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Abstract.

Metastability is a common phenomenon. Many evolutionary processes, both natural
and artificial, alternate between periods of stasis and brief periods of rapid change in
their behavior. In this paper an analytical model for the dynamics of a mutation-only
genetic algorithm (GA) is introduced that identifies a new and general mechanism causing
metastability in evolutionary dynamics. The GA’s population dynamics is described in
terms of flows in the space of fitness distributions. The trajectories through fitness distri-
bution space are derived in closed form in the limit of infinite populations. We then show
how finite populations induce metastability, even in regions where fitness does not exhibit
a local optimum. In particular, the model predicts the occurrence of “fitness epochs”—
periods of stasis in population fitness distributions—at finite population size and identifies
the locations of these fitness epochs with the flow’s hyperbolic fixed points. This enables
exact predictions of the metastable fitness distributions during the fitness epochs, as well
as giving insight into the nature of the periods of stasis and the innovations between them.
All these results are obtained as closed-form expressions in terms of the GA’s parameters.

An analysis of the Jacobian matrices in the neighborhood of an epoch’s metastable
fitness distribution allows for the calculation of its stable and unstable manifold dimen-
sions and so reveals the state space’s topological structure. More general quantitative
features of the dynamics—fitness fluctuation amplitudes, epoch stability, and speed of
the innovations—are also determined from the Jacobian eigenvalues. The analysis shows
how quantitative predictions for a range of dynamical behaviors, that are specific to the
finite population dynamics, can be derived from the solution of the infinite population
dynamics. The theoretical predictions are shown to agree very well with statistics from
GA simulations. We also discuss the connections of our results with those from population
genetics and molecular evolution theory.
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1. Epochal Evolution

Metastability is a commonly observed phenomenon in many population-based dynamical sys-
tems. In such systems—including evolutionary search algorithms, models of biological evo-
lution, and ecological and sociological systems—the state of a population is often described
as the distribution of certain features of interest over the population. A commonly observed
qualitative behavior is that the distribution of these features alternates between periods of sta-
sis and sudden change. For extended periods of time the system seems to stabilize on some
feature distribution, which is then disrupted by a brief burst of change. We call this type of
behavior “epochal evolution”, where the term “epoch” denotes an extended period of appar-
ent stability. We use the term “innovation” to refer to the sudden change between epochs.
Such behavior, often referred to as “punctuated equilibria”, has been reported in many ap-
plications of evolutionary search as well as in models of biological and molecular evolution
(e.g.,[3, 15, 23, 25, 31, 33, 41]). Epochal behavior has also been observed in natural phenom-
ena such as the outbreak of epidemics [4], the progression of diseases such as cancer [1] and
AIDS [5] in individuals, rapid large-scale ecological changes, and the sudden rise and fall of
cultures. In natural systems and in many models, epochal behavior is undoubtedly the result
of a complicated and poorly understood web of mechanisms.

In this paper we identify the mechanism that underlies the occurrence of epochal behav-
ior in a simplified mutation-only genetic algorithm. In the mechanism’s most general form,
metastability is induced in an area of state space where the local “flow” of the dynamics is
small compared to a scale set by the population’s finite size. The dynamics becomes too weak
to drive changes in the finite population. More specifically, we will see that the metastability
can be associated with an “entropic barrier” that the finite population must pass in moving
through the “slow” part of state space. Metastability due to such entropic barriers is contrasted
here with the more traditional explanation of metastability as being induced by “fitness barri-
ers”. In the latter the population stabilizes around a local fitness optimum in sequence space
and must pass through a “valley” of lower fitness to find a higher-fitness optimum. We believe
that the generality and simplicity of the mechanism for metastability introduced here makes it
likely to play a role in the occurrence of epochal dynamics in the more general and complicated
cases alluded to above.

1.1 Search and Evolution

Genetic algorithms (GAs) are a class of stochastic search techniques, loosely based on ideas from
biological evolution, that have been used successfully for a great variety of different problems
(e.g., [2, 10, 16, 20]). However, the mechanisms that control the dynamics of a GA on a given
problem are not well understood. GAs are nonlinear population-based dynamical systems.
The complicated dynamics exhibited by such systems has been appreciated in the field of
mathematical population genetics for decades. On the one hand, these complications make an
empirical approach to the question of when and how to use evolutionary search problematic.
On the other hand, the lack of a unified theory capable of quantitative predictions in specific
situations has rendered the literature largely anecdotal and of limited generality. The work
presented in this paper tries to unify and extend theoretical work that has been done in the
areas of GA theory, the theory of molecular evolution, and mathematical population genetics.
The goal is to obtain a more general and unified understanding of the mechanisms that control
the dynamics of GAs and other population-based dynamical systems.
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Vose and his colleagues have previously studied GA dynamics by describing the state of a
genetic algorithm at a certain time as a vector in a high-dimensional Euclidean space. Each
dimension of this space either represents a certain string [45] or the state of the population as
a whole [35]. The dynamics is then described by a nonlinear matrix operator acting on this
vector to produce the state at the next time step. Although this “microscopic” approach is
formally very clear and precise, in practice the huge sizes of these matrices make it impossible to
obtain specific quantitative results. In this paper, a genetic matrix operator is constructed that
is similar in spirit to the genetic operators discussed in [35] and [45] but that acts on vectors
representing fitness distributions only, averaging out all other structure of the microscopic state
of the population. The operator, therefore, has a much lower dimensionality. This will make
quantitative analyses of this operator possible, allowing specific quantitative predictions to be
made about the GA’s observed behavior.

A more macroscopic theoretical approach was developed by Prügel-Bennett, Shapiro, and
Rattray. Their approach uses ideas from statistical mechanics to analyze the dynamics of GAs
[38, 39, 40]. Their formalism also focuses on the evolution of fitness distributions, but generally
only the average evolution of the first few cumulants of the fitness distribution is calculated.
This averaging of the dynamics over a large number of runs makes it impossible to describe
the epochal structure of the dynamics in which we are interested. The statistical mechanics
approach does, however, provide some insights into the roles that the different genetic operators
play in the dynamics and shares with our approach the idea of averaging out most microscopic
degrees of freedom to obtain a macroscopic description of the dynamics.

Another theoretical framework of relevance is Eigen’s theory of molecular evolution [11,
14]. In the simplest form of this theory, one considers a large population of self-replicating
molecules in a reaction vessel. Since the total concentration of molecules is kept constant, there
is an effective selection for molecules that replicate fast and efficiently. It is assumed that the
molecules make errors during replication, thus introducing mutations. The differential equations
that describe the change in concentrations of the different molecular types are analogous to
the genetic operator equations that we will develop in this paper. Although, in contrast to
our mesoscopic approach, they are defined only on the microscopic states of concentrations of
individual genotypes. We will explain how some theoretical concepts from molecular evolution
theory, such as the quasispecies and the error threshold, generalize to analogous concepts in
our description of the GA dynamics.

Finally, the theory of mathematical population genetics has a long history of analyzing the
behavior of evolving populations. Many important results were obtained in the 1930s by the
trio of Fisher, Wright, and Haldane. In the 1960s Kimura developed a new way of analyzing
evolving populations using diffusion equations [27] that were originally developed in the context
of statistical physics [19, 30, 37]. We will make use of this type of analysis several times and
will show how methods developed in the context of mathematical population genetics bear on
the dynamics of GAs as well.

1.2 Organization of the Analysis

Our analysis of epochal evolution in a mutation-only genetic algorithm first appeared in [44].
The present work goes into considerably more depth. Section 2 introduces the simplified GA
used. In section 3 we present an overview of the wide range of different dynamical behaviors
that our simple GA exhibits. We discuss the qualitative features of these different dynamical
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behaviors and pose ourselves a set of questions that we would like to answer using our theoretical
model.

The bulk of the remainder is devoted to the development and analysis of this theoreti-
cal model. We have termed our type of analysis “statistical dynamics”, since it combines a
dynamical systems approach, on the one hand, with a statistical physics and stochastic pro-
cess approach, on the other. The infinite population behavior is treated as the dynamics of a
deterministic nonlinear dynamical system. In constructing this dynamical system we have to
choose suitable “mesoscopic” state variables (in this case, fitness distributions) that capture the
complicated microscopic state of the system in terms of a much lower dimension state space.
Moreover, we require that the description of the system and its behavior in terms of these
variables should be closed in the limit of infinite populations. That is, for infinite populations
we assume that the dynamics of fitness distributions is fully specified by the fitness distribu-
tions themselves and does not depend on the exact underlying (“microscopic”) distribution of
genotypes. This condensation of the microscopic states using a few “order parameters”, that
describe the dynamics in the limit of infinite system size, is a well-known procedure from statis-
tical physics. With this setting established, we augment the solution of the nonlinear dynamical
system with a statistical treatment of the finite population behavior. In doing so, we make use
of simple stochastic differential equations, such as the Fokker-Planck equation. These three
features—describing the system in terms of a small set of statistical order parameters, deriving
and solving the deterministic nonlinear dynamical systems equations in the infinite population
limit, and then augmenting this solution with simple stochastic differential equations to capture
the finite-population dynamics—is the essence of our statistical dynamics approach.

In section 4 we introduce the state space of fitness distributions in terms of which the
GA’s dynamics is defined, as well as motivate the use of this particular state space. Section 5
develops an exact solution of the dynamics in this state space in the limit of infinite populations.
Specifically, we solve in closed form for the trajectory through fitness distribution space that
is followed by an infinite population and analytically characterize the asymptotic behavior of
the dynamics. Section 6 is concerned with the finite-population dynamics and presents the
main results. This section builds on the results from section 5 to quantitatively analyze a wide
range of dynamical features that derive from the finite-population dynamics. In particular,
we identify the mechanism that leads to the fitness epochs, solve for their locations in fitness
distribution space, and show that the fitness levels of the epochs are left unaltered under
the introduction of genetic crossover. We then calculate the stable and unstable manifold
dimensions of the metastable epochs, the fitness fluctuation amplitudes during the epochs,
the speed of innovations between epochs, and the stability of the epochs. All these results
are obtained analytically as functions of the model parameters and are shown to agree with
statistics estimated from our GA simulations. Major players in the derivation of the results
of section 6 are the eigenvalues and eigenvectors of the Jacobian of the generation operator
that describes the dynamics in the limit of infinite populations. Section 7 discusses the average
durations of the epochs and describes how the model breaks down in predicting these average
durations. Section 8 discusses the results of our paper and looks ahead to future work.
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2. A Simple Genetic Algorithm on the Royal Road Fitness Function

2.1 The Fitness Function

The Royal Road fitness functions assign a fitness f(s) to a string s as the sum of fitness
contributions fi from N different nonoverlapping bit sets (“blocks”) si of s. We will consider
bit strings s of length L = NK, each of which can be thought to consist of N blocks of length
K.

K
︷ ︸︸ ︷

101 · · · 011 101100010 · · · 10100111001
︸ ︷︷ ︸

NK

For each block of length K there is a particular desired bit configuration (schema). In the
above illustration we took the blocks to be sets of K contiguous bits, but it’s easy to see that
the dynamics of a mutation-only GA is invariant under random permutations of the bits in the
string representation. Formally, we have

f(s) =
N∑

i=1

fiδsi,xi
, (2.1)

where the xi are desired configurations for each block si of s and δsi,xi
= 1 if and only if

xi = si, otherwise δsi,xi
= 0. A block si that exhibits the desired configuration xi will be

called an “aligned” block and blocks that do not exhibit the desired configuration will be called
“unaligned”. Without loss of generality, this desired configuration can be taken to be the
configuration of K 1s: xi = 1K . The fi are the fitness contributions from each aligned block
i. For simplicity we shall take all fi to be equal: fi = 1. The fitness of s can then be simply
defined as the number of aligned blocks in s. Thus 0 ≤ f(s) ≤ N . The number of blocks N
and the number of bits per block K are parameters of the fitness function.

Royal Road fitness functions were initially designed to address questions about the pro-
cessing and recombination of schemata in genetic algorithms. They were thought to lay out a
“royal road” for genetic algorithm search [34] and so could test a GA’s ability to preferentially
propagate useful genetic “building blocks”. The Royal Road functions defined in [34] are more
general than the ones we are considering in this paper. For instance, the fitness f(s) of a string
s does not in general need to be a simple sum of the fitnesses fi of the aligned blocks. Here we
will not be concerned with the issues of schemata processing and the building block hypothesis.
We use the simple Royal Road fitness functions defined above, because they are simple enough
to be analyzed and because the GA’s behavior on these fitness functions exhibits a range of
qualitatively distinct epochal dynamics.

2.2 The Genetic Algorithm

In our study, we use the following mutation-only genetic algorithm:

1. Generate a population of M strings of length L = NK, chosen with uniform probability
from the space of all L-bit strings.

2. Evaluate the fitness f(s) of each string s in the population.
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3. Create a new population of M strings by choosing strings from the current population
with replacement and with probability proportional to fitness. This is sometimes called
fitness-proportionate selection.

4. Mutate (i.e., change) each site value in all strings with a fixed probability q.

5. Go to step 2.

As noted before, this algorithm does not include crossover, a genetic operator purported
to aid in the evolutionary propagation of important genetic building blocks. Crossover is left
out of this first work for two reasons. First, it considerably simplifies the analysis of the GA.
Second, the main qualitative features of the dynamics—the occurrence of fitness epochs and
innovations between them—are not changed by leaving out crossover. We will address in more
detail the effects of crossover on this GA in section 6.5 and show that the fitness levels of the
epochs are not changed by including crossover.

This defines our Royal Road GA. It has four control parameters: the number N of blocks,
the number K of bits in a block, the mutation rate q, and the population size M .

3. Observed Behavior of the Royal Road GA

In general, the behavior of an evolving population is governed by a complicated interplay of
a few major genetic and populational forces—selection, mutation, crossover (if present), and
genetic drift.

Selection tends to converge the population onto the current best strings that are found in
the population. In this sense selection is installing information in the population: strings in
the population become much more similar to one another than a collection of random strings
and the entropy of the distribution of strings is therefore decreased. To some extent the bit
values that are shared by all members of the population are a reflection of their functionality.
For example, under the Royal Road fitness function, once a string with a desired block is
discovered, that string is preferentially reproduced and the population converges quickly to
strings containing that block. Such convergence reflects the functionality conferred on strings
by this block.

Mutation and crossover, for that matter, are largely forces that drive genetic mixing. In-
formation that has been installed in a string is destroyed by mutation randomly flipping bits.
At the same time mutation is a force that can provide something new: it can create bit strings
that were never before present in the population and that might have improved fitness.

