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REVIEW

Physiological strategies during animal diapause: lessons from
brine shrimp and annual killifish
Jason E. Podrabsky1,* and Steven C. Hand2,*

ABSTRACT
Diapause is a programmed state of developmental arrest that typically
occurs as part of the natural developmental progression of organisms
that inhabit seasonal environments. The brine shrimp Artemia
franciscana and annual killifish Austrofundulus limnaeus share
strikingly similar life histories that include embryonic diapause as a
means to synchronize the growth and reproduction phases of their life
history to favorableenvironmentalconditions. Inbothspecies, respiration
rate is severely depressed during diapause and thus alterations in
mitochondrial physiology are a key component of the suite of characters
associated with cessation of development. Here, we use these two
species to illustrate the basic principles of metabolic depression at the
physiological and biochemical levels. It is clear that these two species
use divergentmolecularmechanisms to achieve the same physiological
and ecological outcomes. This pattern of convergent physiological
strategies supports the importance of biochemical and physiological
adaptations to cope with extreme environmental stress and suggests
that inferring mechanism from transcriptomics or proteomics or
metabolomics alone, without rigorous follow-up at the biochemical and
physiological levels, could lead to erroneous conclusions.

KEY WORDS: Diapause, Metabolic Depression, Mitochondria

Introduction: animal diapause
Diapause is a programmed arrest of development that is controlled
by endogenous physiological factors and may or may not involve
depression of metabolism (Lees, 1955; Tauber and Tauber, 1976;
Podrabsky and Hand, 1999; Denlinger, 2002; Reynolds and Hand,
2009; MacRae, 2010; Clegg, 2011; Hahn and Denlinger, 2011;
Hand et al., 2011; Patil et al., 2013). Diapause typically precedes the
onset of adverse environmental conditions, and production of
diapausing embryos is often induced by environmental factors that
offer reliable cues for predicting future conditions, such as
photoperiod or food quality/availability. Depending on the
developmental stage, diapause may be hormonally regulated and
occur in response to signaling factors that come before the adverse
period. The phenomenon is widespread across animal phyla and
critically important for surviving in extreme environmental
conditions, synchronizing favorable environmental conditions
with the actively feeding stage of the animal, and transport and
dissemination of the species in the case of resting eggs.
Interestingly, the intense selection pressures imposed by extreme

seasonality appear to have driven the evolution of highly similar life
history patterns that include embryonic diapause in very distantly
related organisms. In this paper, we use the brine shrimp, Artemia

franciscana and the annual killifish Austrofundulus limnaeus as
exemplar species for the study of dormancy and metabolic
depression associated with embryonic diapause. They share
strikingly similar life histories and physiological patterns
associated with diapause as well as similar responses to
environmental stress. These ‘hallmarks of dormancy’ include: (1)
a coordinated depression of ATP-producing and ATP-consuming
metabolic pathways that typically results in relatively stable ATP:
ADP ratios, and thus preserves a favorable energetic poisewithin the
cells; (2) depression in the rate of protein turnover as a major
mechanism for reducing ATP demand; (3) reduction in the cost
of ionoregulation at the cellular and organismal levels; and (4)
stabilization of macromolecules in the face of reduced biosynthetic
activity. However, the molecular mechanisms used to regulate
metabolic depression and stress tolerance appear to be unique in the
two lineages, suggesting that there are several and perhaps even
many ways to alter cellular function to support the basic
physiological requirements for entrance into a reversible state of
metabolic depression.

