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Abstract 11 

Indoor carbon dioxide (CO2) levels serve as an indicator of ventilation sufficiency in relation to 12 

metabolic effluents. Recent evidence suggests that elevated CO2 exposure (with or without other 13 

bioeffluents) may cause adverse cognitive effects. In shelter-in-place (SIP) facilities, indoor CO2 levels 14 

may become particularly elevated. This study evaluates four low-cost alkaline earth metal oxides and 15 

hydroxides as CO2 sorbents for potential use in indoor air cleaning applications. Sorbents studied 16 

were MgO, Mg(OH)2, Ca(OH)2 and commercially available soda lime. Uncarbonated sorbents 17 

characterized with nitrogen adsorption porosimetry showed BET surface areas in the 5.6-27 m2/g 18 

range. Microstructural analyses, including X-ray diffraction, thermogravimetric analysis and scanning 19 

electron microscopy confirmed the carbonation mechanisms and extent of sorption under 20 

environmental conditions typical of indoor spaces. Ca-based sorbents demonstrated higher extent of 21 

carbonation than Mg-based sorbents. Laboratory parameterizations, including rate constants (k) and 22 

carbonation yields (y), were applied in material balance models to assess the CO2 removal potential 23 

of Ca-based sorbents in three types of indoor environments. Soda lime (k = [2.2 - 3.6] × 10-3 m3 mol 24 

CO2
-1 h-1

, y = 0.49-0.51) showed potential for effective use in SIP facilities. For example, CO2 exposure 25 

in a modeled SIP facility could be reduced by 80% for an 8-h sheltering interval and to levels below 26 

5000 ppm for an 8-h period with a practically sized air cleaner. Predicted effectiveness was more 27 

modest for bedrooms and classrooms. 28 
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 30 

1. Introduction 31 

Excluding emissions from unvented combustion, carbon dioxide (CO2) concentrations in 32 

occupied indoor spaces depend on three main factors: the CO2 emission rate from human metaboli-33 

sm, the outdoor CO2 concentration, and the outdoor air ventilation rate. Indoor CO2 levels are 34 

primarily managed through the replacement of indoor air with outdoor air. However, providing 35 

outdoor air ventilation for buildings, while necessary to achieve indoor air quality objectives, can 36 

contribute substantially to building energy use [1]. Decreasing the outdoor air exchange rate is one 37 

strategy to reduce the energy demand of buildings, as mechanical ventilation requires energy input 38 

to fans and may contribute to heating, cooling, and dehumidification needs, depending on site- and 39 

time-specific environmental conditions. However, reducing outdoor air-exchange rates tends to 40 

increase the concentrations of indoor-generated air pollutants, including CO2. Indoor CO2 levels may 41 

also become elevated when building operation is altered temporarily (e.g. when air exchange is 42 

minimized to protect occupants from hazardous outdoor conditions) including events that 43 

precipitate the need for a shelter-in-place (SIP) response [2].  44 

Carbon dioxide, a primary product of human metabolism, is often used as a proxy for indoor-45 

emitted air pollutants [3,4]. It is generally not considered harmful at levels routinely encountered in 46 

buildings. Rather, high levels of indoor CO2 imply that ventilation is insufficient to adequately dilute 47 

air pollutants emitted by occupants or other indoor sources. However, some emerging evidence 48 

suggests that exposure to elevated CO2 at levels commonly encountered indoors may adversely 49 

affect human cognition [5–7]. The matter is not yet resolved; other recent studies imply that other 50 

bioeffluents or possibly some combination of CO2 and other bioeffluents may be the causative 51 

agents [8–12]. 52 

The US Occupational Safety and Health Administration (OSHA) has set an 8 hour (h) 53 

permissible exposure limit (PEL) of 5,000 ppm for CO2.  Levels in SIP facilities might rise above this 54 
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threshold. One specific motivation for this study is that a household SIP facility is mandatory in 55 

Singapore in all government constructed housing built after 1998 [13].  This requirement is 56 

noteworthy as government housing in Singapore provides accommodation for approximately 85% of 57 

the country’s population [14]. A prior investigation of SIP habitability in the US context showed that 58 

CO2 levels could reach 16,000 ppm after 3 h of occupancy by five persons [15]. Exposure to such 59 

levels could result in acute health consequences, as evidenced by studies investigating exposures in 60 

spacecraft that show adverse effects including lethargy, malaise, and headache at CO2 61 

concentrations between 4,000 and 10,000 ppm [16]. Studies supporting the OSHA PEL showed 62 

electrolyte imbalances, metabolic changes, and non-narcotic central nervous system effects for 63 

short-term exposures to CO2 in the range 10,000-30,000 ppm [16,17].  64 

Given the common occurrence of elevated CO2 concentrations in certain indoor spaces 65 

combined with the possibility of acute health effects in SIP facilities and cognitive decrements in 66 

other settings, this study investigates the possibility of controlling indoor CO2 via active removal by 67 

means of low-cost solid sorbents that could be integrated into a recirculating indoor air cleaner. 68 

Capture of CO2 with solid sorbents is an emerging area of research with promising potential for 69 

future lower cost approaches for CO2 control [18], including the application of sorbents that are 70 

derived from waste materials [19]. Solid sorbents such as metal oxides and hydroxides are 71 

considered promising candidates for removing CO2 from flue gases through carbonation during 72 

which oxides or hydroxides are converted into stable carbonates [20,21]. Sorbents under 73 

development for use in carbon capture from fossil fuel combustion typically target operation at 74 

higher temperatures (on the order of 400 °C or greater) and at elevated CO2 levels (up to the order 75 

of 10%), although approaches for room temperature operation at outdoor ambient CO2 levels have 76 

also been reported [22,23].  77 

During the carbonation process, gaseous CO2 dissolves in water, becoming carbonic acid, 78 

which neutralizes the hydroxides (e.g. portlandite (Ca(OH)2) or brucite (Mg(OH)2)). Two main factors 79 

control the rate and degree of carbonation of CaO and/or MgO and their derivatives: (i) sorbent 80 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

composition (chemical and physical properties of the solid components, water content and presence 81 

of additives) and (ii) environmental conditions (CO2 concentration and pressure, relative humidity 82 

