecular chaos hypoth-
esis, and the irreversibility in both the Langevin and Boltz-
mann equations has basically the same origin. Those
equations are the two great pillars or paradigms of nonequi-
librium statistical physics, so it is very satisfying to recog-
nize this connection between them.

Finally, we revisit the question raised in Sec. I: the random
impulses �vn average to zero, so why does the random heat-
ing they produce not also average to zero? The preceding
analysis provides an answer to this question in terms of el-
ementary algebra and statistics, but the essence of the situa-
tion can be understood more easily by considering the spe-
cial case in which the random impulses �vn all have the
same magnitude �v�0, and therefore have only two pos-
sible and equally probable values ��v, which produce equal
and opposite changes in the velocity v. Equation �3� shows
that v2 increases more when vn−1�v�0 than it decreases
when vn−1�v�0. Those two cases are equally likely, but the
particle gains more energy in the former than it loses back in
the latter, so that its energy steadily increases on the average.

This special case is equivalent to an unbiased one-
dimensional random walk in velocity space. As is well
known, the mean-square displacement in a random walk in-
creases linearly with the number of steps,2 which is the be-
havior shown by Eq. �13�. Moreover, the mean-square dis-
placement in velocity space is just twice the mean kinetic
energy per unit mass of the particle relative to its initial
value. This correspondence provides an alternative simple
explanation of random heating for students who are already
familiar with random walks.2,9–12

III. IMPULSIVE MODEL FOR BROWNIAN MOTION

Armed with the insights obtained from the frictionless
model of Eq. �2�, we now proceed to generalize the model to
the case in which the particle experiences a deterministic
frictional force in addition to random impulsive forces, just
as it does in the continuous Langevin equation �1�. This gen-
eralization will constitute a discrete analog of the full Lange-
vin equation �1�, although we shall not explore all of its
consequences here. Our attention will be restricted to the
mean kinetic energy of the particle and how it differs from
the case of zero friction.

Friction may be introduced into Eq. �2� by the addition of
a frictional impulse of the form −�vn−1, where ��0 is a
friction coefficient. Equation �2� then becomes

vn = vn−1 − �vn−1 + �vn = �1 − ��vn−1 + �vn. �14�

We must require that ��1 to ensure that the friction cannot
reverse the sign of v. However, Eq. �14� shows that �

1 /N, where N is the number of impulses or steps required
for the accumulated frictional change in v to be of the same
order as v itself. We shall assume that N	1, so that � sat-
isfies the more restrictive condition ��1. Squaring both
sides of Eq. �14�, averaging the result, and again invoking
the stochastic causality condition Cn=0, we obtain

�vn
2� = �1 − ��2�vn−1

2 � + ��v2� . �15�

Because �1−��2�1, Eq. �15� no longer implies an irrevers-
ible increase in the energy, but shows that as n→
, the
particle approaches a statistically steady state in which �vn

2�
and �vn−1

2 � asymptotically approach the common value �v2�
determined by
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�v2� = �1 − ��2�v2� + ��v2� . �16�

Because ��1, Eq. �16� may be simplified to

2��v2� = ��v2� . �17�

Equation �17� expresses the asymptotic value of �v2�, and
hence the mean kinetic energy per unit mass of the particle,
in terms of the mean-squared magnitude of the random im-
pulses and the friction coefficient �.

The statistical balance between the random and frictional
impulses therefore results in a nonzero asymptotic steady-
state value for the mean kinetic energy of the particle. The
friction dissipates the energy produced by the random heat-
ing and thereby prevents the divergence of kinetic energy
that would otherwise occur. This effect is hardly surprising
and is easily understood. However, the deceptively simple
Eq. �17� is much more significant than it appears—it is pro-
totypical of a broad class of analogous relations called
fluctuation-dissipation theorems,1–6 which are of central im-
portance in nonequilibrium statistical physics. Like Eq. �17�,
such relations typically relate statistical fluctuations �in this
case the strength of the random impulses� to the dissipation
of energy by irreversible processes �in this case the friction
coefficient ��, or alternatively to the related response of the
system to external perturbations �not considered here�. Note
that Eq. �17� also involves the steady-state value of the
mean-square velocity or mean kinetic energy of the particle,
so unless the latter is known on other grounds, Eq. �17� does
not determine the dissipation from the fluctuations, or vice
versa. In thermal equilibrium, the mean kinetic energy of the
particle can be independently evaluated from the Maxwell–
Boltzmann velocity distribution. In the present one-
dimensional case, the result is �v2�=kBT /m, where kB is Bolt-
zmann’s constant, T is the absolute temperature, and m is the
particle mass. Equation �17� then becomes

2�kBT = m��v2� . �18�

Similar relations are a typical feature of most fluctuation-
dissipation theorems, but they are not really essential, and
the other concepts involved are equally applicable to non-
equilibrium steady states in other contexts, such as turbu-
lence.