Diapause during the life cycle of Artemia franciscana
During the summer months, females of the brine shrimp Artemia
franciscana reproduce ovoviviparously by releasing free-swimming
nauplius larvae directly from the brood pouch into the water column
(Fig. 1). With the onset of shorter days in the autumn, ovigerous
females begin reproducing oviparously. Encapsulated (encysted)
embryos are introduced into the brood pouch and then released into
the lake. These embryos enter diapause at the gastrula stage (Clegg
and Conte, 1980). Although the developmental cessation is
complete by the time embryos are released by the female into the
water column, the metabolic depression requires several days post
release. For habitats such as the Great Salt Lake, these events serve
to prevent hatching and preserve nutrient stores while the embryo
floats on the lake or after it has washed ashore (Patil et al., 2013).
Whereas most of these encysted embryos overwinter on the
shoreline, a fraction overwinter as floating cysts in the lake.
Shoreline-deposited embryos may be subjected to cycles of
dehydration and rehydration. Cold exposure and/or dehydration
(Drinkwater and Crowe, 1987; Drinkwater and Clegg, 1991)
eventually break diapause in overwintering embryos, whether on
the lake or shore. Commonly in the spring, the shoreline-deposited
embryos (now post diapause) are washed back into the lake and
resume active metabolism and development (Patil et al., 2013).
However, it should be noted that some of these embryos may
become entrapped in sediments/decaying algal mats along the
shoreline and experience hypoxia or anoxia for varying lengths of
time (Clegg, 1974). Their tolerance to anoxia in this quiescent state
(Fig. 1) is impressive but will not be reviewed here (see Stocco et al.,
1972; Busa and Crowe, 1983; Clegg and Jackson, 1989; Hand,
1991; Hand and Hardewig, 1996; Warner and Clegg, 2001; Clegg,
2011; Hand et al., 2011).
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Diapause during the life cycle of the annual killifish
Austrofundulus limnaeus
Annual killifish inhabit ephemeral ponds in regions of Central and
South America and Africa that experience distinct dry and rainy
seasons (Polacik and Podrabsky, 2015). Austrofundulus limnaeus is
found in coastal desert and savanna regions on the eastern shore of
Lake Maracaibo in Venenzuela (Hrbek et al., 2005). Populations
of A. limnaeus persist in ephemeral habitats through the production

of diapausing embryos that exhibit exceptional tolerance to
environmental stress (Fig. 1). The typical adult lifespan of an
annual killifish ranges from a few weeks to a few months (the
duration of pond inundation), while diapausing embryos may
remain embedded in dried mud for several months or perhaps
several years. Thus, any given individual may spend most of its life
as a diapausing embryo encased in the pond sediment.

There are three distinct stages of development where embryos
may enter diapause (Fig. 1; Wourms, 1972a,c). Diapause I may
occur prior to gastrulation and formation of the embryonic axis
during a unique phase in annual killifish development where the
cells that will later constitute the embryos disperse across the
surface of the yolk (Wourms, 1972b). Diapause II may occur about
midway through development after initiation of neurulation and
segmentation, but prior to the major phases of organogenesis.
Diapause II embryos typically have a near-complete complement of
somites, the foundations of the central nervous system and sensory
systems, and a functional tubular heart (Podrabsky and Hand,
1999). Importantly, entrance into diapause II appears to be an
alternative developmental pathway that may be controlled by
maternal provisioning, as well as the developmental environment
experienced by the embryo (Podrabsky et al., 2010). Diapause III
can occur in the late pre-hatching embryo after development is
essentially complete.

Development
(if favorable
conditions)  

Oviparous
reproduction results in encysted

embryos that enter diapause 
(Autumn)

Ovoviviparous
reproduction results in

free-swimming nauplius
(Summer)  

Termination
cues received 

(dehydration or 
prolonged cold)  

Artemia franciscana
ovigerous female

Nauplius
larva 

Diapause 
embryo 

Post-diapause 
embryo Quiescence 

(if exposed to anoxia) 

(Spring) (Winter) 

A   

B  

Diapause II 
embryo 

Diapause III 
embryo 

Diapause I 
embryo Quiescence 

(if exposed to anoxia) 
Quiescence 

(if exposed to anoxia) 

Escape embryo
production results in

direct development and 
possibly hatching

(early rainy season) 

Diapause embryo
production results in
arrest in diapause

(mid/late rainy season) 

(Over-wintering stage) 

(Dry season) 

Artemia franciscana

Austrofundulus limnaeus

Fig. 1. Diagrammatic representation of the life
cycles of the brine shrimp Artemia franciscana
and the annual killifish Austrofundulus limnaeus
with emphasis on the entry points into diapause
and quiescence.

List of symbols and abbreviations
ANT adenine nucleotide transporter
dpf days post-fertilization
DII diapause II
DIII diapause III
FAA free amino acid
HSP heat shock protein
IF1 inhibitor of F1

pHi intracellular pH
pPDH phospho-pyruvate dehydrogenase
TPMP triphenylmethyl phosphonium
Δp proton motive force
ΔΨm mitochondrial membrane potential
V̇O2

metabolic rate
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Each stage of diapause is physiologically distinct, and responds to
environmental stress and cues in a unique manner. For example,
diapause I is rare in Austrofundulus, and may only occur in embryos
that are incubated at low temperatures (Wourms, 1972c). However,
the dispersion and reaggregation phases of development that are
associated with diapause I may act as a buffer against otherwise
teratogenic levels of cellular damage (Wagner and Podrabsky,
2015). Entrance into diapause II is favored at temperatures of 25°C
or below in the lab, and lower temperatures are associated with the
dry season in their native habitat. Diapause II embryos have the
highest tolerance to a number of environmental stresses, and in fact
are able to withstand anoxia longer than any other vertebrate at 25°C
(Podrabsky et al., 2001, 2007; Machado and Podrabsky, 2007;
Wagner and Podrabsky, 2015). An important parallel between the
Artemia and Austrofundulus life histories is the presence of a post-
diapause period of active development that retains the high tolerance
to environmental stress observed in diapausing embryos. For
embryos of A. limnaeus, extreme tolerance of anoxia is retained for
4–6 days of post-diapause II development. Embryos in diapause III
remain resistant to a number of environmental stresses compared
with other species of fish, but have lost the extreme tolerance
associated with diapause II (see references above).