(RH), temperature and duration) [24–28]. The main factors influencing the carbonation of Ca- or Mg-83 

based sorbents can be summarized as the transport of CO2 to the sorbent surface and its reactivity 84 

with the sorbent. Transport is affected by environmental conditions (i.e. air pressure, CO2 85 

concentration, and abundance of water, etc.) and the pore structure of the sorbent, whereas the 86 

sorbent composition and material properties influence its reactivity. In the case of Mg-based 87 

sorbents, the hydration of MgO leads to the formation of magnesium hydroxide (brucite, Mg(OH)2). 88 

In the presence of sufficient water, brucite reacts with CO2, leading to the formation of hydrated 89 

magnesium carbonates such as nesquehonite (MgCO3·3H2O), hydromagnesite 90 

(4MgCO3·Mg(OH)2·4H2O), dypingite (4MgCO3·Mg(OH)2·5H2O) and artinite (Mg2CO3·Mg(OH)2·3H2O) 91 

[29–33]. Higher CO2 concentrations increase the rate and degree of carbonation at initial stages [24]. 92 

The presence of water within the sorbent plays an important role in the degree of hydration and 93 

carbonation as the initial water content both facilitates the hydration and carbonation reactions and 94 

influences the rate of CO2 diffusion through the sorbent system. In dry CO2 scrubbing, low water 95 

content present in sorbent media and low RH in air surrounding the sorbent delay the carbonation 96 

reaction, whereas an increase in the water content of the media speeds the carbonation reaction 97 

but results in a decrease of CO2 diffusion since the diffusivity of CO2 is much slower in water than it is 98 

in air (i.e. the diffusion coefficient of CO2 is 16 mm2/s in air vs. 0.0016 mm2/s in water [34]). 99 

Therefore, rapid sorption kinetics require sufficient water for hydration and subsequent carbonation 100 

but not so much water as to interfere with rapid diffusion of CO2 through the sorbent system. 101 

Previous studies have shown that RH values in the approximate range 40-80% are preferable for 102 

increased carbonation of the Mg and Ca oxides [35–37]. The rates of diffusion of CO2 into the 103 

sorbent matrix and its subsequent interaction with Ca and Mg are of interest in this study. 104 

If solid sorbents can be integrated into stand-alone indoor air cleaners, they can be deployed 105 

to control CO2 concentrations in locations such as SIP facilities and other indoor locations where CO2 106 
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levels may be temporarily elevated. Apart from SIP environments, other potentially attractive 107 

locations are those where specific populations spend substantial proportions of their day in 108 

conditions that may not always be sufficiently ventilated, such as bedrooms overnight and 109 

classrooms during the day [38].  Several recent efforts further describe the potential and 110 

opportunity of CO2 capture techniques specifically suited for built environments [39–41]. This study 111 

employs a range of experimental methods to characterize the physico-chemical properties and 112 

carbonation products, kinetics and yields of four alkaline earth metal oxides and their hydroxides. 113 

Also provided is an estimate of the efficacy of potentially promising sorbents when integrated into a 114 

standalone air cleaner under three hypothetical scenarios.  Cases considered are those in which 115 

active CO2 removal may be beneficial owing to one or more of these factors: high occupant density, 116 

small room volume, low air-exchange rate, and a susceptible population. Three specific cases are 117 

explored: (i) SIP facilities in residential environments, (ii) sleeping microenvironments, and (iii) 118 

school classrooms. 119 

2. Materials and Methods 120 

2.1 Sorbents  121 

A commercial CO2 solid sorbent, SodaSorb (Grace Chemical), consisting of a mixture of 122 

Ca(OH)2, H2O, NaOH and KOH, was purchased from Advanced Marine Pte Ltd, Singapore. The 123 

performance of this sorbent was compared to three other products: MgO (commercial name 124 

“calcined magnesite 92/200”) obtained from Richard Baker Harrison Ltd (UK) and high purity (>95%) 125 

Ca(OH)2 and Mg(OH)2 purchased from Aik Moh Paints & Chemicals, Singapore. 126 

Particle size distributions of three sorbents (MgO, Ca(OH)2 and Mg(OH)2), in the form 127 

received from the manufacturer, were measured with a particle size analyzer (Mastersizer 2000, 128 

Malvern). Particle size of the sorbents is reported as the d50, or mass median particle size. The 129 

internal physical properties of the four sorbents were measured via nitrogen adsorption porosimetry 130 

conducted at 77 K (Quantachrome Quadrasorb). All four samples were ground to a fine powder in a 131 

mortar and pestle prior to analysis to facilitate outgassing of samples and equilibration with N2 132 
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partial pressure during adsorption or desorption cycles. Note that this results in the reporting of a 133 

specific surface area, or the interior surface area normalized by mass. It is possible that transport 134 

limitations will reduce the ‘effective’ surface area below the specific surface areas reported if 135 

sorbents are implemented with larger grain size than the fine powders used in N2 adsorption 136 

porosimetry.   Samples of all four sorbents were outgassed at < 0.1 Torr and 125 °C for 8 hours 137 

before measuring nitrogen adsorption isotherms. Surface areas of the sorbents were determined by 138 

applying Quantachrome’s BET theory; their cumulative pore volumes and average pore sizes were 139 

determined with Quantachrome’s density functional theory.  140 

2.2 Characterizing CO2 uptake on sorbents 141 

2.2.1 Carbonation of sorbents 142 

The four sorbents were subjected to carbonation in a controlled laboratory apparatus as 143 

shown in Figure 1. Compressed laboratory air was first passed through a membrane dryer that 144 

included a 0.01 micron pre-filter (Laman MD-15LS and Laman SAM350-E, Air Parts Center Pte Ltd) to 145 

remove water vapor and particulate matter present in laboratory air. Dry air was then passed 146 

through an activated carbon packed bed (BPL 6 × 16, Calgon Carbon). The outlet flow was split to 147 

control the humidity level, with one stream passing through a washing column filled with deionized 148 

water. The flow rates through the dry and humidified air streams were regulated using mass flow 149 

controllers (Omega FMA5500, Omega Singapore). In parallel, a small flow supplied from a 150 

compressed gas cylinder of food-grade CO2 (> 99% purity) was injected into the main flow to achieve 151 

the desired CO2 concentration set-point. The two flow streams were combined and directed to a 152 

temperature controlled enclosure (KBE3.1, Binder GmBH). Inlet and outlet CO2, temperature and RH 153 