A third important force is genetic drift, which is due to the sampling fluctuations induced
by the finite size of the population. Genetic drift, which is recognized as a major player in the
theory of population genetics, seems to be somewhat neglected in the theory of GAs. For small
populations, it turns out that information can be stored in the strings by accident. Suppose
that there is no mutation or selection. The initial population is chosen at random, so it is likely
to contain M different genotypes. At each generation a new population is created by randomly
sampling M strings from the old population. At each time step it is likely that certain genotypes
will be lost, since they are not sampled, and that other genotypes will multiply. After a number
of generations on the order of the population size M , it is likely that there will be only one
genotype left in the population, the particular genotype being purely accidental. This process
is known as “random genetic drift” and it is one way in which arbitrary information is stored in
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the string population. Genetic drift plays a major role in the dynamics of GAs with selection
and mutation: small populations tend to spontaneously converge, regardless of selection. Note
that populations also converge in the presence of crossover. Thus, the only genetic operator
capable of prohibiting complete convergence of the population is mutation.

We now present a set of examples of the empirical behavior of our Royal Road GA in order
to demonstrate how varied it can be for different parameter settings. This should make it clear
that, although we can qualitatively identify the main evolutionary forces, the actual interplay
of these forces can be complicated and subtle.

Caption for figure 1: Average fitness (solid lines) and best fitness (diamonds, often
appearing together as thick solid lines) in the population over time for nine runs
of the Royal Road GA with different parameter settings. Our canonical example
of epochal behavior can be found in run 1(d). The parameter settings for this run
1(d) are: N = 10 blocks of length K = 6, a mutation rate of q = 0.001, and a
population size of M = 500. All other runs were done with parameter settings
that can be obtained by consecutive single-parameter changes from the parameters
of run 1(d). Note that all runs were done with a fixed string length NK = 60.
Moving out from run 1(d) by following the large arrows from run to run, a single
parameter is changed. The changed parameter and its new setting (increased or
decreased according to the thin up or down arrow, resp.) are indicated next to the
large arrows. For example, following the large arrows up and down from run 1(d)
we arrive at runs 1(a) and 1(g), respectively. As indicated, only the population sizes
of run 1(a) and 1(g) differ from the parameters in run 1(d). For run 1(a) a large
population size of M = 5000 was used and for run 1(g), a small population size
of M = 50 was used. From the three runs 1(a), 1(d), and 1(g) three arrows point
to the three runs 1(b), 1(e), and 1(h) in the middle column. All vary in only one
parameter from the settings in the corresponding runs in the left-hand column. Run
1(b) differs from run 1(a) by a decrease of the block size to K = 3 and an increase
of the number of blocks to N = 20. Run 1(e) differs from run 1(d) by an increase of
the mutation rate to q = 0.0075. And, run 1(h) differs from run 1(g) by an increase
of the mutation rate to q = 0.005. The three runs in the middle column show how
a change in a single parameter with respect to the runs in the left-hand column can
make epochal dynamics disappear. The runs in the right-hand column show that
a further change in a single parameter can make epochal dynamics reappear. Run
1(c) differs from run 1(b) by a decrease in population size to M = 300. Run 1(f)
differs from run 1(e) by an increased population size of M = 7500. And finally, run
1(i) differs from run 1(h) by an increased block size of K = 15. These nine runs
demonstrate the variety of dynamical behaviors exhibited by our simple Royal Road
GA.

Figures 1(a) through 1(i) show the results of nine runs of the Royal Road GA with different
parameter settings. In each, the average fitness in the population over time is shown (solid
lines) together with the best fitness in the population at each time step (diamonds). In all runs
the total length of the string L = NK was kept constant at L = 60 to reduce the number of
free parameters. Figure 1(d) is the central parameter setting of our analysis. Following the
large arrows, each successive run differs from the predecessor by a single parameter change.

Run 1(d), selected as the canonical example of epochal evolution, was performed with

6



0

1

2

3

4

5

6

7

8

9

10

0 2500 5000 7500 10000 12500 15000

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700

0

2

4

6

8

10

12

14

16

18

20

0 500 1000 1500 2000 2500

0

1

2

3

4

0 25 50 75 100 125 150
(x 1000)

〈f〉

〈f〉

〈f〉

t t t

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

N=10, K=6

M=500

q=0.001

M↑5000

M↓50

K

↓
3

0.0075

↑
q

0.005

↑
q

M

↓
300

7500

↑
M

15

↑
K

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000

0

1

2

3

4

5

6

7

8

9

10

0 5000 10000 15000 20000 25000

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500

0

5

10

15

20

0 150 300 450 600 750

F
igu

re
1:

F
or

cap
tion

see
tex

t.

7



N = 10 blocks of length K = 6 bits, a mutation rate of q = 0.001, and a population size of
M = 500. This run clearly shows epochal dynamics in the evolutionary search. This behavior
is encountered over a wide range of parameter settings around those of run 1(d). Note that
experimentally, the length of the epochs varies greatly from run to run, but the fitness levels at
which they occur are the same in each run. The epoch levels therefore constitute a reproducible

macroscopic feature of the dynamics. Runs 1(a) and 1(g) in the left-hand column show the
effect on the search behavior of changing the population size M . Run 1(a) was performed with
a relatively large population size of M = 5000. The fitness epochs are also clear in this plot.
The behavior is less noisy, the search for higher fitness quicker on average, and the innovations
between the fitness epochs are less rapid. For the small population size of M = 50 in figure 1(g),
however, the behavior becomes much noisier and the average fitness in the population shows an
interesting intermittent behavior at high fitness levels. The average fitness jumps up and down
irregularly between the different fitness epochs. We would like to understand what causes the
epochal dynamics in Figures 1(a), 1(d), and 1(g). In particular, we would like to understand
how the different population sizes lead to these different classes of search behavior.

The runs shown in the middle column—Figures 1(b), 1(e), and 1(h)—illustrate how change
in a single parameter can cause fitness epochs to disappear. In run 1(b), for example, the
block length was lowered from K = 6 to K = 3, otherwise the parameter settings are those
of 1(a). Note that since we are keeping string length constant (L = 60) throughout the figure
mosaic, in run 1(b) there are N = 20 blocks. In this plot we see the average fitness increasing
strictly monotonically over time. Although well-defined fitness epochs cannot be distinguished
anymore, the rate of fitness increase does vary in different regions of the run. Note that the
fluctuations in this rate of fitness increase are not the same between runs. That is, although the
rate of fitness increase is decreasing over time on average, the precise locations of the inflection
points in the curve of average fitness against time are not the same between runs.

Run 1(e) has a higher mutation rate (q = 0.0075) than that of the canonical run 1(d). Here
too the fitness epochs have disappeared from the behavior, but in a markedly different way
from that in going from run 1(a) to run 1(b). Overall, fitness jumps up quickly at first after
which it moves up and down irregularly in a band of fitnesses between 4.5 and 7. Note also that
the best fitness in the population alternates between different values in a fitness band between
7 and 10.

Run 1(h) has a higher mutation rate (q = 0.005) than that in run 1(g) (q = 0.001). The
behavior of run 1(h) is similar to that in run 1(e) although the fitness fluctuations occur over
a wider range of amplitudes and seem to have larger variation in the associated time scales.
In contrast, in run 1(e) the fitness fluctuates up and down on a time scale that is roughly
constant. In run 1(h) fluctuations occur both on short time scales as well as on long time
scales. Moreover, a hierarchy of fluctuation amplitude bands can be distinguished. As in the
transition from 1(d) to 1(e), we would like to understand why the fitness epochs disappear in
going from 1(g) to 1(h) by increasing mutation and what mechanisms cause the different types
of fluctuation behavior in 1(e) and 1(h).

Finally, the runs in the rightmost column—Figures 1(c), 1(f), and 1(i)—illustrate how
change in another (different) single parameter can make epochal evolution dynamics reappear.
In run 1(c) M was lowered to 300, compared with run 1(b) in which M = 5000. Although the
behavior is quite noisy and fitness increases more gradually on average over a wide range of
time steps in the run, at least two fitness epochs can be distinguished in this run. One occurs
around an average fitness of 13.5 and one around an average fitness of 16. In general, different
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fitness epochs occur for different runs with these parameter settings, but if a certain epoch
occurs, it always occurs at the same fitness level.

In run 1(f) M was raised from 500 to 7500. Here the noise seen in run 1(e) has largely
disappeared. Although the fitness increases smoothly almost everywhere in the run, an epoch
can be seen around a fitness value of 6. Notice that in contrast to run 1(c), the epochs reappeared
here by increasing the population size instead of decreasing it. This illustrates the strong
interdependence of the parameter settings. That is, the effect of increasing or decreasing a
certain parameter is highly dependent on the values of all other parameters. Notice alsothe
large gap between the best fitness and average fitness in this run.

Lastly, in run 1(i) the block size was increased to K = 15. Here the fitness epochs that
disappeared in run 1(h) can be clearly seen again. The behavior is still very noisy within the
epochs, but average fitness increases sharply between them. From the run it is not clear if the
population will eventually find the highest possible fitness of 4. Note that the best fitness did
reach this highest level around generation 100,000, but did not successfully establish itself in
the population, almost immediately dropping back to the lower fitness epoch. Again, our task
is to explain why epochal behavior reappeared by changing each parameter in these runs.

The goal of this paper is to understand the dynamical features observed in these nine
runs. Why does average fitness follow a pattern of stepwise increase for a large range of
parameters? At what fitness levels are epochs going to occur and how many can occur for a
given parameter setting? What is the average length of the fitness epochs? What determines
the size of the fitness fluctuations within these epochs and what determines the speed of the
innovations between the fitness epochs? Why do epochs disappear from the dynamics if some
parameters are changed? What causes these different kinds of dynamical behaviors, such as
the intermittency of run 1(g), the bounded fluctuations seen in runs 1(e) and 1(h), and the
relatively smooth dynamics of run 1(b) and run 1(f)? In this paper we will present quantitative
answers to almost all of these questions.

Explaining the GA’s behaviors at different parameter settings is a first step towards un-
derstanding how one should optimally design an evolutionary search algorithm. Unfortunately,
making general statements about how to set parameters is problematic at best. Since a GA’s al-
gorithmic formulation is naturally specified by independent operations on the population—such
as selection, mutation, and crossover—it is tempting to base an explanation of GA dynamics
on an understanding of the behaviors under selection, under mutation, and under crossover
individually. As illustrated in our discussion of figure 1, changing a single parameter such as
population size or mutation rate can have very different quantitative and even qualitative ef-
fects on GA behavior. Moreover, the resulting behavior depends on the settings of all other GA
parameters. Thus, although one intuitively thinks of the GA as being composed of selection,
mutation, and crossover, its actual behavior is generally not decomposable into these operators’
separate effects. The direct consequence is that an integrative approach to the dynamics—one
that treats the component operators simultaneously and on a equal footing and that focuses
on the emergent effects of their interaction—is necessary to obtain a basic understanding of
GA behavior. The following analysis demonstrates how a subtle interplay between evolutionary
operators is responsible for a wide range of GA epochal search behaviors. Furthermore, our
statistical dynamics approach enables us to describe the behaviors in terms of the emergence
of “effective” dynamical forces, which generally involve selection and mutation as well as finite
population effects. In our view the identification and analysis of these forces is prerequisite to
developing, for example, prescriptions for optimizing evolutionary search parameters.
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4. The Royal Road GA’s State Space

Just as the state of a gas or a fluid in a box is fully described only when the locations and
velocities of all the molecules are given, so the state of a population in an evolutionary search
algorithm is fully specified only when all of its bit strings are listed. Any knowledge we have of
the algorithm’s behavior must be rooted in an understanding of the behavior of the algorithm
at the lowest level of distributions of actual bit strings. The same holds for the behavior of gases
and fluids in nature: they can be understood only in terms of the kinetics of their constituent
molecules. It is, however, practically impossible to describe the locations of all the molecules
and their velocities, just as it is impractical to describe the state of all individuals in the GA
population.

This impracticality is much more of a problem from the experimental point of view than from
the theoretical point of view. In fact, it is relatively easy to formally write down the equations
of motion on the level of whole populations of bit strings for a simple GA, just as it is easy to
formally write down the Newtonian equations of motion for all molecules in a gas. The problem
is that no experimentalist will produce lists of all strings in the time series of populations to
analyze, or even just describe, the GA’s behavior. Instead, the experimentalist produces much
more coarse-grained data from simulations—recording the statistics of most interest, such as
the average fitness and best fitness in the populations or the number of generations necessary
to find a string of a certain fitness.

Thus, the problem facing the theoretician is to develop a theory capable of making quanti-
tative predictions about the GA’s behavior on the level of observables that an experimentalist
measures. In statistical physics this problem is solved by finding suitable “macroscopic” vari-
ables, such as temperature, pressure, and volume, that fully and self-consistently describe the
thermodynamic state of the system. Specifically, in the limit of infinite system size—the thermo-
dynamic limit—the description of the system in terms of these macroscopic variables becomes
closed. That is, in this limit, one does not have to know the detailed microscopic state of the
system to obtain the dynamics of the macroscopic variables.1

The strategy of our GA analysis is precisely this. Rather than focus on distributions of
individuals in the population, we choose distributions of fitnesses in the population as our
macroscopic variables. We claim that in the limit of infinite population size—the analogue of the
thermodynamic limit—the evolutionary system can be deterministically and self-consistently
modeled in terms of these variables. As is generally true in statistical physics, this claim is
not based on rigorous mathematical proof. Rather we assume that for very large populations,
the dynamics of the population’s fitness distribution can be described solely in terms of the
fitness distribution. This assumption is supported by the results of our simulations with large
populations and by mathematical arguments that describe how the large population dynamics
converges to the behavior of infinite populations. Again, the situation is analogous to that in
statistical physics. Although it may not be widely appreciated, at present there is no general
mathematical proof that the behavior of observables such as pressure, temperature, and volume
of a gas can be described in terms of these macroscopic variables only. This fact derives from
experimental observation.

Mathematically, the dynamics of the macroscopic variables is obtained by making the max-
imum entropy assumption. This says that all microscopic states that are consistent with a
certain macroscopic state are equally likely. In our case, we assume that if a population has a

1This is strictly only true for systems in thermodynamic equilibrium.
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certain fitness distribution Pr(f), then the microscopic state of the population—the distribu-
tion of genotypes—is equally likely to be any of the microscopic population states consistent
with Pr(f). Starting from the “microscopic” specification of how the GA acts on string popula-
tions and using the maximum entropy assumption, a generation operator G can be constructed
that, in the limit of infinite populations, deterministically describes the action of the GA on
fitness distributions. In section 5.1 we will give theoretical arguments in support of the maxi-
mum entropy assumption, but ultimately its validity must be tested by comparing our theory’s
predictions against statistics gathered from the simulation experiments.