Metabolic depression during diapause
In many cases depression of metabolism is not observed during
diapause entry. Whether or not downregulation of energy flow
occurs depends upon the species and the stage of development
in question. For example, in the southern ground cricket,
Allonemobius socius, embryonic diapause is not accompanied by
a statistically significant change in metabolism (Reynolds and
Hand, 2009) when one compares non-diapausing and diapausing
embryos at the same developmental stage (Fig. 2). Specifically,
diapausing embryos at 15 days post oviposition have the same
metabolic rate as non-diapausing embryos at days 4–5, which are at
equivalent morphological stages. Thus, there is not a detectable
metabolic depression upon diapause entry. However, as
development proceeds, the metabolism of non-diapause embryos
continues to rise along with the increase in cell number per embryo.
Accordingly, the aerobic metabolism in 15-day diapausing embryos

is only 36% of the rate measured for 15-day non-diapausing
embryos, which emphasizes that the ontogenetic increase in
metabolism observed in actively developing embryos is blocked
during diapause (Reynolds and Hand, 2009).

In marked contrast to this example is the extreme metabolic
depression seen in gastrula-stage embryos of A. franciscana
during entry into diapause, which is arguably one of the deepest
arrests ever reported for a diapause state. The metabolic
depression was first quantified by Clegg et al. (1996). The
embryos in the study by Clegg et al. were collected from the
San Francisco Bay population and synchronized to within 24 h of
the time of release from ovigerous females; across the intervening
20 days after release, the respiration rate drops to approximately
2% of the initial rate (Fig. 3; closed symbols). A very similar
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Modified from Reynolds and Hand (2009).
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from the ovigerous female. Embryos were synchronized to within 4 h of their
release. Independent replicates are displayed with superimposed open circles.
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pattern is seen for embryos from the Great Salt Lake, Utah
population (Patil et al., 2013). In this study embryos were
synchronized to within 4 h of release from the female by
collecting adults on site at the lake, incubating the adults on
board the research vessel in large well-aerated holding tanks for
4 h, and then separating the newly-released embryos from adults
by filtering through sieves. In this case respiration rate decreases
to less than 1% of the day 0 value across the subsequent 26-day
time course. As in the study by Clegg et al. (1996), the vast
majority of the metabolic depression occurs during the first 3–
5 days after release from the ovigerous females. The physiological
ramifications of this deep arrest, which to re-emphasize occurs
under conditions of normoxia, full hydration, and at euthermic
temperatures, are substantial and will be discussed below.
Diapause in annual killifish is a profound state of developmental

and metabolic dormancy (Levels et al., 1986; Podrabsky and
Hand, 1999). Each stage of diapause exhibits a unique pattern of

metabolic depression (Fig. 4). For example, respiration rate begins
to decline several days prior to the cessation of development in
diapause II and is already depressed by 70% compared with peak
pre-diapause II rates upon entry into diapause. Respiration rates
continue to decline during the first week of diapause, finally
reaching rates that are depressed by over 90% compared with peak
pre-diapause II rates (Podrabsky and Hand, 1999). In contrast,
embryos enter diapause III at peak rates of respiration for
development and exhibit a slow and steady decline in respiration
rates over many weeks. After almost 50 days in diapause III
respiration rates were depressed by over 80% compared with rates
at diapause entry (Fig. 4; Podrabsky and Hand, 1999). As noted
above for A. franciscana, these profound reductions in respiration
associated with diapause in A. limnaeus occur under normoxic
conditions, in fully hydrated embryos exposed to near optimal
temperatures for development.

Metabolic support during diapause
When considering the proximal mechanisms for metabolic
downregulation in A. franciscana, it is first appropriate to note
that the sole source of metabolic fuel for the embryo prior to
hatching is the endogenous store of the disaccharide trehalose, a
conclusion based upon respiratory quotients and biochemical
measurements of stored fuels (Dutrieu, 1960; Muramatsu, 1960;
Emerson, 1963; Clegg, 1964; Carpenter and Hand, 1986). Thus,
unraveling the mechanisms by which trehalose catabolism is
brought to a halt during diapause is central to an understanding of
the overall energetic arrest (Patil et al., 2013).

