Portland State University PDXScholar

PSU Transportation Seminars

Transportation Research and Education Center (TREC)

5-5-2017

Behavior-Based Freight Modeling at Metro

Chris Johnson Metro

Bud Reiff Metro

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, and the Transportation Engineering Commons Let us know how access to this document benefits you.

Recommended Citation

Johnson, Chris and Reiff, Bud, "Behavior-Based Freight Modeling at Metro" (2017). *PSU Transportation Seminars*. 120.

https://pdxscholar.library.pdx.edu/trec_seminar/120

This Book is brought to you for free and open access. It has been accepted for inclusion in PSU Transportation Seminars by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

PSU Transportation Seminar: Metro Freight Model

May 5th, 2017

Project Background

Model Framework

- 1) Firm Synthesis
- 2) Supply Chain
- 3) Freight Truck Tours
- 4) Commercial Vehicle Tours

Dashboard (time permitting)

Keywords: disaggregate, behavior, tour

Project Background

Acknowledgements

- Metro: Bud Reiff, Dick Walker
- RSG: Colin Smith, John Gleibe, Maren Outwater
- DKS: Bob Schulte

Questions Facing the Region (1)

Regional economy

- Economic impacts of freight system level of service, e.g. on export industries
- Port competitiveness in global freight movements

Network congestion

- Traffic congestion on the interstates and near industrial areas
- Critical bottlenecks in Portland region's rail infrastructure
- Weight and clearance restrictions on bridges
- Corridor capacity constraints and travel time reliability

Questions Facing the Region (2)

Land use impacts

- Expansion of current industrial and warehousing areas.
 Planning and design of future areas.
- Impacts from freight operations on residential neighborhoods

Policy analysis

- Ability to quantify the effects of freight policy choices on specific commodities and types of businesses
- Explore feasibility of electric vehicles for typical truck itineraries

Project Goals

- 1. Evaluate regional economic policies
- 2. Broad range of responses to network conditions and costs
- Depict both truck volumes by vehicle type and flow of goods by commodity type on the network
- 4. Include freight trucks AND service and parcel trucks

Benefits to the Region

Improved ability to evaluate cost of congestion and benefits of freight improvements

Improved understanding of land use policies, e.g., role of warehousing and distribution

Improved understanding of truck –related environmental impacts, potential for electric freight vehicles, effects of route restrictions, etc.

Scope of Work / Deliverables

Project Budget/Schedule

Awarded \$350,000 SHRP2 C20 Implementation Assistance Grant April 2014

Metro approved additional \$350,000 STP Funds for freight data

Metro also provided \$41,000 in-kind local match for data development

Contractor DKS / RSG / Synergy began work March 2015

Contract ended May 1, 2017

New "Hybrid" Freight Model

New generation of "hybrid" model that micro-simulates both commodity supply chains and local truck tours

• Similar applications in Chicago, Baltimore, Phoenix, Florida

Enabled by new data sources and methods:

- Improved techniques for mining Commodity Flow Survey (CFS) and FAF data to enable simulation of firms and shipments
- New truck behavior data to enable simulation of truck movements
 - Detailed business establishment surveys (e.g., Ohio, Texas, Portland) with truck itineraries. Including both freight and service industries.
 - GPS traces of truck movements by vehicle class (e.g., INRIX, EROAD, ATRI)
 - Dispatch data maintained by businesses (and donated for model development)

Overall Model Framework

Freight Model Design

Design Overview

Overall Model Structure

- Integrates data from multiple spatial / geographic levels
- Designed for integration within the Metro Travel Demand Model

Firm Synthesis Model

 Synthesizes a set of business establishments that ship and receive freight and (in the region) provide services

Supply Chain Model

Model annual commodity movements and shipment flows by mode

Freight Truck Touring Model

- Models pick up and delivery of freight shipments within the region

Commercial Vehicle Model

 Models commercial vehicle movements in the region, all purposes other than freight shipment delivery to businesses

Multiple Spatial Levels

National Supply Chain Model

- Includes all of U.S, Canada, and external foreign zones
- Uses FAF4 regions
- National highway, rail, air, and water networks
- Oregon and portions of Washington and Idaho
 - Uses Oregon Statewide Integrated Model (SWIM) "Beta Zones"
 - Includes Interstate, State, and County highways, short line railroads, Columbia/Snake and Willamette waterways
- Portland Metro Area
 - Uses Metro model network and zones
 - Accounts for rail yard, airport, and port access
 - Local rail spur and private dock access not currently accounted for

Multiple Spatial Levels -National

Multiple Spatial Levels -Regional

Multiple Spatial Levels - Local

Firm Synthesis Model

Firm Synthesis

Firm Synthesis Model Structure

Correspondences (lib/data) corresp_naics_industry.csv corresp_naics_empcat.csv corresp_taz_fips.csv corresp_taz_faf4.csv EmploymentCategories.rds