To implement this approach we describe the state of the population at a given generation
by its distribution ~P (t) of string fitnesses, rather than by the distribution of string probabilities
Pr(s) directly. This projects from the 2L-dimensional space of strings to an N -dimensional

space. ~P (t)’s components, Pf (t), 0 ≤ f ≤ N , represent the fraction of individuals in the
population with fitness f at time t. Thus, the state of the population is described by a N + 1-
dimensional vector ~P whose components sum up to 1; that is,

N∑

f=0

Pf = 1. (4.1)

Therefore, the state space has N independent components (dimensions). The average fitness
in the population is given by

〈f〉 =
N∑

f=0

fPf . (4.2)

We denote the set of all possible states ~P for a finite population of size M as ΛM . This
state space is given by

ΛM = {~P : Pf =
nf

M
, nf ∈ N,

N∑

f=0

nf = M}, (4.3)

where nf is the number of individuals with fitness f in the population. The number of points
in the state space ΛM for finite populations is

|ΛM | =

(
M + N

N

)

, (4.4)

which is on the order of MN states for N ¿ M . The above set ΛM forms a rectangular lattice
within the simplex in N + 1 dimensions with lattice spacing 1/M . In the limit of infinite
populations the lattice points become dense in the simplex and we can take the state space to
be the simplex itself:

Λ∞ = {~P ∈ R
N+1 :

N∑

f=0

Pf = 1, Pf ≥ 0}. (4.5)

Another important assumption in considering a state space of fitness distributions is that
the dynamics of the fitness distribution is not sensitive to the underlying microscopic state
of the population. Note that this is an extra restriction in addition to the maximum entropy
assumption. Even if it were true that for a certain fitness distribution ~P the GA state is equally
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likely to be in any microscopic population Pr(s) consistent with ~P , then there could still be an
inconsistency if the fitness distribution dynamics was sensitive to some more detailed feature of
Pr(s). In the statistical physics literature this problem is called: lack of “self-averaging”. Thus,
our approach assumes that the dynamics on the level of fitness distributions is “self-averaging”.
In other words, for large populations we assume that two microscopic population states with
the same fitness distribution tend to give rise to the same fitness distribution dynamics. As
before, this assumption is supported by statistics gathered from our simulation experiments.
We expect though that self-averaging is not generally valid for arbitrary GA dynamics. That it
works so well is, therefore, a specific feature of our mutation-only GA and the Royal Road fitness
function. For example, if crossover were employed by our GA, the dynamics of strings with
fitness n would be sensitive to where the n aligned blocks were located in the strings. Fitness
distributions then would be an overly coarse-grained set of macroscopic variables. We would
have to augment them to include other variables that appropriately accounted for statistical
properties of the aligned-block locations.

5. Infinite Population Dynamics on Fitness Distribution Space

We will first solve for the dynamics of the fitness distribution in the infinite-population limit
(M → ∞) by constructing a generation operator G that incorporates the effects of selection

and mutation on the fitness distribution. The state ~P (t + 1) of the population at time t + 1 is

obtained by acting with the operator G on the state ~P (t) of the population at time t:

~P (t + 1) = G[~P (t)], (5.1)

where the operator G formally can be written as the product,

G = M · S, (5.2)

of the selection operator S and the mutation operator M.

This construction is similar in spirit to the generation operators in [45], although since we
focus on fitness distributions rather than entire populations, we will be able to analyze the effect
of this operator explicitly and quantitatively. The focus on the dynamics of fitness distributions
is similar to the analysis in [38], where the dynamics of the first few cumulants of the fitness
distribution is analyzed. Here we track the dynamics of the entire fitness distribution.

Equation 5.1 is analogous to a discrete-time version of the differential equations of the Eigen
model of molecular evolution [11, 13]. In that model one considers the evolutionary dynamics of
the distribution of different self-replicating molecular “genotypes”. Therefore, the Eigen model
equations are again defined on the microscopic level, not on a coarse-grained level such as that
of fitness distributions.

We will now construct the operator G explicitly for the case of our simple GA. We first
consider the alignment dynamics of unaligned blocks and then build the mutation and selection
components of G. Once we have this composite expression for G, we turn to explicitly solving
for the dynamics.

5.1 Block Alignment Dynamics

We will now present some heuristic theoretical arguments for our maximum entropy assumption:
given a fitness distribution, all microscopic populations with that fitness distribution are equally
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likely to occur. Since the dynamics of the mutation-only GA is obviously independent of where
the aligned blocks in strings occur, our maximum entropy assumption boils down to assuming
that the bit values in unaligned blocks are essentially random and statistically independent of
each other.

Assuming that the unaligned blocks are random we can calculate the probability A that
mutation will transform an unaligned block into an aligned block. A random unaligned block
is equally likely to be in any of the 2K − 1 unaligned block states. If the block has d zeros, the
probability that it will turn into an aligned block under mutation is just qd(1 − q)K−d. There
are

(
K

d

)
different block states which have d zeros. We thus have:

A =
1

2K − 1

K∑

d=1

(
K

d

)

qd(1 − q)K−d =
1 − (1 − q)K

2K − 1
. (5.3)

The above expression for A is a direct consequence of the maximum entropy assumption
that all microscopic populations with the same fitness distribution are equally likely. This is,
of course, no guarantee that the GA will actually behave according to this assumption. The
reason we expect unaligned blocks to be random on average is because (i) selection in our GA
only counts the number of aligned blocks and therefore acts on all unaligned blocks equally
and (ii) mutation randomly mixes bit values in blocks. But let’s be more precise about our
assumption.

Consider a particular unaligned block b in a given string s. We consider two cases. First,
string s either has an ancestor in which block b was aligned and then was destroyed or, second,
none of its ancestors had b aligned. For low mutation rates, block b is likely to have more bits
set in the first case than in the second, since in the first case it is the remnant of a previously
aligned block and in the second it is the descendant of well-mixed random unaligned blocks.

Now consider unaligned blocks in strings that belong to the highest fitness class currently
in the population at time t during a run. Let P(t) denote the current population and let Ph(t)
denote the set of strings having the highest fitness in P(t):

Ph(t) = {s′ ∈ P(t) : f(s′) ≥ f(s) ∀s ∈ P(t)}

Unaligned blocks in such strings are very likely to have descended from unaligned blocks in
ancestral strings. This is because it is unlikely that strings with fitness higher than those of
Ph(t) were ever present in the population in appreciable numbers. Therefore, at any time t in
the run we can assume that these unaligned blocks have been subject to mutation for t time
steps without ever having been aligned. Assuming that we can take different unaligned blocks
in different strings in Ph(t) to be independent, we can take the state of these blocks to be
essentially random. Different unaligned blocks within the same string in Ph(t) can in general
be taken to be independent to a high approximation. The assumption that the unaligned blocks
in different strings in Ph(t) are independent is only appropriate for very large populations, as
we will see later on. For infinite populations this assumption of independence is exact for blocks
in strings that are in Ph(t). We have therefore argued that unaligned blocks in Ph(t) can be
taken as random, at least for very large populations.

We now turn to the case of unaligned blocks in strings not in Ph(t). Let s be in P(t) but
not in Ph(t). The unaligned blocks in s can be divided into two types: blocks that were never
aligned in ancestors of s and blocks that were aligned in some higher-fitness ancestor of s but
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that were destroyed by mutation. The first type of block can also be taken as random and has
the same probability A given by equation 5.3 of becoming aligned by mutation. The second type
of block is likely to have more bits set to 1 than a random block, so it has a higher probability
of being aligned by mutation. In general we will not try to solve for the relative proportions
of the two types of blocks in strings s. We can give, however, lower and upper bounds on the
probability As that an unaligned block in s will become aligned through mutation. The lower
bound is obtained by assuming that all unaligned blocks are of the first type and thus have
never been aligned before, which yields:

As ≥ A. (5.4)

An upper bound is obtained by assuming that all blocks have K − 1 of the K bits set, giving

As ≤ q(1 − q)K−1. (5.5)

We will see later on that many of our results are largely insensitive to the value of As within
these bounds. For convenience we will use As = A and employ the same probability for all
unaligned blocks in all strings.

Again we stress that the above arguments do not prove that unaligned blocks behave as
random blocks for our GA. In fact, we will later see some examples were this approximation
breaks down for the dynamics of finite populations. However, for very large populations, our
experiments show that this maximum entropy assumption gives excellent predictions of the
dynamics of the actual GA. In the following sections we will solve for the infinite population
dynamics of the GA under this assumption.

5.2 The Mutation Operator M

In the last section we derived an expression for the probability A to align a block through
mutation in one time step under the random block approximation. The probability D that
mutation will destroy an aligned block is simply given by

D = 1 − (1 − q)K . (5.6)

Using A and D, we now consider the probability Mij that mutation turns a string with fitness
j (i.e. j aligned blocks) into a string with fitness i. In other words, Mij is the probability that
by mutating every bit with probability q in a string of fitness j this string will turn into a string
with fitness i. We can write Mij as the sum over all the probabilities that k unaligned blocks
in the string will be aligned and l aligned blocks will be destroyed such that j +k− l = i. Thus,
we have

Mij =

N−j
∑

k=0

j
∑

l=0

δj+k−l,i

(
N − j

k

)(
j

l

)

Ak(1 − A)N−j−kDl(1 − D)j−l. (5.7)

In the limit of infinite populations, the operator Mij acting on a fitness distribution ~P will give

the fitness distribution ~Pm after mutation:

Pm
i =

N∑

j=0

MijPj, (5.8)
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where Pi and Pm
i are the proportions of strings with fitness i before and after mutation, re-

spectively. The mutation operator M is an ordinary linear matrix operator with the property
that

N∑

i=0

Mij = 1. (5.9)

This is, of course, just another way of saying that summing the probabilities of all possible
outcomes of mutation gives unity. That is, M is a stochastic matrix.

5.3 The Selection Operator S

Our simplified GA uses fitness proportionate selection. This means that the proportion P s
i of

strings with fitness i after selection is proportional to both i and the fraction Pi of strings with
fitness i before selection:

P s
i = c i Pi, (5.10)

where c is a constant.1 The constant can easily be obtained by demanding that the vector
~P s = (P s

0 , . . . , P s
N) is normalized:

N∑

i=0

P s
i = 1. (5.11)

Therefore, we have

c =

[
N∑

i=0

iPi

]−1

=
1

〈f〉 , (5.12)

where 〈f〉 is the average fitness of the population. We can write the entries Sij of the selection
operator as the diagonal matrix

Sij =
iδij

〈f〉 . (5.13)

Notice that, in contrast to the mutation operator, the selection operator is nonlinear because
it depends on the average fitness of the distribution it acts on.

5.4 The Generation Operator G

We can now construct the generation operator G that maps the fitness distribution of a popu-
lation into the fitness distribution of the population at the next generation. G is the product
of the selection and mutation operators:

Gij =
N∑

k=0

MikSkj. (5.14)

To analyze the dynamics of this operator we first construct a linearized version G̃. We note
that all entries in the generation operator G are independent of the vector ~P it acts on, apart
from the normalization factor 1/〈f〉 in S. We can take this factor outside the matrix and write

S =
1

〈f〉 S̃, (5.15)

1In the case where all strings have zero fitness, the GA is not well defined. In all practical situations
considered here the fitness distribution will have nonzero proportions of nonzero fitness strings at all times.

15



giving
G̃ = M · S̃. (5.16)

The operator G̃ is an ordinary (N + 1) by (N + 1) matrix with nonnegative entries.

The fitness distribution in the population at time t is given by the tth iterate of G acting
on the initial fitness distribution ~P (0). That is,

~P (t) = Gt[~P (0)]. (5.17)

Since at each iteration the operator G is just the matrix G̃ times a constant that depends on
the fitness distribution it acts on, Gt is proportional to the linear operator G̃t times a constant
that depends only on ~P (0) and t. Therefore, we can express the fitness distribution ~P (t) at

time t as a constant times G̃t acting on ~P (0). Thus, we have

~Pi(t) =
∑

j

C[t, ~P (0)]G̃t
ijPj(0). (5.18)

We can determine the constant C[t, ~P (0)] easily by requiring that ~P (t) is normalized. The
result is that

C[t, ~P (0)] =

[
∑

i,j

G̃t
ijPj(0)

]−1

. (5.19)

Since the initial population consists of random strings of length L = NK, the initial fitness
distribution ~P (0) can be obtained by considering that at t = 0 each block in each string has a
probability 2−K to be aligned. We then find that

Pi(0) =

(
N

i

)

2−Ki
(
1 − 2−K

)N−i
. (5.20)

We can solve explicitly for ~P (t) by diagonalizing the matrix G̃. In general, G̃ will have

N + 1 distinct eigenvectors and eigenvalues.2 We will denote these eigenvectors ~V i and their
corresponding eigenvalues gi. These obey

G̃ · ~V i = gi
~V i, (5.21)

for each value of i from 0 to N . We further normalize these eigenvectors in probability, so that

N∑

i=0

V j
i = 1. (5.22)

Defining the matrix R to contain G̃’s N + 1 normalized eigenvectors ~V i as its columns, the
matrix R and its inverse diagonalize the generation operator, in the sense that

G′
ij = (R−1 · G̃ · R)ij = giδij. (5.23)

2In the very rare cases were the characteristic polynomial of G̃ has multiple roots, these roots can be separated
by an infinitesimal change in the mutation rate q.
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Since the eigenvectors are normalized, the matrix R has the additional property that its columns
add up to 1:

N∑

i=0

Rij =
N∑

i=0

V j
i = 1. (5.24)

The generation operator G̃t can now be written in terms of its eigenvalues gi, the matrix
R, and its inverse, as follows

G̃t
ij =

N∑

k=0

Rikg
t
kR

−1
kj . (5.25)

This allows us to solve for ~P (t) in equation 5.18, obtaining

~Pi(t) = C[t, ~P (0)]
∑

k,j

Rikg
t
kR

−1
kj Pj(0). (5.26)

Equation 5.26 gives an exact expression for the fitness distribution in the population as a
function of time in the limit of infinite population size. We can make equation 5.26 more
transparent by moving to the basis of G̃’s eigenvectors. First, we write the fitness distributions
in this basis as

αi(t) =
N∑

j=0

R−1
ij Pj(t). (5.27)

Note that the αi(t) are normalized. We further simplify the expression for C[t, ~P (0)] using
equations 5.25 and 5.27 in equation 5.19:

C[t, ~P (0)] =

[
N∑

i,j,k=0

Rikg
t
kR

−1
kj Pj(0)

]−1

=

[
N∑

k=0

gt
kαk(0)

]−1

. (5.28)

Transforming the equations of motion (equation 5.26) to the basis of the eigenvectors ~V i we
find that the fitness distribution is given by

αi(t) =
gt

iαi(0)
∑N

j=0 gt
jαj(0)

. (5.29)

From this we get a very simple expression for the average fitness 〈f(t)〉 as a function of
time. Again using the fact that the rows of R sum up to 1, a little algebra gives:3

〈f〉 =
∑

i

iPi =
∑

i

giαi. (5.30)

From the two preceding expressions, we are left with a simple, direct expression for the behavior
of the average fitness as a function of time for infinite populations:

〈f(t)〉 =

∑

i g
t+1
i αi(0)

∑

j gt
jαj(0)

. (5.31)

3See the next section for a detailed derivation of this property.
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Figure 2: Average fitness 〈f(t)〉 over time t averaged over 20 GA runs along with the theoretical
prediction (solid line) for infinite population obtained from equation 5.31. The error-bars show
±2 standard deviations from the average fitness over the 20 runs. The parameters here are
N = 3 and K = 4 with q = 0.01 and a population size of 104.