(Teleaire 7001, Onset Computer Corporation) were measured upstream and downstream of a 154 

reaction chamber that was either a washing column loaded with a specific sorbent/water ratio or a 155 

packed bed reactor loaded with dry sorbent. 156 
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A calibration curve was developed between the two CO2 monitors by collocating the 157 

monitors and recording responses at five CO2 levels ranging between 0 and 2500 ppm. The resulting 158 

linear equation was applied to adjust the readings of the downstream CO2 monitor.  159 

Sorbents were tested in two sets of experiments. Longer term tests were conducted with 160 

sorbents in slurries with deionized water, at a loading rate of 0.1 g sorbent per gram of deionized 161 

water in a total volume of 100 cm3 and maintained at a constant temperature of 25 °C. The RH in the 162 

inlet air stream was elevated to > 75% to limit the evaporation of water from the slurry. Tests were 163 

conducted for 7 days at a flow rate of 2.7 L/min with a constant CO2 concentration of 2200 ppm to 164 

observe carbonation while minimizing limitations to CO2 uptake that may result from the availability 165 

of H2O. These experiments are subsequently referred to according to experimental conditions. For 166 

example, experiment ‘MgO-0.1-2.7-2200’ refers to the carbonation of the sorbent MgO at a loading 167 

rate of 0.1 g (sorbent)/g (H2O), flow rate of 2.7 L/min, and inlet CO2 concentration of 2200 ppm. 168 

Carbonated sorbent products were extracted from the column, centrifuged to separate the sorbent 169 

from residual water and dried for 48 hours under low RH in a temperature/RH controlled chamber (T 170 

= 20 °C, RH < 10%). 171 

Sorbents that exhibited effective carbonation during the 7-day tests were selected for 172 

further analysis to characterize uptake kinetics and reaction yields. Sorbents were tested under dry 173 

and slurry conditions. Dry experiments were conducted with a loading of 5 g of media placed on a 174 

wire mesh under a constant inlet RH of 75%. Slurry experiments were conducted at a loading ratio of 175 

0.03 g sorbent/g water in a total volume of 100 cm3. Both dry and slurry experiments were 176 

conducted at two flow rates: 1.8 and 2.7 L/min. These flow rates correspond to contact times of 0.28 177 

and 0.18 seconds, respectively, in dry experiments and 0.45 and 0.3 seconds, respectively, in slurry 178 

experiments. All experiments were conducted at 25 °C. Inlet and outlet temperature, RH and CO2 179 

levels were measured at five-minute intervals. Each experiment was conducted until the sample 180 

appeared to be fully carbonated under the set conditions, defined as when the 1-h running average 181 

inlet and outlet CO2 concentrations were equal to within ±25 ppm. 182 
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Carbonation yields were determined from the time-integrated difference between inlet and 183 

outlet CO2 monitors across the duration of an experiment to determine the total mass of CO2 184 

removed. This mass of CO2 uptake was divided by the initial mass of sorbent and converted to moles 185 

to determine the molar yield, y (mol sorbed CO2/mol sorbent initially present). For soda lime, the 186 

estimate of moles of sorbent was made from the mass of only Ca(OH)2, as the KOH and NaOH served 187 

as catalysts and were not consumed in the carbonation reaction [42,43]. Measured masses of soda 188 

lime were multiplied by 0.85 to obtain the mass of Ca(OH)2 used in subsequent interpretation of 189 

experimental results and modeling, according to the 85% Ca(OH)2 content within soda lime as 190 

specified by the manufacturer. Reaction rate constants, k (m3 (mol CO2)
-1 h-1), were determined using 191 

coupled equations describing the time-varying quantities of CO2 and unreacted sorbent in the 192 

reactor. The model equations and procedures employed to estimate k and y are provided in the 193 

Supporting Information; Figure S1 illustrates results for a sample experimental run.  194 

2.2.2 Microstructural analysis 195 

Selected samples from the 7-day CO2 uptake experiments were stored in acetone for at least 196 

7 days to stop hydration, followed by vacuum drying for another 7 days in preparation for X-ray 197 

diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) 198 

analyses. The vacuum-dried samples were ground to a powder fine enough to pass through a 75 μm 199 

sieve before they were analyzed under XRD and TGA. The XRD measurements, aimed to determine 200 

the crystallinity of compounds and identify and distinguish between different phases within the 201 

samples, were made on a Philips PW 1800 spectrometer using Cu Kα radiation (40 kV, 30 mA) with a 202 

scanning rate of 0.04° 2θ/step from 5 to 55° 2θ. TGA was conducted on a Perkin Elmer TGA 4000 203 

instrument using a temperature range from 50 to 900 °C with a heating rate of 10 °C/min under 204 

nitrogen flow. The vacuum-dried samples were mounted onto aluminum stubs using double-sided 205 

adhesive carbon disks and coated with gold before SEM analysis. The SEM analysis was carried out 206 

with a Zeiss Evo 50 microscope to investigate the morphologies of the hydration and carbonation 207 

products within the prepared samples. 208 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

2.3 Modeling CO2 removal in three indoor environments 209 

Laboratory sorbent characterization results were used as inputs into material-balance 210 

models to conduct a scaling analysis of the efficacy of hypothetical deployments of stand-alone CO2 211 

scrubbers in three types of indoor environments where CO2 concentrations are routinely elevated: 212 

shelter-in-place (SIP) facilities [15,44], bedrooms [14,45] and classrooms [46]. Model inputs 213 

describing indoor spaces and occupancy were selected to be generally representative of such 214 

environments in the Singapore context, as summarized in Table 1. Room volume and occupancy 215 

levels for the SIP facility (5 m3 for 2 persons) were calculated considering measurements made in a 216 

typical Singaporean apartment and Singapore regulations that stipulate a minimum of 1.8 m3 of 217 

shelter volume per occupant [47]. Note that regulations recommend greater SIP volume than the 218 

stipulated minimum for increased comfort during an emergency. Room volume for the bedroom was 219 

based on measurements of a recently constructed (< 5 y old) 3-bedroom apartment that is a typical 220 

Singapore residence; volume and occupancy levels of classrooms were taken from a study of six 221 

primary school classrooms in Singapore [46]. Emission rates of CO2 were made following the 222 

procedure described by Persily et al. [48], with assumptions as described in Table 1 annotations. 223 