Based on an extensive analysis of trehalose plus all metabolites
in the glycolytic pathway involved in flux (i.e. ‘pathway
intermediates’), the product-to-substrate ratios show there are four
enzymatic steps at which inhibition occurs during entry into
diapause: trehalase, hexokinase, pyruvate kinase and pyruvate
dehydrogenase (Fig. 5). The orchestrated interplay at these points in
the metabolic pathway results in blockage in the delivery of carbon
fuel to the mitochondrion, thereby explaining a large portion of the
metabolic depression during diapause. Previously, our lab has
reported that the respiratory capacities of mitochondria isolated
from diapausing versus post-diapausing embryos are quite similar,
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as are the quantities and structures of the respective mitochondria
in situ (Reynolds and Hand, 2004). Recent data (Y. Patil, E. Gnaiger
and S.C.H., unpublished results) indicate that diminished
respiration with substrates for complex I and II can be detected in
crude lysates of diapausing embryos compared with those that are
post diapause. The result is consistent with the concept that various
types of covalent modification of mitochondrial proteins are present
during diapause that are not preserved during the mitochondrial
isolation steps, and/or a soluble inhibitor is possibly removed during
the purification.
Recently, we have documented that phosphorylation of pyruvate

dehydrogenase (serine 293, E1α; ‘site 1’) increases substantially
during diapause (Patil et al., 2013), as measured by extracting
whole embryos in SDS buffer, followed by western blot analysis
with an antibody against phospho-PDH site 1. Phosphorylation at
site 1 is well established to strongly inhibit PDH activity (Kolobova
et al., 2001; Patel and Korotchkina, 2001). The increase in
phosphorylation can be seen with non-synchronized diapausing
embryos (Fig. 6, inset) as well as during the time course for entry
into diapause with embryos that have been synchronized to within
4 h of release from the female (Fig. 6). The time course for the
increase in phosphorylation matches the time course for the
metabolic depression (Fig. 3) quite well.
The metabolic fuels used to support metabolism during diapause

remain unverified in embryos of annual killifish. Elevated
calorimetric to respirometric ratios (C:R ratios) during diapause II
indicate that anaerobic pathways contribute significantly to the
overall metabolism of aerobic diapause II embryos (Podrabsky and
Hand, 1999). Carbohydrate metabolism is not likely to play a key
role because glycogen content does not change significantly during
even extended sojourns in diapause II and extensive metabolomics
screens have not identified accumulation of any common glycolytic
end-products (Podrabsky and Hand, 1999; Podrabsky et al., 2007).
It is worth noting, however, that fish embryos are highly dependent
on protein catabolism to support development. Most of the yolk

energy stores, the sole source of energy and building blocks for the
completion of development in fish embryos, are invested in
phospho- and lipoproteins (LaFleur et al., 2005; Sawaguchi et al.,
2005; Kristoffersen et al., 2009). In fact, free amino acid (FAA)
levels do increase during diapause II, with lysine and glutamine
accounting for most of the almost 8 mmol l−1 increase in FAAs
observed during the first week of diapause II (Fig. 7; Podrabsky
et al., 2007). Total protein levels remain relatively constant during
diapause II (Podrabsky and Hand, 1999; Machado and Podrabsky,
2007), and thus it is not clear whether this increase in FAA
represents differential use of FAAs released from a very limited
amount of protein degradation, or whether some biosynthetic
pathways are also at play. Ammonia accumulation is a possible
negative consequence of amino acid catabolism, especially when
diapausing embryos are encased in dried mud. It is interesting that
the two amino acids that account for most of the increase in FAAs
during diapause have side chains containing nitrogen. It is possible
that biosynthesis of these amino acids could serve as a sink for
ammonia produced by the catabolism of other amino acids.
Additional studies will be needed to identify the possible role of
protein catabolism in supporting the metabolic requirements for
diapause in A. limnaeus.