Figure 2 shows the predicted infinite population dynamics for a particular parameter setting
together with the empirical results averaged over 20 runs with a large population. The figure
shows that for large populations, typically for M > 2NK , the actual average fitness behavior fol-
lows the infinite population dynamics, obtained using our maximum entropy assumption, quite
closely. This supports our assumption that for large populations, the evolution of the fitness
distribution can be described in terms of the fitness distribution only. (Appendix B proves that
under the maximum entropy assumption the dynamics of large populations converges towards
the deterministic dynamics as given by G.) The small error bars in the figure also show that
for these large populations, there are very small fluctuations in the evolution of the average
fitness between runs. This fact supports our assumption that the dynamics on the level of
fitness distributions is self-averaging in the limit of large populations. Notice, though, that for
populations of this size the average fitness increases smoothly as a function of time and there
are no fitness epochs. Apparently, fitness epochs occur only for population sizes that are not
too large.

Recapitulating, by obtaining the probabilities A and D to align and destroy blocks we
constructed a matrix operator that describes the dynamics of the genetic algorithm in the
limit of infinite populations. By linearizing G to form G̃ and then computing G̃’s eigenvalues
and eigenvectors, we were able to solve exactly for (i) the dynamics of the fitness distribution
(equation 5.29) and (ii) the average fitness 〈f(t)〉 in the population (equation 5.31).

5.5 Properties of the Generation Operator G

The fixed points of the operator G are those vectors ~V that are mapped to themselves under
its action. Whenever the fitness distribution ~P describing the infinite population equals one of
those vectors ~V , it will remain at ~V from then on. Consider the fixed point equation for the
dynamics, ~P = G(~P ). We have

G(~P ) =
G̃

〈f〉 ·
~P ; (5.32)
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so for fixed points ~P of G,
G̃ · ~P = 〈f〉~P . (5.33)

In words, the fixed points of G are given by normalized eigenvectors of G̃, with the extra
restriction that G̃’s eigenvalues are equal to the fitness average of the eigenvector.

Using the stochasticity property of the mutation operator M (equation 5.9), we find that

all eigenvectors ~V i of G̃ fulfill the above restriction (equation 5.33). First, using equation 5.21,
note that ∑

i,j

G̃ijV
k
j =

∑

i

gkV
k
i = gk. (5.34)

This simply states the fact that ~V k is a normalized eigenvector with eigenvalue gk. Furthermore,
substituting the definition of G̃ in terms of M and S, we have

∑

i,j

G̃ijV
k
j =

∑

i,j

MijjV
k
j =

∑

j

jV k
j = 〈f〉. (5.35)

Thus, we see that
gk = 〈f〉 (5.36)

for all eigenvectors ~V k, which gives a simple interpretation of their eigenvalues as average
fitnesses.

This implies, in turn, that all eigenvectors of G̃ are fixed points of the generation operator
G. This might lead one to believe that the infinite population GA dynamics could end up
in N different stable states in fitness distribution space.4 This is not true. The normalized
eigenvectors of G̃ have to be positive definite to be interpreted as fitness distributions and, in
general, they are not. In Appendix A we prove that the matrix G̃ can have only a single positive
definite eigenvector. Therefore, there is a unique fixed-point fitness distribution towards which
the Royal Road GA will always converge asymptotically. All other fixed points lie outside
the simplex Λ∞ and are therefore unreachable. The asymptotic fixed point corresponds to
G̃’s principal eigenvector—the eigenvector of G̃ with the largest eigenvalue. This can also be
understood by considering equation 5.31, which shows that the largest eigenvalue gN—having
chosen the ordering g0 < g1 < · · · < gN—will dominate the average fitness in the limit of
t → ∞. That is,

lim
t→∞

〈f(t)〉 = gN . (5.37)

In addition, we see that the fitness distribution P (t) asymptotically approaches the principal
eigenvector:

lim
t→∞

~P (t) = ~V N . (5.38)

Globally, the map G has one fixed point lying inside the state space Λ∞ and N −1 fixed points
lying outside.

Notably, the asymptotic distribution ~V N over the different fitness classes is analogous to
what is called a quasispecies in molecular evolution theory [11]. A species—a particular virus for
instance—cannot in general be identified with a certain unique genotype. In fact, the genotypes
of members of a certain species can often be thought of as a cloud of points in sequence space
that is centered around a genotype of highest fitness. The size and shape of this cloud depend on

4Remember that we excluded the possibility of all strings having 0 fitness.
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the structure of the fitness variations around this peak and on the interplay between mutation
and selection. Mutation causes points to drift away from the peak, while selection tends to
replicate only individual genotypes whose fitness remains close to that of the peak.5 This cloud
is called a “quasispecies” and is equivalent to our asymptotically stable eigenvector ~V N . In
our case, ~V N represents a cloud of strings with different fitnesses centered around the string
with all blocks aligned. Here, as in the molecular evolution setting, the shape and size of the
cloud are obtained by solving for the principal eigenvector ~V N of the generation operator. Note
though that since ~V N is a fitness distribution, the lower components of ~V N do not correspond to
particular genotypes as in the molecular quasispecies case, but rather to sets of genotypes with
equal fitness. Our quasispecies distribution is therefore a “phenotypic” or fitness quasispecies
cloud.

5.6 GA Dynamics as a Flow in Fitness Distribution Space

With equation 5.26 we have an exact expression for the evolution of the fitness distribution
~P (t). As mentioned above, this dynamics shows a smooth and strictly monotonic increase of
average fitness starting from a random initial population; figure 2. It does not exhibit the fitness
epochs illustrated in figure 1. To begin to explain the occurrence of fitness epochs for small
populations we must first adopt a different and more geometric view of the infinite population
dynamics. We will visualize the infinite population dynamics as a flow in the space of fitness
distributions Λ∞. As a simple example, figure 3 illustrates the dynamics for the parameter
settings N = 3, K = 4, and q = 0.01. The state space Λ∞ can be projected into 3-dimensional
Euclidean space for this case. Figure 3 has P0 on the x-axis, P1 on the y-axis, and P2 on the
z-axis. Of course, we have P3 = 1 − P0 − P1 − P2.

P2

t = 0

P0
P1

t = 50

Figure 3: Infinite population dynamics as a trajectory (solid line) in Λ∞ for N = 3, K = 4, and
q = 0.01, together with the results (squares) of five runs with these parameters and M = 104.
Cf. figure 2, which plots the average fitness dynamics.

5It is often tacitly assumed that genotypes with fitness close to that of the peak remain genotypically close
to the peak as well. See [25] for a discussion of the implications of this not being the case.
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Figure 3 shows the theoretical infinite population trajectory of the dynamics in Λ∞ for these
parameter settings, together with the empirical dynamics for five runs with a large population
(M = 104). We see that the empirical dynamics follows the infinite population trajectory quite
closely. (Compare the average fitness dynamics plotted in figure 2.) This again shows that the
evolution of the fitness distribution is well approximated by our maximum entropy assumption
for large populations.

We can get an idea of the force driving the fitness distribution along its trajectory through
the simplex by considering the difference d~P = G(~P )− ~P of the fitness distribution ~P and the

fitness distribution G(~P ) at the next time step. The vector d~P gives the local direction and

magnitude of the change of the fitness distribution at ~P over one time step. We will refer to this
change d~P as the “flow” induced by the generation operator at the point ~P in the state space.6

Figure 4 shows d~P in the simplex for the same parameter settings as in figure 3. We now see how
the trajectory as shown in figure 3 can be understood as the fitness distribution following the
flow d~P through fitness distribution space. The geometric view of the GA dynamics is that the
flow d~P in the simplex is followed by the fitness distribution in the limit of infinite populations.
This will help us understand the occurrence of fitness epochs for finite populations. We will
see that in the finite population case the fitness distribution attempts to follow this flow, but
for reasons to be discussed in the next section, cannot always (and not everywhere) exactly
follow it. This, it turns out, is precisely the origin of the fitness epochs, seen only for finite
populations.

P
0 P

1

P
2

Figure 4: Fitness distribution flow d~P in the simplex for N = 3, K = 4, and q = 0.01.

6We are using “flow” in a somewhat loose, but convenient, sense. In dynamical systems theory “flow” is
normally reserved for the collection of all trajectories through state space over some time interval. Our usage
of the term “flow” corresponds to the vector field that points along the trajectory for each point in state space.
It can therefore be seen as the vector field generating the flow at each point of state space.
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6. Finite Population Dynamics

As we saw in section 4, the fitness distribution state space for a finite population is given by
a rectangular lattice ΛM over the N + 1 dimensional simplex Λ∞ with lattice spacing 1/M .
As in the infinite population case, applying the generation operator G to a fitness distribution
~P ∈ ΛM gives the expected fitness distribution 〈~P 〉 at the next time step. Viewed in a slightly

different way, Gi(~P ) = 〈Pi〉 is the probability that if one string is selected from ~P and mutated,
it will turn out to have fitness i. Since the new population is created from M of these selections
and mutations, it is clear that the new population is a sample of size M of the distribution 〈~P 〉.
In the infinite population case the expected distribution 〈~P 〉 is always attained; there are no
fluctuations in the 〈Pi〉 in this limit. For a finite population of size M , the finite sampling from

〈~P 〉 leads to stochasticity in the dynamics. At each time step the population that is actually

attained will fluctuate around the expected distribution 〈~P 〉. We therefore see that the flow in
state space for a finite population is given by the same flow operator G but now over a discrete
space and with noise added due to the population’s finiteness. It is important to note that the
finite population sampling noise added to the operation of G takes into account the combined
effect of the fluctuations in both mutation and selection. Normally, one would consider the
sampling fluctuations in mutation and selection to be two distinct sources of fluctuations. In
combining the selection and mutation effects into the operator G, all fluctuations are due to
the finite population sampling applied to the operation of G.

In general, the probability Pr[~P n → ~Pm] that a fitness distribution ~P n = (n0, n1, . . . , nN)/M

will go to a fitness distribution ~Pm = (m0,m1, . . . ,mN)/M under mutation and selection is given

by a multinomial sampling distribution with mean G(~P n):

Pr[~P n → ~Pm] = M !
N∏

i=0

[Gi(~P n)]mi

mi!
, (6.1)

where Gi(~P n) is the expected proportion of individuals with fitness i at the next generation.
The multinomial distribution is nothing more than the distribution of a random sample of size
M of the expected distribution G(~P ). In Appendix B this distribution is used to prove that for
large populations the finite population dynamics approaches the infinite population dynamics
arbitrarily closely.

6.1 Fitness Epochs

We will now turn to the fitness epochs that occur for finite population size. As we have seen,
G(~P ) gives the expected distribution at the next time step if the current distribution is ~P .

The expected flow 〈d~P 〉 in fitness distribution space is given by 〈d~P 〉 = G(~P )− ~P . Now let us
consider what happens if the absolute value |〈dPi〉| of a certain component 〈dPi〉 of the expected
flow is much smaller than the lattice spacing; that is, if |〈dPi〉| ¿ 1/M . The fitness distribution
~P for a finite population can only be on the lattice points of ΛM , since the actual difference dPi

can only be . . .− 1/M 0, 1/M , 2/M . . .. Thus, we expect the actual difference dPi to be 0 most
of the time; this means that the actual component Pi will likely not change for some time. For
example, in the previous case with N = 3, K = 4, and q = 0.01, but with finite M = 100, we
find that if P3 = 0, the dynamics will push P0, P1, and P2 into a region where

|〈dP3〉| ≈ 6.5 ∗ 10−4 ¿ 1

M
= 0.01. (6.2)
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 = 0.8P2

P2

 = 0.9P2

P0 P1

Figure 5: Face view of the flow 〈d~P 〉 within the surface P3 = 0. The flow of fitness distributions
centers around an area where P2 ≈ 0.85, P1 ≈ 0.14 and P0 ≈ 0.01. This region is shown
substantially enlarged. Parameters are set to N = 3, K = 4, q = 0.01, and M = 100. The dots
indicate the allowed finite populations on a portion of ΛM .

Since 〈dP3〉 is so small7 compared to 1/M , we expect the distribution to stabilize itself in that
region for some time. Figures 5 and 6 illustrate this behavior. Figure 5 shows the flow at points
in the plane P3 = 0 as arrows whose length is the value of |〈d~P 〉|. We see how the flow stabilizes

the dynamics in an area on the surface where ~P = (P0, P1, P2, P3) ≈ (0.01, 0.14, 0.85, 0.0).
Figure 6 shows a side view, perpendicular to the P3 = 0 plane. The arrows show the expected
change in the component dP3 off the P3 = 0 surface. We see that the flow off the surface is so
small that the dynamics is likely to remain on that surface for some time. This region on the
P3 = 0 surface is a likely place for a fitness epoch to occur.

We would like to have a way to determine where metastable regions like the one shown in
figure 6 are to be found in the state space. In section 5.5 we saw that all eigenvectors of the
operator G̃ correspond to fixed points of G. It is therefore natural to assume that the metastable
regions of the finite population dynamics are to be found in the vicinities of the eigenvectors
~V i. We saw, in addition, that the average fitness in the population in the neighborhood of
the eigenvectors ~V i is equal to the eigenvalues gi of the operator G̃. We therefore expect the
population to have mean fitness close to gi during fitness epoch i.

6.2 Predicted Epoch Levels

This section assesses under what circumstances we can predict the mean fitness of the population
during an epoch and lists additional aspects of the empirical GA behavior that will be explained
in subsequent sections.

Figures 7(a) through 7(i) show the same runs as those in figures 1(a) through 1(i) together
with the theoretical predictions of the fitness levels (horizontal lines) at which we expect the

7The expression for 〈dP3〉 can be obtained by plugging the epoch center ~P = (0.01, 0.14, 0.85, 0.0) into

〈d~P 〉 = G(~P ) − ~P . Epoch centers are defined in section 6.3.
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Figure 6: Side view of the simplex perpendicular to the surfaces P3 = 0 and P3 = 0.01, which
are shown as the upper and lower diagonal solid lines, respectively. The dots indicate the
allowed finite populations in ΛM . The expected change 〈dP3〉 (arrows) is so small that the
dynamics is likely to stay on the surface P3 = 0 for some time. Note that the arrows emanating
from the P3 = 0 surface have been magnified five times to make them visible. Parameters are
N = 3, K = 4, q = 0.01, and M = 100.

epochs to occur. The levels were calculated numerically by determining the eigenvalues gi of G̃

for the different parameter settings of each run. Recall that the fitness levels are not a function
of the population size M ; they are determined by the infinite population dynamics.