Ventilation flow rates in the bedroom and SIP environments were determined from the 224 

average value of triplicate measurements of air exchange rates calculated from the decay of CO2 that 225 

was injected into an unoccupied bedroom and household shelter. Ventilation flow rates in the 226 

classroom environment were taken as the average of CO2 tracer decay measurement results made in 227 

six unoccupied, air-conditioned classrooms in primary schools in Singapore [46]. In bedrooms and 228 

classrooms, windows and doors were sealed during measurements to reflect a ‘low flow’ condition 229 

where the exchange of indoor and outdoor air is intentionally reduced to minimize intrusion of 230 

warm, humid outdoor air into the buildings. In the SIP facility, measurements were made in a typical 231 

household shelter and, per peacetime requirements dictated in the Singapore building code, the 232 

ventilation sleeve was opened to 25% of the total sleeve area [47]. During an emergency, the sleeve 233 
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would be fully closed, likely reducing the air exchange rate in the household shelter to a value lower 234 

than that reported here.  235 

The efficacy of an air cleaner containing a CO2-removing sorbent was evaluated for the three 236 

hypothetical indoor environments by solving coupled material balance equations written for (i) the 237 

concentration of CO2 in the room, (ii) the concentration of CO2 through a packed bed of sorbent and 238 

(iii) the quantity of the unreacted sorbent in the air cleaner. These equations are presented in the 239 

Supporting Information. Modeling of indoor environments was conducted for practically sized air 240 

cleaners considering the mass of media, volume of air cleaner, and resulting pressure drop across 241 

the packed media bed. Rates of carbonation were assumed to remain constant as total pressure 242 

varied across the modeled packed bed. Prior studies indicate that total pressure influences uptake 243 

but only for orders of magnitude higher changes in total pressure than are relevant in the present 244 

context [49]. Flow rates through a hypothetical air cleaner were selected to maintain air-media 245 

contact times for dry sorbents that matched those used in experiments described in §2.2.1. Scrubber 246 

dimensions were selected to allow the contact time to be held constant while providing a volumetric 247 

flow rate similar to commercial air cleaners appropriately sized for the indicated indoor 248 

microenvironment. 249 

3. Results and Discussion 250 

3.1 Physicochemical properties of sorbents 251 

Physical and chemical properties of the four sorbents considered in this investigation are 252 

shown in Table 2. The MgO, Mg(OH)2, and Ca(OH)2 materials represent pure or nearly pure 253 

compounds that are commercially available, low-cost, and may be derived from waste streams [19]. 254 

A stream for reusing alkaline earth metal oxides or hydroxides that simultaneously addresses an 255 

indoor air quality concern could represent a valuable opportunity. The fourth sorbent considered, 256 

soda lime, is mainly Ca(OH)2; however, it is specifically designed for CO2 scrubbing by the addition of 257 

(a) two catalysts (KOH, NaOH) and (b) approximately 10% H2O to accelerate the uptake of CO2 and 258 

subsequent conversion of Ca(OH)2 to CaCO3. The physical properties summarized in Table 2 reveal 259 
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only modest variation in properties across the four sorbents. The measured mass median particle 260 

sizes (d50) of the three powder samples (MgO, Mg(OH)2, and Ca(OH)2) ranged between 5 and 19 µm, 261 

whereas the grain size for the soda lime media was reported as 1 mm (by the manufacturer). Particle 262 

size distributions for the powder samples are provided in Figure S2 of the Supporting Information. 263 

Note that in the subsequent modeling of indoor spaces, granular media with a d50 of 1 mm is 264 

assumed for both soda lime and Ca(OH)2; the implications of this assumption for the modeling of a 265 

hypothetical Ca(OH)2 packed bed are discussed in §3.3. The specific surface areas of these materials 266 

are a few orders of magnitude lower than values for other engineered sorbents for CO2 and gas-267 

phase pollutants, such as metal organic frameworks [50,51]. Among the four sorbents considered, 268 

MgO has the highest internal surface area, 28 m2/g, a factor of five higher than the value for pure 269 

Mg(OH)2. Increasing specific surface area may present a useful pathway for enhancing the uptake of 270 

CO2 to low-cost sorbents, as it is probable that the availability of CO2 sorption and/or reaction sites is 271 

a factor that limits uptake of CO2.  272 

3.2 Characterizing CO2 uptake by sorbents 273 

3.2.1 X-ray diffraction 274 

XRD patterns of Ca- and Mg-based sorbents subjected to a flow rate of 2.7 L/min under a 275 

constant CO2 concentration of 2200 ppm for 7 days are shown in Figures 2 (a) and (b), respectively. 276 

Sorbents containing Ca(OH)2 and soda lime indicate the formation of the carbonation product 277 

calcite, whose main peak is observed at 29.4° 2θ along with several secondary peaks. The absence of 278 

the major hydroxide phase portlandite (Ca(OH)2) in the presented patterns is a clear indication that 279 

the prepared samples have fully carbonated during the 7 days of exposure. As these samples were 280 

subjected to accelerated carbonation conditions under an elevated CO2 concentration and flow rate, 281 

the hydroxide phases within the soda lime and Ca(OH)2 based sorbents have been transformed into 282 

calcite, as observed in the XRD patterns. 283 

The crystalline phases forming after the carbonation of Mg-based sorbents are shown in 284 

Figure 2(b). In addition to magnesium carbonate, some of the common carbonation products 285 
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observed were hydrated magnesium carbonates (HMCs) such as dypingite and hydromagnesite. 286 

Dypingite (powder diffraction file (PDF) #029-0857) has its four highest intensity peaks at 15°, 30.4°, 287 

13.7° and 21° 2θ followed by peaks at 12°, 20°, 27.9°, 41.3°, 45.5°, and 44.8° 2θ. Most of the strong 288 

peaks and many of the weaker ones can be seen in the XRD patterns presented, confirming the 289 

presence of dypingite. Hydromagnesite (PDF #025-0513) has its highest intensity peaks at 15.3°, 290 

30.8° and 13.7° 2θ, which are similar to those of dypingite and hence are expected to overlap in the 291 