Mitochondrial membrane potential and proton leak
Because the downregulation of respiration in diapausing embryos is
so severe, this observation brings into question whether the proton
motive force (Δp) across the inner mitochondrial membrane is
defended during diapause. At less than 1%, embryo respiration in
A. franciscana is depressed far lower than that required to even
compensate for mitochondrial proton leak under basal conditions.
Consequently, one mechanism to prevent dissipation of Δp during
diapause would be to dramatically lower the proton conductance
across the inner membrane. Thus, we measured proton leak
respiration as a function of the membrane potential (ΔΨm) in
mitochondria isolated from diapausing and post-diapausing
embryos. Because ΔΨm is the driving force for the leak, it is
essential to compare proton conductances between different states
only at the same driving force (Affourtit et al., 2012). When the
F1Fo-ATP synthase (complex V) is inhibited, mitochondrial
respiration is then proportional to proton leak rate through the
inner membrane. Accordingly, the kinetic response of the proton
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conductance pathway to its driving force can be measured as the
relationship between respiration rate and ΔΨm when the latter is
varied by titrating the electron transport system (ETS) with
inhibitors (Cadenas and Brand, 2000; Affourtit et al., 2012; Patil
et al., 2013). Our results indicate clearly that proton conductance, as
judged by leak respiration, does not differ between mitochondria
isolated from diapausing and post-diapausing embryos (Fig. 8).
Consequently, because proton conductance across the inner
mitochondria membrane is not restricted during diapause, ΔΨm is

undoubtedly compromised. One biological advantage for not
defending Δp is that it reduces energy expenditure considerably
during diapause. Some of the potential disadvantages have been
treated elsewhere (Hand and Menze, 2008; Menze et al., 2010) and
include an increased probability of opening of the mitochondrial
permeability transition pore and the attendant signaling for cell
death. However, all inducers for the mitochondrial permeability
transition that have been tried so far are ineffective in promoting the
transition in A. franciscana mitochondria (Menze et al., 2005).

In contrast to A. franciscana, respiration rates during diapause in
A. limnaeus are more than sufficient to support rates of proton leak
associated with actively developing embryos and appear to be
supported in large part by mechanisms intrinsic to mitochondria
(Duerr and Podrabsky, 2010). Multiple lines of evidence support
this statement. First, respiration rates of isolated mitochondria can
account for much of the observed decreases in respiration rate
observed in vivo (Duerr and Podrabsky, 2010). Second, the activity
of respiratory complexes II, IV and V are significantly reduced or
inhibited in mitochondria isolated from diapausing embryos
compared with developing embryos (Fig. 9). The reduction in the
activity of complex V, the F1Fo-ATP synthase, is quite dramatic,
with almost no measurable activity in mitochondria isolated from
diapause II embryos. This inhibition of activity for all the complexes
is rather quickly reversed (within 24 h) when a diapause III embryo
is prompted to hatch (compare DIII and larval means) and thus is
either due to a dramatic activation of gene expression for
mitochondrial enzymes of key importance to supporting oxidative
phosphorylation, or perhaps more likely, to covalent modification of
existing proteins. Interestingly, the small amount of respiration that
is supported during diapause II can be accounted for almost
exclusively by an increased proton leak across the inner
mitochondrial membrane. In fact, the maximum ΔΨm achievable
under non-phosphorylating conditions is lower for mitochondria
isolated from diapausing compared with non-diapausing embryos
(100 vs 140 mV), but the proton leak respiration at a common ΔΨm

is much (over 4-fold) higher in mitochondria isolated from
diapausing compared with non-diapausing embryos (J. M. Duerr
and J.E.P., unpublished results). We hypothesize that this seemingly
paradoxical increase in proton leak during diapause may be a
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(2013).
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mechanism to reduce ΔΨm and thus reduce or prevent the
production of reactive oxygen species that might occur if
membrane potentials were allowed to increase – as predicted by
the severely limited activity of the F1Fo-ATP synthase. The
mechanism to explain this increased proton leak has not yet been
identified and is currently under investigation.

Defending ATP levels during diapause: a role for the inhibitor
of F1 protein (IF1)?
During diapause in arthropods, it is not surprising that cellular ATP
content is lower than in the non-diapause state, but it is noteworthy
that ATP is by no means depleted. For embryos of the cricket
A. socius, the ATP:ADP ratio is approximately 40–50% lower in
diapausing versus non-diapausing embryos (Reynolds and Hand,
2009). Likewise, diapausing cysts and embryos from A. franciscana
and A. limnaeus contain considerably more ATP than ADP,
although the ratio is substantially lower than that measured for
post-diapause embryos (Table 1).
The above values reflect the adenylate content in whole embryos,

but it is pertinent to recall that the status of adenylate pools in
the cytoplasm versus the mitochondrial matrix differ appreciably
in cells. Relative to the cytoplasm, ATP is concentrated in
mitochondria and ADP even more so (Tables 2 and 3). In classic
studies with digitonin permeabilization of the plasma membrane,
cytosolic adenylates can be separated from the pelleted
mitochondrial fraction and then quantified separately (Siess et al.,
1977; Akerboom et al., 1978). Roughly 60% of total adenine
nucleotides are found in the cytoplasm. However, this value
depends greatly on the cell volume occupied by mitochondria,
which for rodent hepatocytes is 23% (Beauvoit et al., 1994). By