It is straightforward to establish the connection between
Eq. �18� and the usual fluctuation-dissipation theorem for the
one-dimensional version of the stochastic differential Lange-
vin equation �1�, in which v and F reduce to scalars v and F,
respectively. To proceed, we must relate the discrete friction
coefficient � to the differential friction coefficient �, and the
mean-square velocity increment ��v2� to the amplitude of
the random force F�t�. Both of those relations involve the
mean time interval �t between impulses, which is no longer
irrelevant and must be taken to be very short compared to the
frictional time scale m /�. According to Eq. �1�, the frictional
change in v over a time interval �t is −���t /m�v. The cor-
responding change in the discrete Eq. �14� is −�v, which
immediately implies the identification

� =
��t

m
. �19�

The relation between ��v2� and F�t� is a little more involved.
The form of F�t� required to produce a particular sequence of
discontinuous velocity jumps �vn is given by

F�t� = m	
n

�vn��t − tn� , �20�

where ��t� is the Dirac delta function. It follows that

�F�t�F�t��� = m2	
n

	
k

��vn�vk���t − tn���t� − tk�

= m2��v2���t − t����t� , �21�

where

��t� � 	
n

��t − tn� , �22�

and use has been made of Eq. �12� and the properties of the
delta function. Notice that the integral of ��t� over any finite
time interval is the number of pulses occurring during that
interval. Thus ��t� is the instantaneous number density of
pulses per unit time. If the pulses occur randomly separated
by a mean time interval �t, then the mean number of pulses
per unit time is ��t�=1 /�t. A further statistical average of
Eq. �21� over the random pulse arrival times yields

�F�t�F�t��� = 2B��t − t�� , �23�

where

B =
m2��v2�

2�t
. �24�

Equations �19� and �24� combine with Eq. �18� to yield B
=�kBT, which is the usual fluctuation-dissipation theorem
for the one-dimensional Langevin equation.3 Equation �24�
shows that in order for the discrete model to properly reduce
to the differential Langevin equation as �t→0, we must re-
quire ��v2� to approach zero in such a way that ��v2� /�t
remains finite in that limit, which again is suggestive of a
random walk or diffusional process.

IV. CONCLUDING REMARKS

We have discussed a simple physically transparent discrete
impulsive model that exhibits the essential features of ran-
dom heating and Brownian motion. It is remarkable how
much interesting physics is captured by such a mathemati-
cally simple model. The model provides an elementary intro-
duction to a number of important physical concepts that are
ordinarily considered more advanced. It is hoped that this
discussion will provide an accessible avenue for undergradu-
ate and beginning graduate students in physics and engineer-
ing to acquire some valuable physical insight into those con-
cepts prior to embarking on a study of more formal advanced
treatments.
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APPENDIX: RANDOM VARIABLES AND
CORRELATIONS

Random variables take on different values with certain
probabilities. For simplicity, we restrict our attention to ran-
dom variables that only take on discrete values, which can be
labeled by integer subscripts. The probability that the ran-
dom variable X takes on the allowed value Xi is denoted by
p�Xi�. The variable X is certain to take on one of its allowed
values, so 	ip�Xi�=1. The average value of any function
f�X� that depends on X is given by

�f�X�� = 	
i

p�Xi�f�Xi� . �A1�

Many situations involve more than one random variable.
The probability that two random variables X and Y simulta-
neously take on the values Xi and Y j is called their joint
probability, and is denoted by p�Xi ,Y j�. The average of a
function f�X ,Y� that depends on both X and Y is given by

�f�X,Y�� = 	
ij

p�Xi,Y j�f�Xi,Y j� . �A2�

The probability that X takes on the value Xi regardless of the
value of Y is the sum of p�Xi ,Y j� over all possible values of
Y j, so that

p�Xi� = 	
j

p�Xi,Y j� . �A3�

The probability that X takes on the value Xi when Y is
known to have the value Y j is the conditional probability of
X given Y, and is denoted by p�Xi �Y j�. A little thought shows
that

p�Xi,Y j� = p�Xi�Y j�p�Y j� . �A4�

The random variables X and Y are said to be statistically
independent when the probability that X will take on the
value Xi is independent of Y; that is, when p�Xi �Y j� does not
depend on Y j. In this case, summing Eq. �A4� over j shows
that p�Xi �Y j�= p�Xi�, and Eq. �A4� reduces to

p�Xi,Y j� = p�Xi�p�Y j� . �A5�

When X and Y are statistically independent so that Eq. �A5�
is satisfied, averages of products of functions of X and Y
alone factor into products of their averages,

�f�X�g�Y�� = 	
ij

p�Xi,Y j�f�Xi�g�Y j�

= 	
ij

p�Xi�p�Y j�f�Xi�g�Y j�

=�	
i

p�Xi�f�Xi���	
j

p�Y j�g�Y j��
= �f�X���g�Y�� . �A6�

The most common and important special case of this relation
is

�XY� = �X��Y� . �A7�

Random variables that satisfy Eq. �A7� are said to be uncor-
related. Note that the converse is not necessarily true; it is
possible for X and Y to be uncorrelated in the sense of Eq.
�A7� without being statistically independent.

The preceding relations easily generalize to the case in
which the random variables are continuous. The main fea-
tures of this generalization are that the discrete quantities
�Xi ,Y j , . . .� are replaced by corresponding continuous vari-
ables �x ,y , . . .�, probabilities like p�Xi� are replaced by cor-
responding probability densities or distribution functions
pX�x� �defined such that pX�x�dx is the probability that x
�X�x+dx�, and sums over �i , j , . . .� are replaced by inte-
grals over the corresponding continuous variables �x ,y , . . .�.
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