XRD spectra. Hydromagnesite (PDF #003-0093) also has sharp peaks in the high-angle region at 42° 292 

and 45.5° 2θ, where small peaks can be seen in the presented diffractograms. These peaks confirm 293 

the presence of hydromagnesite in the samples. 294 

Other than the carbonation products, the presence of brucite is observed in both samples, 295 

where unhydrated MgO peaks can be seen in the MgO-based sorbent. The presence of the MgO 296 

peak at 42.9° 2θ indicates incomplete hydration, whereas the brucite peak at 38° 2θ is an indication 297 

of incomplete carbonation of both samples. These results clearly indicate that the carbonation 298 

conditions utilized in this study were not sufficient for the Mg-based samples to fully carbonate 299 

within the given exposure period. In principle, improved carbonation could be realized via (i) the use 300 

of a higher reactivity MgO with a larger specific surface area to increase the rate and degree of 301 

hydration and the subsequent carbonation process and (ii) optimization of the carbonation 302 

conditions to increase the rate and amount of CO2 diffusion within the samples. 303 

3.2.2 Thermogravimetric analysis 304 

The TGA results for the Ca- and Mg-based sorbents are shown in Figure 3(a) and (b), 305 

respectively. As can be seen in Figure 3(a), the thermal decomposition of Ca-based sorbents 306 

followed a regular pattern, indicating the decomposition of the main carbonate phase, calcite. This 307 

decomposition occurred between temperatures of 650 and 830 °C as expected, resulting in a weight 308 

loss of about 44% in both samples. Corroborating the XRD results, this outcome shows that both 309 

samples have fully carbonated as the molar mass calculations of the carbonation reaction indicate 310 

that CO2 (44 g/mol) represents 44% of the overall mass of calcite (100 g/mol). The similar 311 
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decarbonation behavior and weight loss of soda lime and Ca(OH)2-based samples is a clear indication 312 

that they demonstrated similar carbonation capabilities notwithstanding the additives (i.e. NaOH 313 

and KOH) included in the commercial soda lime sorbent. 314 

The thermal decomposition behavior of Mg-based samples, shown in Figure 3(b), is slightly 315 

more complex as in addition to uncarbonated brucite, these samples contain several carbonate 316 

phases with different decomposition patterns. According to the weight lost shown in the TGA curves, 317 

the decomposition steps of Mg-based samples can be divided into 3 main stages, whose details are 318 

listed in Table 3: (i) < 300 °C: loss of unbound water and water of crystallization of HMCs associated 319 

with their dehydration; (ii) 300-500 °C: dehydroxylation of HMCs and decomposition of any 320 

uncarbonated brucite; and (iii) > 500 °C: decarbonation process involving the decomposition of 321 

HMCs into MgO.  322 

The two endothermic peaks corresponding to the loss of unbound water and dehydration of 323 

water bonded to HMCs were observed at ~120 and 250 °C, respectively. A strong endothermic peak 324 

reflecting the decomposition of uncarbonated brucite accompanied by the dehydroxylation of HMCs 325 

(hydromagnesite and dypingite) was observed at ~450 °C. This transformation was followed by a 326 

broader peak corresponding to the decarbonation of HMCs at ~680 °C. The similar decomposition 327 

patterns and final weights demonstrated by the MgO and Mg(OH)2 samples clearly indicate their 328 

comparable extents of carbonation. The presence of the large brucite peak within both samples is a 329 

clear indication of incomplete carbonation, which was in agreement with the XRD patterns. 330 

3.2.3 Scanning electron microscopy 331 

Figure 4 shows the microstructures of the 4 samples analyzed by XRD and TGA. The SEM 332 

images of the soda lime (Figure 4(a) and (b)) and Ca(OH)2-based samples (Figure 4(c) and (d)) reveal 333 

similar morphologies at both magnifications. The formation of tightly packed calcite crystals of 334 

different sizes can be observed in both samples. Hexagonal calcite crystals are accompanied by 335 

sparsely distributed crystals of acicular shape in the Ca(OH)2 based sample, as shown in Figure 4(c). 336 
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In general, both samples indicate a dense formation of calcite, in agreement with the results of the 337 

TGA and XRD analyses. 338 

As depicted in Figure 4(e)-(h), the microstructure of MgO and Mg(OH)2 based samples are 339 

dominated with rosette-like formations of brucite, as was indicated by the TGA and XRD analyses. 340 

The main difference between the two samples is the size and density of brucite formations. The 341 

direct hydration of MgO results in the dense formation of brucite particles that are fused into large 342 

agglomerates. The direct inclusion of Mg(OH)2 produces a porous distribution of brucite particles 343 

with smaller sizes. However, the morphology of these brucite formations did not influence their 344 

carbonation potential as both samples demonstrated similar carbonation behaviours and capacities. 345 

Minor formations of hydromagnesite and dypingite are observed around the brucite crystals, which 346 

is a clear indication of limited carbonation within these samples.  347 

3.2.4 Kinetics and capacity of CO2 uptake by Ca-based sorbents 348 

This section describes the results of the uptake experiments for the Ca-containing sorbents. 349 

The Mg-containing sorbents did not sufficiently carbonate under the experimental conditions to 350 

justify characterizing their kinetic and yield parameters. Some combination of catalysis (as in the 351 

case of soda lime) or alteration of physical parameters (e.g., increasing the specific surface area) 352 

would be required to increase the kinetics and capacity such that MgO or Mg(OH)2 based sorbents 353 

may be considered effective for CO2 removal under conditions relevant to indoor environments. 354 

Experimental conditions, rate constants and carbonation yields for soda lime and pure 355 

Ca(OH)2 are reported in Table 4. Rate constants and yields are generally higher for soda lime than for 356 

Ca(OH)2, which is as expected given the presence of two catalysts plus water in soda lime to facilitate 357 

the carbonation reaction. Under dry conditions (i.e., for solid sorbents with inlet airflow at 75% RH), 358 

low yields were determined for Ca(OH)2. As will be further explored in §3.3, these limitations 359 

constrain the effectiveness of dry Ca(OH)2 as a CO2 sorbent under representative indoor conditions. 360 

However, when the experimental flow rate was increased from 1.8 to 2.8 L/min, the reaction rate of 361 