comparison, the cellular volume of mitochondria is around 5% in
A. franciscana embryos (Rees et al., 1989). The ATP:ADP ratio in
the cytosolic fraction is much higher than in the mitochondrial
fraction (Tables 2 and 3). During diapause, it is remarkable that ATP
stores are not depleted in the face of extreme metabolic arrest,
especially considering that mitochondrial Δp is compromised and
the matrix pH would become more acidic. Under these conditions,
the F1Fo-ATP synthase can reverse and function in the ATPase
direction (Nicholls and Ferguson, 2013). Because the adenine
nucleotide transporter (ANT) would also reverse, the ANT would
transport cytoplasmic ATP into the matrix and remove matrix ADP,
thus tending to equalize the ATP:ADP ratios shown in Tables 2 and
3. Under this scenario, the possibility exists that all cellular ATP
could be hydrolyzed in a futile attempt to restore the Δp. Bob
Boutilier once referred to this phenomenon as ‘cellular treason’ (St-
Pierre et al., 2000).

However, at low matrix pH it is now established that a matrix-
resident inhibitor protein, termed inhibitor of F1 (IF1), can bind to
the ATP synthase and block the reverse reaction from occurring (e.g.
Gledhill et al., 2007; Bason et al., 2011, 2014). Bovine monomeric
IF1 comprises 84 amino acids (9.6 kDa) and its N-terminal
inhibitory region is intrinsically disordered (Bason et al., 2014).
The inhibitor binds at a catalytic interface between the βDP and αDP
subunits. IF1 exists as inactive tetramers at alkaline pH, but these
can depolymerize to free dimers at low pH, which bind to the
enzyme and inhibit ATP hydrolysis. It is possible that such a
mechanism may operate during diapause in A. franciscana, and this
hypothesis is currently being tested.

Reduction in ionoregulation
Maintenance of ion balance across the plasma membrane can account
for 30–70% of basal cellular metabolism (Rolfe and Brown, 1997),
and thus severe metabolic depression requires that the rates of ion leak
and pumping at the cellular and organismal levels are addressed. For
aquatic organisms, this also means that exchange of ions with the
external environment must be tightly regulated and reduced during
dormancy to avoid rapid depletion of cellular ATP levels in the face of
reduced ATP production. Accordingly, the costs for ion homeostasis
in diapausing and post-diapausing embryos of A. franciscana are
exceedingly low because the shell of these encysted embryos is
impermeable to ions, including protons (Conte et al., 1977; Busa
et al., 1982; Clegg and Conte, 1980). Furthermore, the embryos do
not even possess measurable activities of the Na+/K+-ATPase during
these stages (Peterson et al., 1978). Consequently, energy
requirements for ion balance between the inside and outside of
embryos are perhaps non-existent until emergence and hatching.
Similarly, diapausing embryos of A. limnaeus have extremely low
rates of Na+/K+-ATPase and overall ATPase activity during early
development and diapause II (Machado and Podrabsky, 2007). In
fact, Na+/K+-ATPase activity does not increase significantly
following fertilization until several days after diapause II is broken.
Associated with this low activity is an extremely low exchange of ions

Table 1. Adenylate status in diapausing and active (post-diapause)
embryos of Artemia franciscana and Austrofundulus limnaeus

Adenylates Diapause
Active (post
diapause)

Artemiaa

ATP/ADP 1.31±0.04 7.30±0.28
ADPb 0.13±0.01 0.11±0.01
AMPb 0.62±0.04 0.03±0.01

Austrofundulusc

ATP/ADP 3.3±0.36 5.5±0.4
ADPd 0.067±0.011 0.085±0.009
AMPd 0.014±0.007 0.005±0.005

aValues aremeans±s.e.m.,N=10 (diapause),N=8 (post diapause) (Patil et al.,
2013).
bValues are expressed as µmol g−1 hydrated embryo.
cValues are means±s.e.m., N=3 (Podrabsky et al., 2012).
dValues are expressed in nmol per embryo. Each embryo has a mass of
approximately 2.5 mg.

Table 2. ATP and ADP partitioning between cytoplasmic and
mitochondrial compartments based on the study by Siess et al. (1977)
with rat hepatocytes

Adenylate

Concentration
(nmol g−1 dry wt
cells)

Percentage
of total
cellular
content

Concentration
(mmol l−1)

Cytoplasm ATP 6020±390 (N=9) 68.2% 4.36
ADP 1080±70 (N=9) 46.2% 0.78

Mitochondria ATP 2810±280 (N=9) 31.8% 16.98
ADP 1260±60 (N=9) 53.8% 7.61

Values are means±s.e.m.