Common Input Data (lib/data) EstablishmentsIndustryTAZ.rds: business establishment data InputOutputValues.rds: input output data

Scenario Input Data ([scenario]/inputs) TAZSocioEconomics.csv: socioeconomic data for scenario year exported to CSV format file

Firm Synthesis Model

Enumerate Firms firm_sim_enumerate Expands firm synthesis input list to individual firms

Scale Employees firm_sim_scale_employees Scales synthetic firms to employee forecasts

Simulate Production Commodities firm_sim_sctg Simulates production commodities for firms based on probability thresholds

Simulate Firm Type Samples firm_sim_types Producer and consumer sampling outside model region

Simulate Consumption Commodities firm_sim_iopairs For consuming fitrms, allocate commodity types consumed

Synthetic Firms

List of business establishments with location by TAZ, County, and FAF zone, industry by NAICS and Metro categories, production and consumption commodities by NAICS and SCTG, and size by employees and size category

Synthesized Firms

Supply Chain Model

Supply Chain Model

National Supply Chain Framework

Freight Truck Touring Model

Freight Truck Touring Model

Supply Chain to Truck Touring Integration

For the truck touring model:

- A daily sample is taken for all shipments to, from, and within the metropolitan region
- The truck touring model simulates the truck portions of those shipments
 - Direct distribution channel shipments to or from outside the region are modeled as trips to or from external stations
 - Direct distribution channel shipments within the model region are modeled as trips from firm to firm
 - For trips with more complex distribution channels, the warehouse/distribution center location is simulated and truck tours built to represent pick up and delivery within the region

Freight Truck Touring Components

- Annual shipments generated by Supply Chain simulation are sampled
- Drayage and direct shipments identified
- Remaining shipments will be peddled (delivery/pick-up)
- Delivery/Pick-up times simulated
- Peddled shipments are clustered and routed into tours
- Departure/arrival times simulated
- Freight trucks may generate "intermediate" stops in between deliveries/pick-ups and return home

Ports of Entry / Exit

A portion of the model area

- After daily sample of • shipments is taken, entry points into model region are simulated given shipment's freight mode:
 - o Truck
 - o Rail
 - o Air

- o Water
- Intermodal Facilities: Ports Railyards Airports
- **External stations** Entry/exits for trucks
- Shipment destination

POE Vehicle Choice and Tour Pattern

- From port of entry, shipments may go

 Direct to destination
 To distribution center

 Logit model simultaneously predicts this tour pattern
 - and vehicle choiceLight
 - •Medium truck
 - •Heavy truck (semi)
- **4**
- Vehicle choice constrained by shipment size and capacity
- Direct shipments routed into simple out-and-back tour

<u>FTTM</u>: Vehicle Choice and Tour Pattern (cont.)

A portion of the model area

- Direct shipments routed into simple out-and-back tour
- Some shipment contracts may require multiple shipments per day
- Vehicles loaded to capacity and enough tours created to deliver all shipments
- Result: trip list of nonpeddled shipments

<u>FTTM</u>: Vehicle Choice and Tour Pattern (cont.)

A portion of the model area

- Shipments transiting via distribution center to be placed on peddling tours
- Specific distribution center chosen, weighted by daily truck flows
- Return trip back to port of entry added

FTTM: Stop Clustering Model

A portion of the model area

 Peddled shipments accumulate at each distribution center

For each <u>distribution center</u> and <u>vehicle type</u>...

- Hierarchical clustering groups spatially similar (travel time) destinations
 into tours
 - Weighted branch trimming prevents overly long tours without creating too many short tours
 - Based on stop duration as travel not known (stops not yet sequenced)
 - Also avoids overburdening vehicles

<u>FTTM</u>: Stop Sequencing Model

A portion of the model area

For each <u>tour</u>...

- Stops sequenced using Traveling Salesman algorithm on travel time combinations
- Provides reasonably short Hamiltonian circuits
- Avoids unrealistic tour patterns but not a true optimization
- Computationally feasible and generates realistic touring patterns

<u>FTTM</u>: First Stop Arrival Time Model

A portion of the model area

For each tour...

- MNL predicts arrival time at first scheduled stop as function of tour length
- Simulated arrival time windows of 30 to 60 minutes
- Monte Carlo simulation uniformly draws from selected arrive time window for precise arrival time

<u>FTTM</u>: Intermediate Stop Model

A portion of the model area

For each trip...

- Intermediate stop MNL model predicts whether an intermediate stop is inserted
 - Meal/break
 - Refueling/vehicle service
 - Other
- TAZs considered do not extend length of trip by some threshold (e.g., 3 miles)
- Stop duration model applied to any inserted stops
- Once all stops and order are known, trip is re-timed to determine arrival/departure times

<u>FTTM</u>: Intermediate Stop Model (cont.)

A portion of the model area

For each <u>trip</u>...