Caption for figure 7: Average fitness over time for nine runs of the Royal Road GA
with different parameter settings together with the theoretical predictions (horizon-
tal lines) for the epoch levels. See figures 1(a) through 1(i) for the corresponding
parameter settings for each run. Although there are N possible fitness levels in
each case, for the sake of clarity only subsets are shown. Figures 7(a) and 7(d) show
epoch levels g3 through g10 and figure 7(g) shows levels g4 through g10. Note that
the theoretical levels are the same for these three runs since the epoch levels don’t
depend on population size. Figure 7(b) shows predicted levels g9 through g20. Only
the asymptotic epoch g20 can be seen to occur in this run. The same epoch levels g9

through g20 are shown in figure 7(c). In run 7(c) epochs can be seen to occur at g14,
g17, and g20. Figure 7(e) shows epoch levels g5 through g10. No epochs can be seen
to occur for these parameter settings. Figure 7(f) shows the last two of the epoch
levels g9 and g10 as dashed lines. The solid lines in 7(f) show the upper bounds on
these epoch levels (see text for discussion). Epoch levels g3 through g10 are shown
in figure 7(h) in which no clear epochs can be distinguished. Although, one can see
time intervals for which the average fitness fluctuates around g5. Finally, figure 7(i)
shows all epoch levels g1 through g4. In all of these figures, the epoch levels gi were
obtained by numerically solving for the eigenvalues of G̃ for each of the parameter
settings. In section 6.4 we calculate simple analytical expressions for these epoch
levels.
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In runs 7(a), 7(d), and 7(g) (first column of figure 7), the theory correctly predicts the fitness
levels at which epochs occur. The variation of epoch durations across fitness levels and across
the runs, sizes of fitness fluctuations in the epochs, and the intermittent behavior of run 7(g)
need to be explained.

For the runs in the middle column (figures 7(b), 7(e), and 7(h)) we have plotted the theo-
retical fitness level predictions in a band of fitness values around which most of the behavior
takes place. The theoretical predictions of the fitness levels correspond in only a limited way to
the GA’s behavior for these parameter settings. In run 7(b) the predicted highest level matches
the empirical asymptotic fitness level. This is, of course, in accord with the analysis. For large
populations the behavior approaches the infinite population dynamics we described in section 5;
epochs do not occur. But we must explain why the epochs appear in run 7(a) but disappear in
run 7(b) as a result of decreasing the block size K to 3.

For run 7(e) we have plotted only the predicted fitness levels g5 through g10. The low value
of g10 explains why the average fitness stays low throughout the run. We must explain why the
average fitness does not stabilize onto the highest fitness level g10, but instead fluctuates in a
band between g6 and g10.

In run 7(h) we have plotted the theoretical fitness levels of epochs 3 to 10. Again, the low
value of g10 explains the apparent ceiling on the average fitness. We must explain why the
average fitness does not stabilize onto distribution V 10 at fitness g10 and why the fluctuation
amplitudes are larger than those in 7(e).

The theoretical epoch fitnesses plotted in run 7(c) correctly predict the levels of the epochs
that can be distinguished in this case as well as the asymptotic fitness level.

In run 7(f), however, it turns out that we see for the first time the consequences of the
breakdown of our approximation of the probability A to create a block. The dashed lines show
the predicted last two epoch levels using the analysis of the foregoing sections. They clearly
underestimate the levels at which the epochs occur. Recall that in calculating the probability
A to align a block we assumed that all unaligned blocks have never been aligned before. This
approximation breaks down for the parameters used in this case. With this run’s high mutation
rate, q = 0.0075, many blocks in Ph are destroyed through mutation. Therefore, the blocks in
the fitness class just below Ph have a relatively large proportion of their bits set. This means
that the probability to align a block is much higher for these strings than we assume it to be.
Our prediction should thus be seen as a lower bound. In section 5.1 we obtained an upper
bound of A = q(1 − q)K−1 by assuming all blocks have K − 1 of the K bits set. We plotted
the upper bounds for the 9th and 10th epochs as solid lines in run 7(f). These upper and lower
bounds still give quite accurate predictions for the observed fitness levels.

Finally, in run 7(i) the theoretical values correctly predict the epoch levels. The large fitness
fluctuations within the epochs of this run remain to be explained.

To understand some of the remaining phenomena, we next analyze in more detail the struc-
ture of the epochal dynamics in the simplex.

6.3 Epochal Dynamics as the Evolutionary Unfolding of the State Space

We saw earlier that of all G̃’s eigenvectors ~V i, only the principal eigenvector ~V N is positive
definite and thus interpretable as a fitness distribution. This means that the nonprincipal
eigenvectors are not points in the simplex Λ∞. The fitness epochs could only occur at fitness
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distributions that are close but not at the eigenvectors ~V i. Let the term “epoch center” refer
to the average position in ΛM of the fitness distribution during an epoch. We now present a
way to exactly obtain the epoch centers for each epoch.

Intuitively, the N epochs come about because there are N different possible blocks to align.
In the first epoch, some individuals have one aligned block (fitness 1) and some have no aligned
blocks (fitness 0) but none has more than one block aligned. In the second epoch, some
individuals have two aligned blocks, some have one, and some have none. Whenever a new
block is aligned and spreads through the population, the current fitness epoch becomes unstable
and the population moves up to the next epoch. In terms of the dynamics in the simplex,
the population starts on a low-dimensional subset of the simplex and finds its way to higher
dimensions step by step. Initially (for small populations), there are typically only individuals
with fitness 0 or 1. The fitness distribution then stabilizes somewhere on the line P0 + P1 =
1, Pi ≥ 0. After a new, second aligned block is discovered the population moves off that line
and onto the plane P0 + P1 + P2 = 1, Pi ≥ 0 and stabilizes there. When the third block is
found the population moves into the three-dimensional space P0 + P1 + P2 + P3 = 1, Pi ≥ 0.
The evolution proceeds in this incremental fashion until all blocks are discovered or, as we will
discuss later on, until the population cannot stabilize within successively higher-dimensional
subspaces.

This rough picture illustrates how the subsimplices unfold dimension by dimension through
the evolutionary search. When the population is in the nth epoch it will move into the (n + 1)-
dimensional subsimplex with

n∑

i=0

Pi = 1, Pi ≥ 0. (6.3)

This points to a way of calculating the actual epoch centers. While a population is in the nth

epoch, the selection and mutation operators, by definition, act only on strings s with f(s) ≤ n
and produce new strings s′ with f(s′) ≤ n. We can find the dynamics of the GA on this
subspace by projecting G onto this subspace to form a restricted operator Gn:

Gn
ij =

{
Gij if i, j ≤ n
0 otherwise.

(6.4)

By acting on the fitness distributions with this restricted operator we can find the flow of the
population in the n-dimensional subspace of the full simplex. The center ~P n of the nth fitness
epoch is given by the principal eigenvector ~P n of the restricted linearized operator G̃n. That
is,

G̃n · ~P n = en
~P n, (6.5)

where en is G̃n’s principal eigenvalue. In short, by restricting G to the subsimplex of dimension
n we can obtain the exact center of the nth fitness epoch.

6.4 Eigensystem of the Restricted Generation Operators

We will now derive expressions for the different epoch centers ~P n and the associated average
fitness fn in each epoch for small mutation rates q. For notational simplicity we will refer to
the restricted operators G̃n as G̃ when calculating en and ~P n in the following.
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We first expand G̃ to first order in q. Starting from the definition of G in terms of M and
S, we obtain

G̃ij = j
[
δij (1 − q(A1(N − j) + Kj)) + δ(i−1)jA1(N − j)q + δ(i+1)jKjq

]
+ O(q2). (6.6)

where A1q is the probability A to align a block to first-order in q (from equation 5.3):

A = A1q + O(q2) =
K

2K − 1
q + O(q2) (6.7)

Formally, we can split equation 6.6 into a term that is zeroth order in q and a term that is
first order in q:

G̃ = H̃0 + qH̃1 + O(q2), (6.8)

where H̃0

ij = jδij. In the limit q → 0, en = n and P n
i = δin; that is, all strings have fitness n

during the nth epoch in this limit. For nonzero q we can expand ~P n and en to first order in q:

P n
i ≡ δin + q∆1

i (6.9)

and
en = n + qe1

n. (6.10)

Using the eigenvalue equation
G̃ · ~P n = en

~P n, (6.11)

and equating coefficients of equal powers in q, we obtain the nth and (n − 1)st components of
~P n:

P n
n = (1 − n2Kq) and P n

n−1 = n2Kq. (6.12)

All other components are 0 to first order in q. For en we find

en = n −
[
n2K + n(N − n)A1

]
q. (6.13)

For the average fitness

fn =
n∑

i=0

iP n
i , (6.14)

we obtain
fn = n − n2Kq. (6.15)

Notably, the epoch fitness levels can also be approximated in a more straightforward way that
gives an insightful result, if we assume that the number of fitness n strings generated by block-
aligning mutations of lower fitness strings is negligible. This assumes that the proportion P n

n

of strings in the highest fitness class is kept constant by a balance between block destroying
mutations and selection. We then simply find that under selection and mutation:

P n
n → n

fn

P n
n → P n

n

n

fn

(1 − q)nK , (6.16)

where the last factor (1− q)nK arises because only the strings that do not mutate the nK bits
in their aligned blocks remain in fitness class n. From the above equation it follows that:

fn = n(1 − q)nK . (6.17)
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This equation nicely shows that the average fitness in epoch n is proportional to the proba-
bility of all (nK) defining bits replicating without mutations. Note that equation 6.15 follows
immediately to first order in q.

While the population resides in a fitness epoch there is a (metastable) equilibrium distribu-
tion of the population over the different fitness classes. We see that for very small q almost all
individuals in the population are in the current highest fitness class, which is n for the nth epoch.
The higher the mutation rate, the more individuals will have lower fitness and accordingly the
average fitness of the population decreases as q increases. Also, for higher epochs (larger n)
the proportion of individuals in the current highest fitness class decreases with the square of
n. This is also the case for the asymptotic fitness distribution ~PN = ~V N . The main differ-
ence between the metastable fitness distributions and the asymptotic distribution ~V N is that
the epoch distributions can become unstable when a new block is found and spreads through
the population. Until this happens there is a metastable equilibrium between the effects of
mutation and selection on the strings.

We noted earlier that the asymptotic distribution ~V N is the phenotypic analogue of a qua-
sispecies of replicating molecules or genomes. In light of the results above it is natural to
extend this notion of quasispecies to include metastable (phenotypic) quasispecies that occur
at earlier fitness epochs. Since in general the state space of molecular or genetic sequences is
vastly larger than any realistic population size, we also expect finite-population-induced fitness
epochs to occur in molecular evolution. During the evolution of a population there are large
proportions of the sequence space that the population has never visited which might contain
higher fitness strings than the current fittest genotypes. As already pointed out by Eigen and
his colleagues [12, 32], the population will therefore reside in a metastable quasispecies dis-
tribution (or “metaspecies”) until a mutation discovers one of the higher fitness strings. In
general, though, the mechanism commonly proposed for metastability, e.g., [32], is that of a
metastable quasispecies that is localized on a fitness peak in sequence space and that remains
stable until one of the mutants at the edge of the quasispecies cloud finds a higher fitness peak.
In this view, metastability is caused by local optima in the fitness landscape. The population
will remain stable until one of the mutants crosses the fitness valley to a higher peak. In other
words, the population has to cross a “fitness barrier” towards a higher peak.

The fitness-barrier mechanism is in sharp contrast to the mechanism presented here. There
are no local optima in Royal Road fitness landscape. Rather, there are large connected sub-
spaces of strings with equal fitness. Let Sn denote the subspace of strings with fitness n. The
metastable distributions ~P n are not strictly localized in sequence space but diffuse around ran-
domly in the subspace Sn—a “subbasin” of the transient evolutionary dynamics—until one of
the individuals discovers a rare “portal” to the subspace Sn+1 by aligning a new block.8 There-
fore, the metastability in this view is the result of an “entropic barrier” that has to be crossed
by the population. As a consequence, the evolutionary dynamics naturally splits into a neutral
and an adaptive regime. The population spends most of its time randomly diffusing in the
subbasin, or “neutral network”, Sn of strings with equal fitness until one mutant finds one of
the rare portal connections to Sn+1, after which the population adapts by moving into this new
subbasin. In [25] this entropic view of evolution was also advocated in the context of molecular
evolution.

8The nested-simplex state-space architecture also describes the transient behavior of diffusive annihilating
particles, from which we have borrowed the subbasin and portal terminology [6]. In the evolutionary setting
the simplices unfold; in the particle case they collapse, due to annihilation.
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6.5 Crossover

So far we have restricted our attention to a mutation-only GA while, in fact, most applica-
tions of GAs employ some form of crossover—an operator that combines portions of parental
chromosomes to produce offspring. It might come as somewhat of a surprise, then, that the
epoch levels for the GA including crossover are empirically found to be the same as the epoch
levels for the GA without crossover. Figure 8 shows the results of a GA run with parameters
N = 10, K = 6, M = 100, and q = 0.001 and single-point crossover probability 1.0, together
with the theoretical predictions of the epoch levels f8, f9, and f10. Pairs of parents are selected
in proportion to fitness from the old population and are always crossed over at a single point to
produce two strings for the new generation. From figure 8 it is clear that the same theoretical
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Figure 8: A run of the GA with single-point crossover, displaying the average fitness (solid
curve) as a function of generation, together with the theoretically predicted epoch fitness levels
(solid lines) for the 8th, 9th, and 10th epochs. The parameters for this run are N = 10, K = 6,
q = 0.001, and M = 100. Cf. figures 1(d) and 7(d).

predictions for the epoch levels of the GA without crossover also correctly predict the epoch
levels for the GA with crossover. This can be understood in the following way.

When the population resides in the nth epoch all individuals in the population have fitness
n or less. An innovation occurs when one or more individuals with fitness higher than n
are discovered. It is unlikely that more than one such individual is discovered in the same
generation. Therefore, it is almost always the case that one individual is the founder of a new
epoch. When the population has moved up to epoch n + 1 all the strings with fitness n + 1
in the population are descendants of that founder string and thus share its aligned blocks (as
well as other bits). This means that the n + 1 aligned blocks in each string with fitness n + 1
will be in corresponding positions in each string. If the population is dominated during the
epoch by strings of fitness n + 1, crossover on pairs of selected strings will generally not break
up the aligned blocks. Blocks that are destroyed are mostly destroyed through mutations, not

through crossover. Because of this, the balance between block destruction and selection is
hardly affected and the epochs occur at the same fitness levels as in the case without crossover.

However, at the very beginning of a run, the population will not be converged and aligned
blocks will be in different positions along the strings. Therefore, in contrast to the mutation-only
GA, crossover can combine different blocks from different strings at the start of the run to create
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higher fitness strings. Hence, the number of initial epochs expressed in runs with crossover is
smaller than the number of epochs in the runs without crossover. Once crossover has put
together the best string that can be produced from the aligned blocks in the initial population,
the population will converge onto copies of that string. From that point on crossover will act
as a “localized” mutation operator. It will introduce mixing only in the bits of the unaligned
blocks, since all the bits in the aligned blocks are shared by the strings in the population.

This illustrates again that phrases such as “crossover combines building blocks” or “crossover
introduces nonlocal mixing”, are meaningless without precise specification of all other compo-
nents of the dynamics. For crossover to be able to perform such actions as referred to above, it
is necessary that different useful building blocks be present in the population at the same time
and that generally the population is genetically diverse. We have argued that very early in the
run, due to the randomness of the initial population, crossover can indeed combine building
blocks. However, as soon as the epochal behavior sets in, all aligned blocks occur in correspond-
ing positions in the strings and it is highly unlikely that different building blocks will occur in
the population at the simultaneously ever again.