Table 3. ATP and ADP partitioning between cytoplasmic and
mitochondrial compartments based on the study by Akerboom et al.
(1978) with rat hepatocytes

ATP
(mmol l−1)

ADP
(mmol l−1)

AMP
(mmol l−1)

ATP:ADP
ratio

Cytoplasm 2.76 0.32 0.13 8.76
Mitochondria 10.38 5.86 4.33 1.77

Relative to the cytoplasm, ATP is concentrated in mitochondria and ADP even
more so.
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and water with the environment (Machado and Podrabsky, 2007).
Thus, osmoregulation in both organisms is achieved by minimizing
environmental exchange, a strategy that is equally effective in both
hypo- and hyper-osmotic environments without the restructuring
of osmo- and ionoregulatory machineries. This strategy is likely to
be especially effective in the extreme and often unpredictable
environments to which dormant embryos may be exposed.

Reduction in protein turnover
A great deal of the ATP turnover in animal cells can be attributed to
protein turnover (e.g. Rolfe and Brown, 1997). In fact, in many
different species, protein synthesis can account for about 30%ormore
of the total oxygen consumed to support basal cellular metabolism
(e.g. Rolfe and Brown, 1997; Podrabsky and Hand, 2000). Not
surprisingly, considering the degree of metabolic depression, protein
synthesis in embryos of A. franciscana is severely depressed in
prolonged diapause, perhaps by99%, as estimated by incorporation of
radiolabel into protein of field-collected embryos (Clegg et al., 1996).
In this study, Clegg and colleagues observed little evidence of
proteolysis in diapausing embryos and assumed that pathways for
macromolecular degradation are also brought to a standstill during
diapause. Rates of protein synthesis are depressed byover 90%during
diapause II in embryos of A. limnaeus which results in a reduction in
ATP demand equivalent to about 36% of the metabolic depression
observed (Podrabsky and Hand, 2000). Reduction in the rate of
protein synthesis during diapause presents challenges to a diapausing
embryo and may limit the ability of the embryo to mount an effective
translational response to environmental challenges. Thus, the
production of proteins that support metabolic depression and
increased stress tolerance are likely to occur prior to entrance into
diapause, whenmetabolic and protein synthetic capacity are still high.
This supposition is supported by the accumulation of stress-inducible
forms of heat shock proteins (HSPs) during early development that
peak during diapause II inA. limnaeus (Podrabsky and Somero, 2007)
and by the accumulation of small HSPs in diapausing embryos of
A. franciscana (Liang and MacRae, 1999). While accumulation of
HSPs may help protect embryos from environmental stress during
diapause, they are typically not expressed at high levels during
embryonic development and overexpression has been shown to
impede development in some species (Feder et al., 1992). The trade-
offs associated with depression of protein synthesis during dormancy
and the possible costs to a developing embryo haveyet to be addressed
in species that produce diapausing embryos.

Future questions
In addition to the IF1 hypothesis above, numerous unexplained issues
remain regarding the control of diapause and survival in this arrested
state. For example, whether there is a regulatory role for acidification
of pHi during diapause entry (as there is during anoxia; see Busa and
Crowe, 1983 and for a review, see Hand et al., 2011) is still an open
question. In A. franciscana, diapause embryos have an alkaline pHi

shortly after release from the female (Drinkwater and Crowe, 1987),
but direct evidence is lacking for an acidification during the time
course of metabolic depression for diapause. Similarly, regulation of
intracellular pH has never been addressed in diapausing embryos of
A. limnaeus. Addressing the issue of intracellular pH is particularly
important in light of the recent evidence that the mitochondrial
permeability transition pore is composed of dimeric units of the F1Fo-
ATP synthase (Giorgio et al., 2013). It would be good to understand
why the transition pore in A. franciscana is resistant to opening and
what structural differencesmight exist for its ATP synthase. A similar
lack of calcium-induced opening has been observed formitochondria

