Constructing a Dynamic Model of Concussion

Erin S. Kenzie
Portland State University, erin.kenzie@pdx.edu

Elle L. Parks
Portland State University

Wayne W. Wakeland
Portland State University, wakeland@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac

Part of the [Medicine and Health Sciences Commons](https://pdxscholar.library.pdx.edu/sysc_fac)

Let us know how access to this document benefits you.

Citation Details

https://pdxscholar.library.pdx.edu/sysc_fac/115

This Poster is brought to you for free and open access. It has been accepted for inclusion in Systems Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Constructing a Dynamic Model of Concussion

Erin Kenzie1, Elle Parks1, & Wayne Wakeland1

1Systems Science Program, Portland State University, Portland, Oregon USA, *erin.kenzie@pdx.edu

1 Tracking: Complexity in Biological Systems

Aim

To construct a causal-loop diagram and corresponding system dynamics model of concussion pathology and recovery at the individual scale. These models will contribute to a greater understanding of the factors involved in concussion recovery and will inform the development of a new classification system for traumatic brain injury.

Problem

- Traumatic brain injury has been called "the most complicated disease of the most complex organ of the body" (Marklund and Hiljed 2011).
- In the United States, an estimated 1.7 million people suffer a traumatic brain injury per year (Paull et al. 2018). Seventy to ninety percent of these cases are mild TBI, or concussion (Cassidy et al. 2004). Concussion is vastly underreported; one study found that at least 86% of cases might go unrecognized (Delaney et al. 2005).
- No single definition of concussion (also known as mTBI) is accepted across disciplines, though several different definitions are available (Comper et al. 2005; Hawryluk & Manley 2015).
- Injury occurs in context. Traumatic biomechanical forces in the brain can occur from direct (to the head) or indirect (to the body) impact (e.g., motor vehicle accidents), or intra-cranial changes in pressure (e.g., blast exposure) (Patterson & Hovda 2005).
- Following a concussion many people become symptomatic within a short period of time. However, an estimated 15% of people experience longer-term symptoms and deficits, although this number has been disputed (Zaider et al. 2007). These impairments can cause significant distress and debilitation.
- The medical field currently lacks reliable and accessible means of identifying individuals at risk for more prolonged or complicated recoveries from concussion.
- The current classification system for traumatic brain injury (mild, moderate, severe – based on the Glasgow Coma Scale) lacks precision and does not reliably predict recovery. The field is engaged in developing a new classification system.
- No clinically useful biomarker or imaging technique has been identified for concussion, although several show promise.
- A wide variety of medical disciplines and specialties study and treat individuals with concussions.

Methods

- Model development led by methodology team in cooperation with a large team of researchers and clinicians gathered by the Brain Trauma Evidence-Based Consortium (B-TEC)
- Conducted extensive review of relevant literature, interviewed many key researchers, clinicians and athletic trainers, and conducted focus groups with young athletes suffering from prolonged recovery from concussion and their parents
- Iterative model development with frequent review by experts

Next steps

- Enhance conceptual model based on information from interviews and literature review
- Acquire reference behavior data (recovery trajectories at the individual level)
- Develop system dynamics computational model that will generate estimated recovery trajectories based on individual inputs for key parameters. The model will assist in the development of a new classification system for TBI, identify research gaps, aid in the design of successful clinical trials (especially appropriate inclusion/exclusion criteria), and promote discussion among experts
- Collaborate with a related B-TEC project that is creating data-driven models using OCCAM reconstructability analysis software