CO2 with Ca(OH)2 increased to nearly that of soda lime, albeit with substantially lower yield. This 362 
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increase in kinetics illustrates potential for subsequent optimization of air cleaners utilizing Ca(OH)2 363 

media in indoor air treatment applications.   364 

We explored the role of water availability by conducting experiments in both slurry and 365 

packed dry-bed configurations. Under slurry conditions, the carbonation yield for Ca(OH)2 is 366 

substantially higher than for dry-bed conditions, approaching that of soda lime. A slurry 367 

configuration is likely infeasible for indoor air cleaning applications owing to high pressure drops 368 

across a water column and the high-humidity effluent.  However, future research could be 369 

worthwhile to pursue, investigating in more detail the role of water or water vapor influencing the 370 

uptake of CO2 by Ca-containing sorbents with the goal of increasing CO2 removal rates on low-cost 371 

sorbents.  372 

3.3 Modeling indoor CO2 removal 373 

Modeled indoor CO2 concentrations for the three hypothetical scenarios (SIP, bedroom, and 374 

classroom settings) are shown in Figure 5. In each case, a duration of 8 h is simulated, to 375 

approximate a single-event occupancy in each of the three types of spaces. In this section, results for 376 

CO2 removal for 8-h model durations are described for each scenario, focusing on conditions that 377 

result in greater observed removal of CO2 from the hypothetical indoor environments. A sensitivity 378 

analysis is then presented for the most efficacious scenario. Finally, implications of model results 379 

regarding feasibility of Ca(OH)2 as a reagent for indoor CO2 removal are discussed. 380 

The application of active CO2 control to the shelter-in-place (SIP) scenario shown in Figure 5 381 

illustrates the most efficacious outcome among the scenarios considered. This favorable result is a 382 

consequence of the small volume and relatively low air exchange rate of the modeled SIP facility. For 383 

the SIP scenario with a soda lime containing air cleaner, the CO2 level is maintained below 5000 ppm 384 

until 7-8.5 h after initial occupancy. After 10 h of operation, the soda lime packed bed is effectively 385 

spent (see Figures S4-S6 of the Supporting Information), and the SIP CO2 concentration begins to 386 

increase, exceeding 10,000 ppm shortly after 10 h of occupancy (see Figure S4). These times contrast 387 

with the no air cleaning case, where the 5000 ppm CO2 level is reached after only 1.1 h of sheltering 388 
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and 10,000 ppm is reached after only 1.9 h. Without air cleaning, concentrations of CO2 in the SIP 389 

environment would reach values in excess of 25,000 ppm after 8 h of occupancy. These results imply 390 

that occupancy under the “no scrubber” condition shown in Figure 5 for more than a few hours may 391 

result in CO2 exposures that can produce acute adverse health effects [17].  392 

Bedrooms represent an important microenvironment contributing to daily exposures of CO2, 393 

as shown in a recent study of personal exposures to CO2 in Singapore [52]. As can be observed in 394 

Figure 5, in the absence of air cleaning, levels of CO2 in the bedroom scenario exceed 1000 ppm after 395 

just 1 h of exposure. An air cleaner containing a soda lime packed bed, operating either at low or 396 

high flow rate, can maintain sub-1000 ppm CO2 concentrations in the bedroom for the duration of 397 

the 8-h sleeping period. As with the SIP scenario, an air cleaner containing a pure Ca(OH)2 dry 398 

sorbent appears to have more modest impacts on indoor CO2 concentrations. However, worth 399 

noting is that the average CO2 concentration during the 8-h sleeping period for the high flow rate 400 

Ca(OH)2 treatment is approximately 950 ppm.  401 

In the case of classrooms, due to the larger room volume and higher air exchange rate than 402 

the bedroom and SIP scenarios, the presence of the air-treatment unit has a relatively small impact 403 

on CO2 concentrations. Levels of CO2 in the classroom after 8 h of operation in absence of air 404 

cleaning would be approximately 1400 ppm, compared to a range 900-1050 ppm with a soda lime 405 

air cleaner. Since a classroom would not typically be occupied continuously for 8-h periods, the CO2 406 

concentrations presented in Figure 5 for the classroom case may be considered as an upper limit. 407 

Given the modest reductions in classroom CO2 levels for a substantial mass of media and volume of 408 

air cleaner (see Table 1), the results indicate that the classroom scenario described here does not 409 

appear to present a good opportunity for active CO2 removal given the present state of sorbent 410 

development. 411 

Model runs for longer durations (16 h, 40 h, and 40 h, respectively, in the SIP, bedroom, and 412 

classroom) assuming continuous occupancy are shown in Figure S3 (Supporting Information) with 413 

pertinent results of the sensitivity analysis summarized in Table 5. Removal of CO2 under the 414 
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conditions of the SIP facility occurs over a range of achievable pressure drops (150-435 Pa) when 415 

compared with commercially available air cleaners. Because of the small volume and low air 416 

exchange rate, impacts of air cleaning on CO2 concentrations are substantial: the time to reach a 417 

10,000 ppm threshold is extended by 4-12 hours, and cumulative 8-h exposures are reduced by 60-418 

90%. However, the relatively small mass of media combined with the high CO2 concentrations results 419 

in substantial media usage; in all cases the scrubber media is exhausted after 13 h of continuous 420 

operation.  421 

In the bedroom scenario, the scrubber appears effective over the range of media masses 422 

considered, with pressure drops ranging from 120-290 Pa. Reductions in cumulative exposures are 423 

again substantial, in the range 50-66%, and at higher sorbent masses appear to exhibit cumulative 424 

run-times that are 40 h or greater. Note that these estimates are conservative, as an air-cleaner 425 

deployed to a bedroom would not operate continuously for 40 h, and would likely be utilized in 426 

sequential 8-h periods that begin with CO2 concentration nearer to ambient levels.  427 

Model results for a Ca(OH)2 containing air cleaner across all three scenarios illustrate more 428 

modest removal of CO2 from the indoor space than for soda lime. While the cost of Ca(OH)2 itself is 429 

relatively low and the efficacy of the air cleaner could be increased by recirculating air at higher flow 430 

rates through the Ca(OH)2 bed, effectively increasing the removal rate of CO2 could become 431 

prohibitive with respect to energy use owing to the nonlinear relationship between flow rate and 432 

pressure drop.  Also worth noting is that the estimates of k and y for Ca(OH)2 are likely best-case 433 

values with respect to room-scale air cleaning. The Ca(OH)2 used in laboratory parameterizations 434 

was purchased from a commercial supplier and was of a finer grain than the granular media that 435 

would typically be used in an air cleaner; transport limitations resulting from the geometry of a 436 

larger Ca(OH)2 granule may reduce the effective yield, rate constant or both, possibly a result of the 437 

formation of a diffusion limiting carbonate shell [53]. Achieving the uptake reported from laboratory 438 

tests in the applied scenarios by use of a fine grain Ca(OH)2 may, in practice, create prohibitively 439 

large pressure drops across the air cleaner. Testing granular Ca(OH)2 with varying physical 440 
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properties, including size of particles as deployed in the packed bed, would more fully inform the 441 

potential use of Ca(OH)2 as a low cost sorbent for active indoor CO2 control.  442 