A similar argument holds for the nonlocal mixing that crossover is purported to introduce.
For the random initial population this will certainly be the case, but as soon as the epochal
dynamics sets in crossover can only introduce nonlocal mixing in the unaligned blocks. This
nonlocal mixing is furthermore restricted by the diversity that mutation has introduced in
bits of the unaligned blocks. In summary, for systems that show mainly epochal evolution, it
seems unlikely that crossover’s “combining building blocks” or “introducing nonlocal mixing”
are important contributions to the search dynamics.

6.6 Stable and Unstable Manifolds

It is clear from figure 1 that not all of the N possible fitness epochs are visited for a given GA
run; later epochs tend to be visited in more runs than earlier epochs. Later epochs also tend
to have longer durations than earlier epochs in a given run. In addition, for higher mutation
rates, epochs appear less distinct and innovations less steep. Since, for small mutation rate q,
the metastable fitness distributions in which a finite population can get trapped are close to
the fixed points of G, we can obtain a qualitative understanding of these features by analyzing
the local stability of these fixed points.

We will analyze the topological structure in Λ∞ that determines the global stability of these
metastable states by looking at the local stability of the fixed points themselves. The local
stability around the fixed points is determined by the Jacobian matrix DG at each fixed point,
since it gives the first-order approximation of the dynamics in the vicinity of the fixed points.
That is, around a fixed point ~V we have:

G(~V + ~ε) = ~V + DG · ~ε, (6.18)

where ~ε is a small deviation vector. Consider the Jacobian matrix at the fixed point ~V n of the
nth fitness epoch. Using the basic definitions, G̃ = M · S̃, and the fact that ~V n is a fixed point
G̃ · ~V n = gn

~V n, we find that

DGij(~V
n) =

[

∂Gi(~P )

∂Pj

]

~P=~V n

=
G̃ij − jV n

i

gn

. (6.19)
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The local stable and unstable manifolds of this fixed point can be obtained by solving for the
eigenvectors of this matrix. Eigenvectors with eigenvalues λi > 1 give the directions in which
this fixed point is unstable and eigenvectors with eigenvalues λi < 1 give the directions in which
the fixed point is stable. This follows from equation 6.18, since the deviations grow and shrink
for eigenvalues greater or less than 1, respectively. By inspection of equation 6.19, it is easy
to see that the eigenvectors ~U i of the Jacobian matrix DG(~V n) are given by the differences

between the eigenvectors ~V i and the eigenvector ~V n:

~U i = ~V i − ~V n. (6.20)

Substituting these vectors into the eigenvalue equation, we find that

DG(~V n) · ~U i =
gi

gn

~U i. (6.21)

Thus, the eigenvalues λn
i of this fixed point are given by9

λn
i =

gi

gn

. (6.22)

This means that, since the gi are ordered in increasing magnitude, the fixed point ~V i has i
stable directions and N − i unstable directions. This is intuitively clear from the fact that
in the ith epoch the subsimplex that is already discovered by the population is i-dimensional
(corresponding to the i aligned blocks) and the undiscovered part of the simplex is (N − i)-
dimensional (corresponding to the N−i yet-to-be-aligned blocks). Furthermore, we see that the
strength of the Jacobian eigenvalues λn

i is determined by the ratios of the different generation
operator eigenvalues gi with respect to the eigenvalue gn of the epoch under consideration. As
we have seen, to a high approximation the generation operator eigenvalues are equal to the
average fitnesses in the different epochs. So we see that the eigenvalues of the Jacobian matrix
are simply determined by the ratios of average fitnesses in the different epochs.

Thus, for small mutation rate q we can use equation 6.17 to obtain analytical expressions
for the eigenvalues of DG in the nth fitness epoch. These are

λn
i =

i

n
(1 − q)(i−n)K , 0 ≤ i ≤ N . (6.23)

The relative sizes of these eigenvalues as a function of i, n, K, and q control the dynamical
features of the different fitness epochs.

Now we can qualitatively explain the first of our observations, namely, that the higher
fitness epochs are longer. The population will remain in an epoch until it finds, and spreads
into, one of the undiscovered dimensions of the simplex. Since the later epochs have more stable
dimensions and fewer unstable ones, the population is less likely to find one of the unstable
dimensions and the epochs will be longer. This is related to the simple fact that it is easier for
mutations to align one or more new blocks when there are more blocks still unaligned.

We have also observed that later epochs typically appear in more runs than earlier epochs.
The first and obvious reason for this is that the initial population is likely to contain strings

9~Un is the null-vector which, of course, has eigenvalue 0. It does not, however, give an independent direction
in the simplex.
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with different fitness values and that the first epoch n that will be visited corresponds to the
fitness n of the highest fitness strings in the initial population. Let Pr(f < n) denote the

probability that none of the M individuals of the initial population ~P (0) has a fitness of n or
higher:

Pr(f < n) = Pr(Pi = 0, i ≥ n). (6.24)

We then have

Pr(f < n) =

[
n−1∑

i=0

(
N

i

)

2−Ki
(
1 − 2−K

)N−i

]M

. (6.25)

It turns out that as n increases this probability jumps up sharply from almost 0 to almost
1 at some value of n (provided that K is not too small). If nf is the first value for which
Pr(f < n) ≈ 1 then it is likely that the first epoch to appear will be the (nf − 1)th epoch, since
strings with fitness nf − 1 are likely to occur in the initial population and strings with fitness
nf are very unlikely to occur in the initial population. Furthermore, when one or more new
blocks are discovered in epoch n, there are N − n possible unstable dimensions into which the
population can move out of the subsimplex. Each of these dimensions corresponds to a portal
through which the next epoch can be visited. From this it follows that higher epochs with a
larger number of attracting dimensions are more likely to be visited.

Next we consider the steepness of the innovations. The steepness of an innovation out of
epoch n is related to the size of the eigenvalues λn

i for the unstable dimensions i > n. The
larger these eigenvalues, the more quickly the population will move away from the metastable
region once an unstable dimension is explored. From equation 6.23 we see that for larger q the
eigenvalues λn

i , given by the fitness ratios fi/fn, approach 1. This means that the innovations
become less steep for larger values of q, which is indeed what we have observed.

From the fact that the eigenvalues λn
i approach 1 for larger q, it also follows that the

fitness fluctuations in an epoch increase with q. This is because the smaller the stable-direction
eigenvalues {λn

i : i < n}, the more strongly the population is restored to the epoch center after
a fluctuation. So if these eigenvalues increase toward 1, the fitness fluctuations increase as well.
From the fact that the stable-direction eigenvalues {λn

i : i < n} are larger and so closer to 1
for higher n, we also see that later epochs have larger fitness fluctuations than early ones (e.g.,
see figure 1(d)). We will discuss the size of the fitness fluctuations in more detail in section 6.8
below.

Finally, we see that the unstable-direction eigenvalues {λn
i : i > n} for large n are smaller

than those for small n. From this, it follows that later innovations are, in general, less steep
than early ones (e.g., see figures 1(a) and 1(d)). Following up this line of qualitative analysis,
in the next section we estimate the innovation times quantitatively from the values of λn

i .

Recapitulating, we have argued that the main qualitative features of epochal evolution can
be understood in terms of the eigenvalues λn

i of the Jacobian matrix in the vicinity of the
nth epoch. In the following sections we will use these eigenvalues to make more quantitative
predictions about the epochal behavior.

6.7 Innovation Durations

We now estimate the expected time for an innovation from the nth to the (n + 1)st epoch to
take place. During the nth epoch the proportion of individuals with fitness n + 1 is 0. When
some individual finds a new aligned block it will either start spreading through the population
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or it will be lost through a sampling fluctuation. (See figure 1 for examples of this loss.) We
are interested in the time it takes a string with the new aligned block to fully spread through
the population once the string appears and continues to spread through the population. (For
convenience in this section we take the time of this first appearance to be t = 0.) Thus, we
will assume that the effects of the finite population sampling noise can be neglected during the
innovation.

Thus, we refer to the time at which the epoch n + 1 begins as t = 0. At this time, the
number of individuals with fitness n + 1 is 1; that is, Pn+1(0) = 1/M . From that time on, Pn+1

increases until it reaches the equilibrium value P n+1
n+1 of the (n + 1)st epoch. In going from the

nth to the (n + 1)st epoch, the population moves in the direction of the Jacobian eigenvector
~Un+1 = ~P n+1 − ~P n. Thus, during the innovation from the nth to the (n + 1)st epoch, we can

write the fitness distribution ~P (t) of the population as a linear combination of the nth epoch

eigenvector ~P n and the (n + 1)st epoch eigenvector ~P n+1:

~P (t) = (1 − α(t))~P n + α(t)~P n+1, (6.26)

with the initial condition α(0) = 1/M . One should interpret α as giving the decomposition of
the fitness distribution during the innovation in terms of the lower and higher epoch distribu-
tions. During the innovation the balance shifts from the lower epoch α ≈ 0 to the higher epoch
α ≈ 1.

Applying the generation operator to the fitness distribution in equation 6.26 and using the
fact that the epochs correspond to eigenvectors of the generation operator, we find for the
evolution of α(t) that

α(t + 1) =
fn+1

fn+1α(t) + (1 − α(t))fn

α(t). (6.27)

Assuming that α(t) changes slowly and smoothly as a function of time, we can deduce a
differential equation from the above equation:

dα

dt
≈ α(t + 1) − α(t) = γnα

1 − α

γnα + 1
, (6.28)

where

γn =
fn+1 − fn

fn

(6.29)

is the relative increase in fitness from the nth to the (n + 1)st epoch. It is possible to solve
equation 6.28 analytically to obtain t as a function of α:

t =
1

γn

[

log(Mα) − (1 + γn) log
M(1 − α)

M − 1

]

, (6.30)

where we have used the boundary condition α(0) = 1/M . In general it is impossible to invert
equation 6.30 analytically to obtain α as a function of t. Nonetheless, we can use equation 6.30
to obtain an estimate of the duration tn of the innovation from the nth to the (n + 1)st epoch.
We consider the innovation to have ended once α has reached the level 1−1/M . Since we treat
α as a continuous variable, it will approach 1 only asymptotically. For the finite population
case we truncate this continuous dynamics at α = 1 − 1/M and solve for tn, finding that

tn =
2 + γn

γn

log[M − 1]. (6.31)
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This equation has a simple interpretation. γn gives the relative fitness increase from the nth to
the (n + 1)st epoch. The innovation duration is roughly inversely proportional to this relative
fitness increase. The innovation duration, in addition, is proportional to the logarithm of the
population size. The logarithm of the population size apparently controls the “inertia” of the
distribution with respect to innovations. Certainly, a single more-fit string will take longer
to dominate a larger population. And since replication is exponential in time, one obtains a
logarithmic dependence on M .

Expanding γn to first order in the mutation rate q and setting log[M − 1] ≈ log[M ] we find
that

tn = [1 + 2n + 2Kn(n + 1)q] log M + O(q2). (6.32)

We see that the innovation duration is proportional to the epoch level and the logarithm of the
population size. Furthermore, it is clear that increasing the mutation rate makes the innovations
less steep.

We can also approximate α(t) from equation 6.28 by neglecting the small term γnα in the
denominator.10 Equation 6.28 then turns into the well known logistic growth equation, which
can be solved analytically:

α(t) =
exp(γnt)

exp(γnt) + M − 1
. (6.33)

Again, the speed of the innovation is controlled by the relative fitness increase γn from the nth

to the (n + 1)st epoch. The average fitness 〈f(t)〉 during the innovation is proportional to α(t):

〈f(t)〉 = fn + (fn+1 − fn)α(t). (6.34)

Figures 9(a) and 9(b) plot the theoretical predictions for the average fitness (thick lines)
during the innovations between the third and fourth and eighth and ninth epochs, respectively,
for the parameter settings N = 10, K = 6, q = 0.001, and M = 500. The thin lines in
figures 9(a) and 9(b) give some examples of the empirically observed innovations from runs of
the GA. Figure 9(a) shows the innovation from just one run with these parameter settings. It
is clear that the logistic growth approximation of the innovation gives an accurate prediction of
the shape and length of this innovation. Figure 9(b) shows the innovation between the eight and
ninth epoch from three different runs. At higher epochs there are large fitness fluctuations11

and the exact shape of the innovations differs from run to run. Still the theory accurately
predicts the average shape of the innovation as can be seen from figure 9(b). The predicted
innovation durations in the above cases are t3 ≈ 32 and t8 ≈ 98, respectively.

6.8 Fitness Fluctuations

The finite population dynamics in and around the epochs is, of course, essentially stochastic
and cannot be modeled by deterministic dynamical equations. From here on, we therefore have
to turn to stochastic equations describing the evolution of a probability distribution Pr[~ε, t]
which gives the probability that the population is a distance ~ε away from some epoch center
~P n at time t. We will model the evolution of Pr[~ε, t] by means of a diffusion (or Fokker-
Planck) equation, where the average change per generation of ~ε is determined by the Jacobian

10Since γn ≈ 1/n and α < 1 this approximation is justified, especially for later epochs and for the small α at
the start of the innovation.

11This will be discussed in the next section.
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Figure 9: Innovation between the third and fourth (a) and eight and ninth (b) epochs for GA
runs with parameters N = 10, K = 6, q = 0.001, and M = 500. (See figure 1(d).) The thick
lines give the theoretical predictions of the innovation curves. The thinner lines show examples
of these innovations from runs of the GA.

eigenvalues λn
i of epoch n and the fluctuations due to the finite population sampling occur

as a Gaussian-noise diffusion. The idea of using continuous-variable diffusion models, like the
Fokker-Planck equation, to solve for the stochastic dynamics of gene frequencies in a population
was developed by the population geneticist Kimura, see [27]. This type of stochastic model
assumes that gene frequencies, such as Pi or εi, can be approximated by real variables and that
the gene frequencies change slowly over a single time step. (See [22] for a recent overview of
the validity of the diffusion models in this context.)

Using the average fitness levels in each epoch, we can now estimate the size of the fluctuations
about those levels. During a fitness epoch the population jumps around on a set of different
lattice points in ΛM surrounding the epoch’s center ~P n. From the Jacobian matrix DG(~P n)
we can derive the form of the flow in the vicinity of the fixed point. The difference vectors
~U i = ~P i − ~P n between the different epoch locations and the location of the epoch of interest
form a natural basis for modeling the fluctuations around the epoch center. We will therefore
expand the fluctuation dynamics in terms of the Jacobian eigenbasis.