of the ghost shrimp, Lepidophthalmus louisianensis (Holman and
Hand, 2009). While no direct evidence exists concerning opening of
the transition pore in embryos ofA. limnaeus, they are highly resistant
to anoxia-induced apoptosis (Meller and Podrabsky, 2013), and thus
may share similar resistance to mitochondrial-induced apoptosis.
Additionally, it will be important to explore the cell-signaling
pathways involved in the induction and breakage of diapause. For
example, cells of A. limnaeus arrest in the G1 phase of the cell cycle
(Meller et al., 2012), while some species of insect arrest in G1 and
others in G2/M phases (Denlinger, 2002). Where arrest occurs in the
cell cycle will have a dramatic affect on the gene expression status of
the cells and thus the molecular pathways that must be regulated. In
addition, there is increasing evidence that insulin-like signaling
pathways, which are known to favor arrest of the cell cycle inG1, may
play a central role in the regulation of diapause in a variety of lineages
(e.g. Kimura et al., 1997; Sim and Denlinger, 2013; S. C. Woll and
J.E.P., unpublished results), and thus may represent a universal way
to regulate cellular physiology in favor of metabolic depression.
Finally, the importance of understanding how diapause is broken
is critical. Extreme environmental conditions are often associated
with diapause breakage (desiccation, long-term cold or freezing),
and thus understanding how an organism can increase resistance to
environmental stress while still maintaining the ability to sense and
respond to these same variables will likely lead to new insights in
our understanding of cell sensing and signaling in response to
environmental change.

Many routes to similar phenotypes and the importance of
mechanistic follow-up
Despite the striking similarities of the life history and very
similar physiological characteristics associated with diapause in
A. franciscana and A. limnaeus, evolution has clearly driven
different molecular adaptations to support diapause in each lineage.
This route to adaptation parallels that observed for individual
proteins evolving in response to environmental temperature (see
Fields et al., 2015). While this observation may not be surprising, it
highlights the importance of physiology as a central regulator of
organismal performance that is of paramount importance in the
process of natural selection. Perhaps because organisms are such
complex systems, there will always be many mechanistic ways to
alter physiological function or maintain homeostasis in response to
ecological or environmental selection pressures.

However, as powerful as the comparative approach is for
scientific discovery, a disturbing trend is becoming prevalent in
comparative physiology. The use of hypothesis-generating
approaches – such as transcriptomics, proteomics and mass-
spectroscopy-based metabolomics – as stand-alone techniques for
scientific inquiry has become problematic for the field. As the costs
of transcriptomics (e.g. RNA-Seq) and similar tools continue to
decline, many investigators are applying these tools as ultimate end
points for their studies, instead of as means to an end. The
painstaking, time-intensive work of testing the resultant hypotheses
with mechanistic analyses is, more often than not, ignored. Yet
instead, another round of mRNA or protein profiling for a new
combination of environmental variables is performed, the results
and hypotheses from which are again not experimentally tested or
confirmed. Unfortunately, this practice may be helping to nudge
comparative physiology toward the backwaters of science; the
comparative section of Annual Reviews of Physiology has been
terminated, with more emphasis placed on medical physiology,
where apparently investigators appreciate the obligation of driving a
project forward to proofs of function and mechanistic conclusions.
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Without follow-up, ‘omics’ studies are of limited value.
Applebaum et al. (2014) have made a compelling case for
combining quantitative genetics with omics approaches to provide
genotype-to-phenotype mapping in order to narrow the focus for
mechanistic physiological studies. Generating and integrating the
relevant functional data is important in order to move past
correlations (e.g. Furlong, 2011; Nikinmaa and Rytkönen, 2012).
Accordingly, rigorous enzyme kinetics, macromolecular structural
studies, metabolic control analysis, cellular signal transduction
studies and other approaches are required to test physiological
mechanisms, which make collaborations among laboratories often
essential. In the realm of bioenergetics, it seems that physiologists
have forgotten that modulating the titer of one or more enzymes
within a metabolic pathway (assessed by proteomics and often
incorrectly inferred by transcriptomics) is often a trivial aspect
in metabolic control. Rather, allosteric regulation, control of
pathway flux by substrate availability and covalent modification
of proteins (including far more than phosphorylation) are frequently
more important physiologically than changes in gene expression
(see Chouchani et al., 2013 for a compelling case of metabolic
modulation by protein nitrosation). In some cases omics techniques
themselves have serious deficiencies. For example, broad-based,
mass spectroscopy scans often provide quantitative information
only for a subset of intermediates within a given pathway because of
a lack of resolution or identification. Without traditional benchwork
to obtain data for the remaining pathway metabolites, virtually
nothing can be concluded about sites of inhibition/activation or sites
inferred regarding metabolic flux.
Thus, as genomic information continues to accumulate, it is

imperative that we follow through to elucidate mechanisms in order
to appreciate the central importance of physiology as a primary
target of natural selection. This mindfulness will ensure that we
continue to focus on the attributes that are critical for organismal
performance and adaptation.
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