4. Conclusions 443 

This study investigated the ability of Mg- and Ca-based sorbents to take up gaseous carbon 444 

dioxide through the formation of solid carbonates. The work establish links between a range of 445 

controlling parameters and the progress of carbonation through a sorbent matrix. Four alkaline 446 

earth metal oxides or hydroxides were characterized for their potential as CO2 sorbents in an active 447 

indoor air cleaning application.  A comparison between Mg- and Ca-based sorbents was provided in 448 

terms of carbonation degree, microstructure and parameterizations of carbonation kinetics and 449 

yields from laboratory experiments. These results were supported by XRD, TGA and SEM analyses, 450 

which provided information on the hydration and carbonation phases, the progress and degree of 451 

carbonation and the morphology of the sorbents. 452 

Results indicate that extensive carbonation of sorbents occurred at conditions typical of 453 

indoor spaces (25 °C and CO2 levels of approximately 2200 ppm), although Mg-containing sorbents 454 

carbonated slowly such that parameterization of kinetics and capacity were not pursued. Modeling 455 

of hypothetical scenarios in which packed beds of sorbents were part of an active indoor air cleaner 456 

show potential for the substantial removal of CO2 from SIP facilities with the use of soda lime. 457 

Reductions in integrated CO2 exposures of over 80% are predicted and indoor CO2 levels are 458 

maintained below the OSHA PEL for an assumed 8-h period of occupancy. These reductions were 459 

accomplished with reasonable masses of soda lime (1.7 kg) and at a pressure drop (approximately 460 

300 Pa) achievable by fans similar to those present in a typical HEPA filter-containing portable air 461 

cleaner. Modeling for low-ventilation bedrooms showed that meaningful reductions are also 462 

possible in this setting, with reductions in CO2 levels after 8 hours of occupancy from 2500 ppm (with 463 

no air cleaner) to 550-750 ppm for a continuously operating soda-lime containing air cleaner. 464 

However, regular occupancy in bedrooms would necessitate the weekly replacement of the sorbent 465 

media as the model shows nearly full exhaustion of the media after 40 hours of operation.  The 466 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 

 

relatively large mass of sorbent needed in bedrooms could make the use of soda lime cost-467 

prohibitive, a disadvantage that could potentially be removed by enhancing the kinetics and capacity 468 

of the lower cost sorbents (Ca(OH)2, MgO and Mg(OH)2).  469 

The empirical kinetic and yield findings were supported by detailed microstructural and 470 

thermal analyses, which enabled a thorough comparison of the different media studied. Mg-based 471 

sorbents experienced low carbonation rates in the conditions utilized in this study. The carbonation 472 

of Mg-based sorbents could be further enhanced via the use of a higher reactivity MgO with a larger 473 

specific surface area to induce hydration and the subsequent carbonation process and optimization 474 

of the carbonation conditions to increase the rate and amount of CO2 diffusion within the samples. 475 

Efforts to develop sorbents tailored for CO2 removal in conditions typical of indoor spaces could 476 

enable practical utilization of new methods of removing CO2 from indoor spaces, which appear 477 

especially promising in special circumstances where increasing air exchange is infeasible owing to 478 

adverse outdoor conditions, such as shelter-in-place facilities.  479 
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Table 1. Summary of model inputs to three scenarios considered for active CO2 removal a 

 

Building and air cleaner parameters Shelter-in-place Bedroom Classroom 

Room volume, V (m3) 5 50 150 

Occupancy (# of persons) 2 2 40 

CO2 emission rate, E (mol CO2/h)a 1.4 1.4 19 

Outdoor air ventilation, Q (m3/h) (Air 

exchange rate, (h-1)) 
1 (0.2) 15 (0.3) 450 (3) 

Air cleaner flow rate, low/high Qf (m
3/h)  13/21 40/61 198/306 

Packed bed diameter (m) 0.15 0.25 0.45 

Packed bed length (m) 0.11 0.12 0.09 

Media mass (kg)b 1.7 5 25 

a Total emission rate of CO2. For classrooms, the average age of occupant was taken to be 10 years, 

weight of 35 kg, height of 1.4 m, Dubois surface area of 1.1 m2, activity level of 1.2 met, and 

respiratory quotient of 0.83. For bedroom and shelter-in-place, age was taken to be 35 years, 

weight of 60 kg, height of 1.65 m, Dubois surface area of 1.7, activity level of 1.2 met, and 

respiratory quotient of 0.83. 

b Media packing density for both sorbents in the scrubber was taken to be 900 kg/m3, as per soda 

lime manufacturer specifications. 
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Table 2. Summary of physical and chemical properties of tested sorbents 

 

 

Chemical composition (% by mass) 

 

Physical characterization  

   

Specific 

surface 

area 

Total 

pore 

volume 

Avg. 

pore 

diameter 

Mass 

median 

particle 

size (d50)  

Sorbent   
 

[m2/g] [cm3/g]  [nm] (µm) d 

MgO >91.5% MgO, 4% LOI b, 2% SiO2, 1.6% CaO, 1% R2O3 
c 

 
27 7.2 × 10-2 0.56 16 

Mg(OH)2 >99% MgOH2 
 

5.6 8.7 × 10-3 0.24 5.4  

Ca(OH)2 >99% Ca(OH)2 
 

15 3.9 × 10-3 0.18 19  

Soda limea 85% Ca(OH)2, 10% H2O, 3% KOH, 2% NaOH 
 

7.1 1.6 × 10-2 0.15 1000 e 

a Chemical composition determined as described by Gall et al. [54] 
b LOI is loss on ignition, a determination of the amount of volatile substances within the sorbent 

composition. 
c R2O3 refers to the group of oxides generally consisting of Al2O3, Fe2O3, and B2O3, and are impurities in the 

sorbent composition.  
d Median particle size of unground media reported from particle size analyzer 
e Median size of soda lime granules as reported by manufacturer. 
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Table 3. Thermal decomposition of hydrate and carbonate phases within Mg-based sorbents 