First, assume that the population fitness distribution ~P resides near the epoch center ~P n:

~P = ~P n +
n−1∑

i=0

εi
~U i, (6.35)

where ~ε = (ε0, . . . , εn−1) is a small deviation vector. In one time step, the vector ~P is expected

to go to 〈~P ′〉, which is given by

〈~P ′〉 = G(~P ) = ~P n +
n−1∑

i=0

fi

fn

εi
~U i. (6.36)

That is, the deviation ~ε is expected to scale down by a factor of fi/fn in each direction ~U i.
From the above equation we can now calculate the expected change 〈dεi〉 of the deviation in
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direction ~U i:

〈dεi〉 =

(
fi

fn

− 1

)

εi. (6.37)

To simplify notation, we define the relative fitness decrease of epoch i with respect to epoch n:

µi =
fn − fi

fn

. (6.38)

Then equation 6.37 takes on a simple form:

〈dεi〉 = −µiεi. (6.39)

Thus, fluctuations in direction ~U i die off exponentially on average with rate µi. Note that this
rate is smallest in the direction of the higher-fitness epochs.

Equation 6.39 gives the expected change of εi around the epoch center ~P n. Of course, there
will be fluctuations in this change due to finite-size sampling. In equation 6.1 we saw that
the probability for going from state ~P to state ~P ′ is a multinomial with mean G(~P ). From
this we can derive expressions for the expected second moments of the change in the fitness
distribution:

〈dPidPj〉 =
Pi(δij − Pj)

M
. (6.40)

From this we can derive the second moments of the change in the fluctuation vector 〈dεidεj〉.
To this end we transform the components Pi to the basis of the epoch centers ~P i. We first
define the similarity transformation matrix Rij = P j

i . Using its inverse, we can calculate the

change of fluctuations in direction ~U i:

εi =
n−1∑

i=0

R−1
ij Pj. (6.41)

Note that the sum goes from 0 to n − 1 and not up to n, since the component εn is not
independent of the others. (It is determined from the requirement that the fitness distribution
vector be normalized.) Using equations 6.40 and 6.41 the second moments of the change in the
fluctuations are given by

〈dεidεj〉 =
n−1∑

k,m=0

R−1
ik R−1

jm

Pk(δkm − Pm)

M
. (6.42)

Assuming that the fluctuations εi are small compared to the epoch center components ~P n
i , we

can approximate ~Pi by ~P n
i in the above formula and find

〈dεidεj〉 =
n−1∑

k,m=0

R−1
ik R−1

jm

P n
k (δkm − P n

m)

M
≡ Bij

M
, (6.43)

where the components Bij depend only on the location of the current epoch center ~P n.

So that we can use the Jacobian matrix approximation to the dynamics, we assume that the
population size is large enough to keep the fluctuations localized in the area around the epoch
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center. Then we can use equations 6.39 and 6.43 to approximate the stable limit distribution
Pr[~ε ] of the fluctuations that occur while the population resides in epoch n. The distribution
Pr[~ε, t] gives the probability of finding the population at a deviation ~ε from the epoch center
at any particular time t during the epoch. This distribution can be obtained by solving the
multivariate Fokker-Planck equation associated with the drift term of equation 6.39 and the
diffusion term given by equation 6.43. This is

∂Pr[~ε, t]

∂t
= −

∑

i

∂〈dεi〉Pr[~ε, t]

∂εi

+
1

2

∑

i,j

∂2〈dεidεj〉Pr[~ε, t]

∂εi∂εj

. (6.44)

As t → ∞, the asymptotic (stationary) solution of the above equation is a multi-dimensional
Gaussian peak around ~ε = 0 for the case of constant 〈dεidεj〉 [43]. This is given by

Pr[~ε ] =
1

√

(2π)nDet[C]
exp

[

−1

2

n−1∑

i,j=0

εiC
−1
ij εj

]

, (6.45)

where the matrix C determines the second moments of the distribution. It is given by

Cij = 〈εiεj〉 =
Bij

M(µi + µj)
. (6.46)

Of course, the means are all 0:
〈εi〉 = 0. (6.47)

Using equation 6.45 we can solve for the expected fitness fluctuations during an epoch. With
some algebra we find that the fitness variance Var[f ] in epoch n is given to first order in q by

Var[f ] =
Kn3q

2M
. (6.48)

This shows rather transparently that the fluctuations scale inversely with the population size
M and proportionally to the cube of the epoch number n.

Figures 10, 11, and 12 show the above analytical prediction of the fitness fluctuations during
various epochs. The grey bands show the average fitness in the epochs plus and minus two
standard deviations, given by σn =

√

Var[fn]. Figure 10 shows the fitness fluctuations for our
canonical parameter settings N = 10, K = 6, q = 0.001, and M = 500. Figure 11 shows the
fitness fluctuations for the same parameter settings, only with an increased mutation rate of
q = 0.002. By comparing these two figures, it is clear that increased mutation rate increases
the size of the fitness fluctuations during the epochs. As predicted by the analysis, the fitness
fluctuations increase by a factor of roughly

√
2. Finally, figure 12 has the same parameter

settings as figure 10, except for a lower population size of M = 50. As predicted, the fitness
fluctuations increase by a factor of approximately

√
10.

6.9 Destabilizing Fluctuations and the Error Threshold

We saw that for high-fitness epochs the proportion of individuals in the highest fitness class
decreases with the square of the epoch number n:

P n
n = (1 − n2Kq) + O(q2). (6.49)
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Figure 10: Predicted size of the epoch fitness fluctuations to two standard deviations, given by
the grey bands. The parameters for this run are N = 10, K = 6, q = 0.001, and M = 500.
This is the same run as was plotted in figure 1(d).
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Figure 11: Predicted size of the fitness fluctuations during the epochs, plotted up to two
standard deviations using the grey bands. The parameters for this run are N = 10, K = 6,
q = 0.002, and M = 500. Cf. figure 10.
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Figure 12: Predicted size of the fitness fluctuations during the epochs, plotted up to two
standard deviations using the grey bands. The parameters for this run are N = 10, K = 6,
q = 0.001, and M = 50. This is the same run as was plotted in figure 1(g).)

For high-fitness epochs, in the large N case when there are many possible epochs, the proportion
P n

n of strings in the highest fitness class can eventually become so small that there is an
appreciable chance that all individuals in the highest fitness class will be lost through a sampling
fluctuation. When this happens, the fitness distribution will fall back to the distribution ~P n−1

of epoch n−1 just below. If, after some time, the nth block is rediscovered and spreads through
the population, the distribution will move up again to the nth epoch. This is exactly the process
that causes the intermittent epochal behavior seen in figure 1(g).

We can obtain a rough magnitude estimate for the epoch at which one begins to observe
this intermittency. Assume that the population resides at the epoch center. In generating the
population for the next time step, each string has a probability P n

n to be of fitness class n.
Therefore, using equation 6.12, the probability Pr(f 6= n) that none of the strings will be in
class n is given by

Pr(f 6= n) = (1 − P n
n )M ≈ (n2Kq)M . (6.50)

Demanding that this probability is of the order of (say) 1%, we can calculate for which
epoch level n this condition is satisfied as a function of K, q, and M . For the case of N = 10,
K = 6, q = 0.001, and M = 50, we find n ≈ 12. From figure 12, we see that by epochs 9 and
10 the intermittency has set in. The crude estimate given above apparently underestimates the
fluctuations in the proportion of individuals in the highest fitness class Pn. Using an analysis
similar to that in the last section, we will now calculate more precisely the average time —the
“destabilization” time— that the population spends in epoch n until all individuals with fitness
n are lost through a sampling fluctuation.

To calculate the average destabilization time, we consider the dynamics of the fluctuations
εn in the component Pn of the fitness distribution near the epoch center. That is, let

Pn = P n
n + εn. (6.51)

The deviation εn will fluctuate up and down while the population resides in the epoch. It can
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become at most εn = 1 − P n
n , corresponding to all strings fitness n, and when it becomes −P n

n

all individuals with fitness n are lost and the epoch becomes unstable. We therefore want to
calculate the average time it takes until εn = −P n

n for the first time.

The deviation εn just compensates the sum of the deviations εi in the eigenvector directions
~U i of the Jacobian12. That is,

εn = −P n
n

n−1∑

i=0

εi. (6.52)

After one time step the component Pn will on average move to

〈P ′
n〉 = P n

n − P n
n

n−1∑

i=0

fi

fn

εi ≡ P n
n + λεn, (6.53)

where we have defined λ as the factor by which the fluctuation εn is scaled down. Of course,
in general λ depends on the particular distribution of the fluctuations εi over the different
directions. In the previous section we saw that the fluctuations εi during an epoch are all
approximately normally distributed around the epoch center. As an approximation, we will
assume that the fluctuation in direction i is proportional to the variance 〈ε2

i 〉. We then obtain

λ =

∑n−1
i=0 fi〈ε2

i 〉
fn

∑n−1
j=0 〈ε2

j〉
. (6.54)

With the above definition of the average scale factor, we can obtain the expected change in the
fluctuation:

〈dεn〉 = −(1 − λ)εn ≡ −µεn, (6.55)

where the second equality defines the coefficient µ. We can again approximate the expected
change in the square of the deviation by the size of the sampling fluctuations at the epoch
center:

〈(dεn)2〉 = 〈(dPn)2〉 ≈ P n
n (1 − P n

n )

M
. (6.56)

Since the above (diffusion) term is again a constant, the problem reduces to that of the first
passage time of a homogeneously diffusing particle in a potential field (see [21]). The solution
for the average time T (0) for the fluctuation to reach εn = −P n

n for the first time, given that
the process starts with a fluctuation ε = 0, is given by

T (0) =
MP n

n

1 − P n
n

+
π

2µ
erfi

[√

MµP n
n

1 − P n
n

]

erf

[√

Mµ(1 − P n
n )

P n
n

]

, (6.57)

where erf(x) is the error function and erfi(x) = erf(ix)/i is the imaginary error function. Similar
waiting time distributions for evolutionary processes were derived by Kimura [29].

Table 1 shows the average times Tn(0), starting from the epoch center ε = 0, for some
of the epochs of figure 1(g) with N = 10, K = 6, q = 0.001, and M = 50. Comparing these
average destabilization times with figure 1(g) we see that they give reasonable predictions of the
average epoch stability times. The above numbers should be seen as an “order of magnitude”
estimate. They are rather sensitive to the exact value of P n

n and since our calculation of P n
n

essentially involves approximations, so do the above destabilization times. They do, however,
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T6(0) T7(0) T8(0) T9(0) T10(0)
3 × 1013 4.8 × 108 9.9 × 105 2.5 × 103 2600

Table 1: Average destabilization times Tn(0) for some epochs (n = 6 − 10) in the Royal Road
GA with N = 10, K = 6, q = 0.001, and M = 50. These were the parameters used for the run
plotted in figure 1(g).

T3(0) T4(0) T5(0) T6(0)
1.7 × 1022 5.5 × 108 21 × 103 375

T7(0) T8(0) T9(0) T10(0)
65 28 15 9

Table 2: Average destabilization times Tn(0) for some epochs (n = 3 − 10) in the Royal Road
GA with N = 10, K = 6, q = 0.005, and M = 50. These were the parameters used for the run
plotted in figure 1(h).

nicely explain the occurrence of the intermittent behavior seen around epochs 9 and 10 in this
run.

Table 2 shows the average destabilization times for some of the epochs of figure 1(h), which
has an increased mutation rate of q = 0.005. These predictions demonstrate why the fitness of
the population gets trapped in a band that is set by the average fitnesses of the fifth and eighth
epochs. Epoch 8 destabilizes so quickly that the population has almost no chance to find a
ninth aligned block. Even if it could, it would not have time to stabilize on that epoch, since the
innovations duration itself is longer than the destabilization time. The destabilization times are
so short compared to innovation durations in this case that epochs are very hard to distinguish,
if they can be distinguished at all. For these parameters the dynamics is almost completely
governed by the fluctuations of the finite population sampling. Selection and mutation cannot
stabilize the population against these sampling fluctuations, though they do set the bounds on
this range. We find f5 − 2σ5 ≈ 4 and f8 + 2σ8 ≈ 7 which exactly matches the band within
which the fitness fluctuates in figure 1(h). For fitnesses below 4 selection pushes the population
up against the sampling fluctuations. For fitnesses above 7 the mutations push the population
down against the sampling fluctuations. The same mechanism is at work in figure 1(e). Here,
too, the size of the fluctuation band is explained by the above analysis. For N = 10, K = 6,
q = 0.0075, and M = 500 (run 1(e)) we find that epoch 7 is still stable for 48× 103 time steps,
epoch 8 for about 226 time steps, epoch 9 for 35 time steps, and finally the tenth epoch is stable
only for about 13 time steps on average. We find for the fluctuation band f7 − 2σ7 ≈ 4.7 and
f9 + 2σ9 ≈ 7.1 which again explains the data from figure 1(e).

Destabilization is very closely related to the so-called “error threshold” of self-replicating
molecules in the theory of molecular evolution [42]. It was found that when the size of the
genome and the selection pressure are kept constant and the mutation rate is increased, there
is a sharp transition from a regime where the most fit genotype is always in the population to
a regime where it will almost always be lost. This transition point is referred to as the “error
threshold”. In a complementary way, for a fixed mutation rate, there will be an equivalent “size
threshold” on increasing genome length since mutations anywhere in the genome will reduce its
fitness. Above a certain critical size the mutations will out-compete selection and the fittest

12Note that U i

n
= −Pn

n
since P i

n
= 0 for all i < n.
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genotype will be lost.

This is analogous to what happens in the Royal Road GA. Under constant mutation rate
there is a certain upper limit on the number of aligned blocks that selection can keep in the
population. In the above cases this threshold occurred around 9 and around 5 blocks for runs
1(g) and 1(h), respectively. In the region of the critical number of blocks this leads to inter-
mittent behavior in the average fitness. The population “hops” between different epochs when
either the highest fitness string is lost through a fluctuation or a new block is (re)discovered and
spreads through the population. When the intermittency time becomes shorter than the inno-
vation durations, epochal behavior disappears, and the population seems to fluctuate randomly
in a wide band that encompasses several epoch levels.

We see that there is a functional genome-length Ln = nK versus mutation rate threshold
in this GA. Our analysis also establishes a population size M versus mutation rate q error
threshold. This suggests that there is a critical error-threshold surface in the three dimensional
phase space spanned by the parameters M , q, and Ln.

7. Epoch Durations

We will now turn to the most important feature of Royal Road GA behavior that remains to be
addressed—namely, the average length of the fitness epochs. Until now, almost all behavioral
features could be understood in terms of the epoch fitness levels fn and the epoch centers ~P n.
We will investigate to what extent the same analysis can be used to predict the average epoch
durations.

The ending of an epoch has two phases. First, a string has to be created of higher fitness
than currently exists in the population. Thus, if the population resides in epoch n, a string
of at least fitness n + 1 has to be created by mutation. Second, this string has to be able to
spread through the population if the population is to leave epoch n. Especially for higher-
fitness epochs, where the relative fitness increase of new strings with respect to the old strings
becomes small (i.e., proportional to 1/n), it is likely that the best string will be lost through
a sampling fluctuation before it gets a chance to spread through the population as was first
shown by Fisher [18].