- Intermediate stop MNL model predicts whether an intermediate stop is inserted
 - Meal/break
 - Refueling/vehicle service
 - Other
- TAZs considered do not extend length of trip by some threshold (e.g., 3 miles)
- Stop duration model applied to any inserted stops
- Once all stops and order are known, trip is re-timed to determine arrival/departure times

Commercial Vehicle Touring Model

Commercial Vehicle Touring Model

<u>CVTM</u>: Characteristics of Service Demand

Demand is not generated from regular commodity flows

Infrequent demand by individual customers, many of whom are private residences

Destinations with no firm or residence are common (public utilities, road construction, parks, schools)

Short time horizons for service calls/dispatching of commercial vehicles are common

- Some destinations may be considered "intermediate stops" (breaks/refueling)
- Pick up/drop off materials/equipment may be part of service provision

<u>CVTM</u>: Coverage

	Freight Truck Touring Model	Commercial Vehicle Touring Model
Vehicle Classes	Light, Medium, and Heavy	Light, Medium, and Heavy
Trip/stop purposes	Delivery of shipments to businesses	Service stops at all businesses and home, delivery of shipments to homes
Connections to external demand	Connected to external freight flows	Not influenced by external demand

<u>CVTM</u>: Components

- Customers generate service stops by purpose, location and time of day (arrival time)
- Stop durations are predicted.
- Firms then choose whether to group assigned stops into a single tour or multiple-driver tours.
- Drivers sequence stops
- Firms may generate "intermediate" stops in between customer stops and return home.

<u>CVTM</u>: Establishment Type Model

A portion of the model area

Note: not all firms depicted

For each synthesized firm...

- Predicts type of establishment:
 - Goods delivery
 - Services 🔶
 - Both 🛕
- Monte Carlo simulation used to draw from observed distributions of establishment types by industry

<u>CVTM</u>: Stop Generation Model

A portion of the model area

Note: not all system TAZs depicted

For each synthesized firm...

- TAZs sampled as candidates for stops
- Hurdle model predicts number of goods • and service• stops in each TAZ as applicable
- All firms may generate meeting stops as well •
- Number of stops a function of firm size, industry, stop purpose, and TAZ socio-economic characteristics

<u>CVTM</u>: Vehicle Assignment Model

A portion of the model area

For each <u>stop</u>...

- MNL model predicts
 commercial vehicle type for
 each stop:
 - Light: car, van, pickup 🔺
 - Medium: single-unit truck •
 - Heavy: multi-unit truck
- Vehicle type a function of:
 - Firm industry
 - Distance
 - Stop purpose

<u>CVTM</u>: Stop Duration Model

A portion of the model area

For each <u>stop</u>...

- Stop duration (minutes) drawn via Monte Carlo simulation from empirical distributions by:
 - Industry
 - Stop purpose

<u>CVTM</u>: Stop Clustering Model

A portion of the model area

For each <u>vehicle type</u>...

- Hierarchical clustering groups
 spatially similar (travel time)
 stops into tours
- Weighted branch trimming prevents overly long tours without creating too many short tours
 - Based on stop duration as travel not known (stops not yet sequenced)

<u>CVTM</u>: Stop Clustering Model

A portion of the model area

For each <u>vehicle type</u>...

- Hierarchical clustering groups spatially similar (travel time) stops into tours
- Weighted branch trimming prevents overly long tours without creating too many short tours
 - Based on stop duration as travel not known (stops not yet sequenced)

<u>CVTM</u>: Stop Sequencing Model

A portion of the model area

For each <u>tour</u>...

- Stops sequenced using Traveling Salesman algorithm on travel time combinations
- Provides reasonably short Hamiltonian circuits
- Avoids unrealistic tour patterns but not a true optimization
- Computationally feasible and generates realistic touring patterns

<u>CVTM</u>: First Stop Arrival Model

A portion of the model area

For each tour...

- MNL predicts arrival time at first scheduled stop as function of tour length
- Simulated arrival time windows of 30 to 60 minutes
- Monte Carlo simulation uniformly draws from selected arrive time window for precise arrival time

<u>CVTM</u>: Intermediate Stop Model

A portion of the model area

For each trip...

- Intermediate stop MNL model predicts whether an intermediate stop is inserted
 - Meal/break
 - Refueling/vehicle service
 - Other
- TAZs considered do not extend length of trip by some threshold (e.g., 3 miles)
- Stop duration model applied to any inserted stops
- Once all stops and order are known, trip is re-timed to determine arrival/departure times

<u>CVTM</u>: Intermediate Stop Model (cont.)

A portion of the model area

For each trip...

- Intermediate stop MNL model predicts whether an intermediate stop is inserted
 - Meal/break
 - Refueling/vehicle service
 - Other
- TAZs considered do not extend length of trip by some threshold (e.g., 3 miles)
- Stop duration model applied to any inserted stop
- Once all stops and order are known, trip is re-timed to determine arrival/departure times

Dashboard

Dashboard

oregonmetro.gov