 

Phases 
Decomposition reactions 

50 – 300 °C 300 – 500 °C 500 – 900 °C 

Brucite 

Mg(OH)2 
- 

Mg(OH)2 → MgO + 

H2O 

 

- 

Hydromagnesite 

4MgCO3·Mg(OH)2·4H2O 

 

4MgCO3·Mg(OH)2·4H2O → 

4MgCO3·Mg(OH)2 + 4H2O 

 

4MgCO3·Mg(OH)2 

→ 4MgCO3 + MgO 

+ H2O 

MgCO3 → MgO + CO2 

Dypingite 

4MgCO3·Mg(OH)2·5H2O 

 

4MgCO3·Mg(OH)2·5H2O → 

4MgCO3·Mg(OH)2 + 5H2O 

 

4MgCO3·Mg(OH)2 

→ 4MgCO3 + MgO 

+ H2O 

MgCO3 → MgO + CO2 
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Table 4. Summary of experimental conditions, reaction rate constants, k, and yields, y, for CO2 

uptake experiments to soda lime and Ca(OH)2. 

 

 Experimental 

condition 

Temperature Q 
Contact 

time 

Inlet 

[CO2] 

Reaction rate 

constant, k 
Yield, y 

Sorbent 
[°C] [L/min] [s] [ppm] 

[m3 mol  

CO2
-1 h-1] 

[mol CO2/mol 

sorbent] 

Soda 

lime 

Dry packed 

bed 

26.1 1.8 0.28 1870 2.2 0.49 

25.2 2.8 0.18 1890 3.6 0.51 

Slurry 
25.2 1.8 0.28 2100 1.9 0.74 

25.2 2.7 0.18 2110 1.6 0.79 

Ca(OH)2 

Dry packed 

bed 

25.2 1.8 0.28 2200 1.0 0.05 

24.8 2.8 0.18 2310 3.3 0.18 

Slurry 
25.0 1.8 0.28 2200 1.6 0.65 

25.0 2.7 0.18 2200 2.4 0.65 
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Table 5. Summary of sensitivity analysis of model output of indoor CO2 concentrations in three 

scenarios of active CO2 removal from indoor spaces.  

 

Shelter-in-place, Soda lime, Scrubber diameter = 0.12 m 

Mass of 
media (kg) 

Contact 
time (s)# 

Pressure 
drop (Pa)$ 

Time to 
10,000 ppm 

(h) 

∫ exposure,  
0-8 h (ppm-h) 

- - 0 1.9 139000 

0.9 0.09 157 6.5 46150 

1.3 0.14 226 8.4 27080 

1.7* 0.18 296 10.1 26200 

2.1 0.22 365 12.1 17780 

2.5 0.26 435 13.8 17080 

Bedroom, Soda lime, Scrubber diameter = 0.25 m 

Mass of 

media (kg) 

Contact 

time (s) 

Pressure 

drop (Pa) 

Time to 1,000 

ppm (h) 

∫ exposure,  

0-8 h (ppm-h) 

- - 0 0.9 14730 

3 0.11 122 13 5370 

4 0.14 163 18 5000 

5 0.18 204 22 4820 

6 0.22 245 27 4730 

7 0.25 285 29 4730 

Classroom, Soda lime, Scrubber diameter = 0.45 m 

Mass of 

media (kg) 

Contact 

time (s) 

Pressure 

drop (Pa) 

Time to 1,000 

ppm (h) 

∫ exposure,   

0-8 h (ppm-h) 

- - - 0.4 11100 

15 0.11 170 4.0 7950 

20 0.14 337 6.6 7630 

25 0.18 580 8.9 7460 

30 0.22 910 11 7360 

35 0.25 1340 12 7340 

#  Values for k and y at indicated contact time were determined by linearly 

interpolating/extrapolating from experimentally determined values.  
$ Pressure drop was calculated using the Ergun equation [55] with an equivalent spherical particle 

diameter of 1 mm and a packed bed porosity of 0.55.  

* Conditions in bold are the ‘base-case’ conditions. 
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Figures 

 

 

Figure 1. Schematic of laboratory apparatus used for carbonation experiments with controlled 

temperature, humidity and CO2 levels.  MFC = mass flow controller, temp. = temperature, RH = 

relative humidity. 
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(a) 

 

(b) 

 

Figure 2. X-ray diffraction patterns of (a) Ca- and (b) Mg-based sorbents after exposure to CO2. 
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(a) 

 

(b) 

 

Figure 3. Thermogravimetric analysis graphs of (a) Ca- and (b) Mg-based sorbents (the primary y-axis 

(on the left) refers to the lower traces of derivative weight; the secondary y-axis (on the right) refers 

to the upper traces of percentage weight). 
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(a)         (b) 

      

(c)         (d) 

      

(e)         (f) 

      

(g)         (h) 

Figure 4. Scanning electron microscopy images of (a)-(b) SL-W0.1-2.7-2200, (c)-(d) Ca(OH)2-W0.1-2.7-

2200, (e)-(f) MgO-W0.1-2.7-2200 and (g)-(h) Mg(OH)2-W0.1-2.7-2200.  The white bar at the bottom 

of each photograph indicates the scale: 1 µm (a-d, f, h) or 10 µm (e, g).  These images were acquired 

after exposure of the sorbents to CO2. 
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Figure 5. Modeled indoor CO2 concentrations for three hypothetical indoor environments: a shelter-

in-place facility, a bedroom and a classroom with and without the presence of an air cleaner that 

includes a CO2 scrubbing bed. Relevant built environment and air cleaner parameters for each of the 

three indoor environments are provided in Table 1. ‘LowQf’ refers to the low air cleaner flow rate 

condition, ‘highQf’ refers to the high air cleaner flow rate condition. 
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• CO2 can accumulate in indoor spaces with low air exchange, e.g. in shelter-in-place 

 

• Various Ca- or Mg- based sorbents are investigated as potential air cleaner media 

 

• Ca containing sorbents carbonated under conditions relevant to indoor spaces 

 

• Active removal may substantially reduce CO2 exposure in shelter-in-place facilities 
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