7.1 Creation of a Higher Fitness String

We will first calculate the probability that a string with fitness n + 1 or higher is created while
the population resides in the nth epoch. During the nth epoch the fitness distribution is given by
~P n on average and the population resides in the n-dimensional subsimplex. The probability for
the population to remain in the subsimplex over one generation is the chance that all individuals
of the new generation have fitness smaller or equal to n. When an individual is selected and
mutated for the new generation, the probability Pr[in] that it will have a fitness i ≤ n and thus
remain within the subsimplex is given by:

Pr[in] =
n∑

i=0

Gi(~P n) =
n∑

i=0

Gn
i (~P n) =

∑

i

en

fn

~P n
i =

en

fn

. (7.1)

The first equality follows from the fact that, given the epoch distribution ~P n, the probability
to create a string of fitness i is determined by the ith component of the generation operator
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acting on ~P n. The second equality notes that by restricting ourselves to i ≤ n, the component
i of the generation operator acting on ~P n is equal to the restricted operator component Gn

i .

The third equality uses the fact that ~P n is an eigenvector of the linearized restricted operator
G̃n with eigenvalue en. The final equality uses the fact that ~P n is normalized to one.

The probability that all M individuals remain in the subsimplex is given by Pr[in]M . The
probability Pr[out] that one or more individuals have jumped out of the subsimplex, by creating
a string with fitness greater than n, is

Pr[out] = 1 −
[
en

fn

]M

. (7.2)

We will assume that the population resides at the epoch center and therefore has the same
probability Pr[out] at each time step to jump out of the epoch. The expected number of time
steps τn until the population jumps out of the epoch n subsimplex is then given by

τn =
1

Pr[out]
=

fM
n

fM
n − eM

n

. (7.3)

For small q or large K, the probability A to align a block is small and we can expand to
leading order in A to find:

τn =
1

M(N − n)A
. (7.4)

Thus, the expected number of generations τn to jump out of epoch n is inversely proportional
to the probability A to align a block, the population size M , and the number of unaligned
blocks N −n. We now investigate the probability that the new higher-fitness string will spread
through the population.

7.2 Takeover of the Population by a Higher Fitness String

When a string of fitness (n + 1) is created, the initial proportion Pn+1 of such strings is 1/M .

Using the results from section 6.7 we see that the expected change 〈dPn+1〉 per time step is
given by

〈dPn+1〉 =
fn+1 − fn

fn

Pn+1 = γnPn+1, (7.5)

for small Pn+1. The second moment of the change dPn+1 is given by the sampling fluctuations:

〈(dPn+1)
2〉 =

Pn+1(1 − Pn+1)

M
. (7.6)

Assuming that the change per time step is dominated by these first two moments, we can solve
for the probability π(p) that the new higher-fitness string will spread through the population
and eventually reach proportion P n+1

n+1 , given that it initially has proportion p. To solve for
π(p) we use the backward Fokker-Planck equation:

∂π(p, t)

∂t
= 〈dPn+1〉

∂π(p, t)

∂p
+

〈(dPn+1)
2〉

2

∂2π(p, t)

∂p2
, (7.7)
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where π(p, t) is the probability that the higher fitness string will have reached P n+1
n+1 by time t.

The probability π(p) that the mutant will spread, is given by the limit of π(p, t) as t goes to
infinity. This calculation was first done by Kimura in 1962 [26] in the context of the drift of
the frequency of a certain genotype in a population. The solution is

π(p) =

∫ p

0
G(x)dx

∫ P n+1

n+1

0
G(x)dx

, (7.8)

where, for our case, the function G(x) is given by13

G(x) = (1 − x)2Mγn . (7.9)

Performing the integral, we obtain

πn ≡ π(
1

M
) =

1 −
(
1 − 1

M

)2Mγn+1

1 −
(
1 − P n+1

n+1

)2Mγn+1
≈ 1 − e−2γn , (7.10)

where we have set the initial proportion p = 1/M . The approximation on the right-hand side
holds only for large population sizes. Equation 7.10 tells us that the population has to find a
better string 1/πn times on average before it finally moves from the nth to the (n + 1)st epoch.
Therefore, the total average time Tn the population spends in epoch n is

Tn =
τn

πn

=
fM

n

(fM
n − eM

n )(1 − exp(−2γn))
. (7.11)

For small q or large K this becomes

Tn =
1

M(N − n)A [1 − exp(−2/n)]
. (7.12)

As we found in section 6.8, the fitness fluctuates around fn during the nth epoch in an
approximately Gaussian way with the standard deviation given by

σn =

√

Kn3q

2M
. (7.13)

We thus find the average number of time steps Tn(f) that the population has fitness f during
epoch n is given by

Tn(f) =
Tn√
2πσn

exp

[

−1

2

(
f − fn

σn

)2
]

. (7.14)

We performed experiments to test these theoretical predictions by accumulating histograms
of the average number of time steps 〈T 〉 that the population has fitness f during a run, averaged
over a large number of runs. Figure 13 shows the results of such an experiment for the parameter
setting N = 10, K = 6, M = 500, and q = 0.001 of run 1(d) together with the theoretical
predictions for the peaks at these parameter settings. The inset plot shows a magnification of

13This function is an essential quantity in the diffusion equation method. It’s obtained by taking the expo-
nential of the integral of the ratio 〈dx〉/〈dx2〉.
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Figure 13: Empirical (upper curve) and theoretical (lower curve) fitness histograms. The
horizontal axis shows the average fitness and the vertical axis shows the average number of
time steps the population has that average fitness during a GA run, averaged over 500 runs.
The parameters for this run are N = 10, K = 6, q = 0.001, and M = 500. The inset plot
shows a magnification of the peak at the 6th epoch.

the peak at the 6th epoch. The upper curves are from the experiment and the lower curves
plot the theoretical predictions (equation 7.14). As can be clearly seen from the figure the
theory substantially underestimates the average lengths of the epochs found at this parameter
setting. As shown before, the widths and locations of the peaks are correctly predicted by the
theory. The empirically observed averages are offset vertically from the theoretical predictions
outside of the peak region since the theoretical curve does not take into account the time the
population spends in the innovations. This does not account, however, for the fact that the
predicted peaks are about a factor of 6 too small.

Figure 14 shows the results for the parameter setting N = 20, K = 3, M = 300, and
q = 0.001 of run 1(c) together with the theoretical predictions of the epoch duration peaks for
these parameter settings. The inset plot shows a magnification of the peaks around the 16th,
17th, and 18th epochs. Again it is clear that the theory underestimates the epoch durations;
here it does so by a factor of approximately 3. Nonetheless, it is instructive to compare the
above histogram with run 1(c). From that figure it is very hard to say how many epochs occur
and what their durations and exact locations are. The fitness histogram of figure 14 clearly
shows that the epochs are still there in the GA dynamics. They are reflected in the peaks in
the plots. With this observation in mind, we propose to define the existence of an epoch in
the dynamics by the appearance of a peak in the average-time histogram. In the empirical
curve in figure 14 at least 10 peaks can be counted. It would have been very hard to get such
a clear view of the epochal behavior from plots such as those in figure 1(c). Averaging the
average fitness at each time step from a large number of runs like that in figure 1(c) only makes
detecting epochs more difficult. Since the onset of each epoch shifts in time from run to run,
averaging the fitness values at each time step over many runs completely washes out any trace
of epochal dynamics.
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Figure 14: Empirical (upper curve) and theoretical (lower curve) fitness histograms. The
horizontal axis shows the average fitness and the vertical axis shows the average number of
time steps the population has that average fitness during the run, averaged over 500 runs. The
parameters for this run are N = 20, K = 3, q = 0.001, and M = 300. The inset plot shows a
magnification of the peaks at the 16th, 17th, and 18th epochs.

We also see from figure 14 that the distributions associated with each epoch start overlapping
at these parameters. This is, of course, the reason why the epochs are hardly discernible in
figure 1(c). In obtaining the theoretical curve for figure 14 we summed the contributions of the
peaks corresponding to the 6th through 19th epochs. It is clear from the figure that the peaks of
the 6th, 7th and 8th epochs do not actually occur in the behavior. The reason for this is that in
calculating the peaks for the epochs we assumed that the population starts in the epoch center.
In the actual behavior seen in the run the population never reaches these epoch centers.

Why do the theoretical predictions of the epoch durations markedly underestimate the
actual epoch lengths in the behavior? As noted in section 6.5 a new epoch is almost always
founded by a single individual. This means that at the start of the epoch all strings of the
current highest fitness class are essentially the same, the population is highly converged. It
is obvious in this case that assuming all unaligned blocks are statistically independent breaks
down, because all unaligned blocks in the strings of the current highest fitness class are almost
identical at the start of the epoch. The length of the epoch is very sensitive to the number of
bits set to 1 in the unaligned blocks of the epoch’s founding string. The fact that all unaligned
blocks in the population are the same at the start of an epoch will cause the epoch to be
longer on average than it would be if all unaligned blocks were independent. A more subtle but
unfortunately poorly understood effect, as pointed out in [24], is the fact that finite population
sampling in general prohibits the unaligned blocks in the population from becoming completely
independent. That is, sampling causes the strings in the population to remain correlated for all
time thereby effectively reducing the proportions of unaligned blocks that have a high fraction
of bits set to 1. These factors lead to the theory’s underestimation of the epoch durations. We
are currently studying the exact dynamics of a finite population of strings searching for a new
block while it resides in an epoch starting from a completely converged population at the start
of the epoch. The results, which will be presented elsewhere, lead to greatly improved epoch

47



duration predictions.

8. Discussion

We have seen how most of the behavioral features of the Royal Road genetic algorithm—
the appearance and disappearance of epochs, the structure of the innovations, the variation in
fitness levels and their fluctuations, and the epoch durations—can be understood in terms of the
properties of the infinite-population generation operator G. The analysis showed how the basic
balance of evolutionary “forces”—ordering due to selection, increased diversity and aligned-
block creation and destruction due to mutation, discreteness of the state space due to the
finite population, and stochasticity from finite population sampling—competed and cooperated
to produce a wide range of phenomena. Some of the trade-offs between these pressures, as
controlled by the GA parameters, were nonmonotonic and occasionally counterintuitive. As a
concise summary of these trade-offs, table 3 presents an overview of the major analytical results
we obtained for the different dynamical quantities, for small mutation rates q.

fn = n(1 − q)nK (6.17) Epoch fitness

σ2
n = Kn3q/2M (6.48) Epoch fitness fluctuations

P n
n = 1 − n2Kq and P n

n−1 = n2Kq (6.12) Epoch population

λn
i = fi/fn = i(1 − q)(i−n)K/n (6.23) Epoch stability

Tn = [M(N − n)A(1 − exp(−2/n))]−1 (7.12) Epoch duration

tn = [1 + 2n + 2Kn(n + 1)q] log M (6.32) Innovation duration

Table 3: Low mutation behavior of the Royal Road genetic algorithm: an overview of the
analytical results for small mutation rates q. n denotes the epoch number, K is the number of
bits in a block, N the total number of blocks, q is the mutation rate, and M is the population
size.

8.1 Low Mutation Rate Results

The first line shows the average fitness fn of the nth epoch. The fitness is decreased from n by
a factor that drops geometrically as a function of the number of defining (aligned-block) bits
(nK) of the epoch.

The second line gives the variance σ2
n of an epoch’s average fitness fluctuation. The fluc-

tuation amplitudes (σn) are proportional to the epoch level n to the power 3/2 and inversely
proportional to the square root of the population size M . They are also proportional to the
square root of the block size K.

The third line shows that the proportion P n
n of individuals in the highest fitness class drops

proportional to the block size K and with the square of the epoch number n. Likewise it
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shows that the proportion P n
n−1 of strings in the (n− 1)th fitness class also grows with the same

coefficient.

The fourth line gives the eigenvalues λn
i of the Jacobian matrix around the nth epoch center.

These eigenvalues determine the bulk of the epoch’s stability. In particular, they control the
epoch’s innovation and fluctuation dynamics. They can be simply expressed in terms of the
relative sizes of the epoch fitness levels fi.

The fifth line shows the theoretical predictions of the average epoch duration Tn of epoch
n to leading order in q. We have seen that these predictions underestimate the average epoch
duration. The expression is included for completeness. The theoretical epoch duration is
inversely proportional to the probability to create a block A, the population size M , and a factor
that depends on the probability, 1−exp(−2/n), that a fitter string will spread in the population.
Note, that since 1/A is proportional to 2K , the epoch duration increases exponentially with the
block length K. This explains why epochal behavior is mainly seen for large blocks.

Finally, the last line shows the average time tn taken for the innovation from the nth to
the (n + 1)st epoch. The result shows that the innovation time is proportional to 2n and to
the logarithm of the population size M . It also shows that increasing mutation decreases the
steepness of the innovations roughly in proportion to the square of the epoch number n, the
size of the blocks K, and the logarithm of the population size M .

In focusing our attention on fitness distributions we assumed that the exact inner structure
of the unaligned blocks is unimportant and can be taken as random. As we demonstrated,
this maximum entropy assumption breaks down for the calculation of the average epoch du-
rations. In general, analyzing GA behavior solely in terms of fitness distributions will work if
strings within the same fitness class act similarly under the GA dynamics. In cases where this
simplification does not work one must include additional order parameters to the describe the
projected state of the microscopic system. In the Royal Road GA a number of alternatives come
to mind. These include using a distribution of the number of 1-bits contained in the unaligned
blocks or an order parameter that describes the convergence of the bits in the unaligned blocks.
If the number of fitness classes or the number of “order parameters” in general becomes too
large, the analysis, though still appropriate in principle, will break down from a practical point
of view. The generation operator G could simply acquire too many components for it to be
theoretically or even numerically analyzed. However, under some circumstances, such as when
fitness is determined in some noisy way, different fitness classes may be grouped together to
obtain a low-dimensional G. The resulting coarse-grained fitness “landscape” itself may be
rather complicated, but as long as it is known, our analysis can also be performed even in these
cases. More interestingly, our analysis suggests that it might be enough to determine certain
statistics of the fitness landscape to be able to predict the population dynamics. For instance,
the fitness levels of the epochs depend only on the number of “defining bits” of the epoch’s
fitness class (which is roughly the logarithm of the number of strings in the fitness class).

8.2 Metastability, Unfolding, and Landscapes

The main result of the preceding analysis is our explanation of epochal evolution as an interplay
between the infinite-population flow given by G and the coarse-graining of the state space due
to finite population size. Note that this mechanism for metastability is quite general and applies
outside of evolutionary search behavior. A large number of dynamical systems in nature, as
well as evolutionary computation in general, are stochastic dynamical systems in which a large
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set of identical subsystems evolve through a state space, in parallel, and under the influence
of one another. Macroscopic states for these systems are often defined in terms of the first
moments of the distributions over the state variables of the components. A commonly observed
qualitative behavior is that the mean of some state variable alternates between periods of stasis
and sudden change. We would like to suggest that this sort of punctuated equilibrium behavior
[23] can be explained in terms of the simple mechanism presented here. In the limit of an
infinite number of subsystems the global dynamics is often much more tractable. Solving for
the “flow” through the appropriate state space in the limit of an infinite number of subsystems
can be used to identify state space regions where the flow is weakest. Then, in the case of a
finite number of subsystems, we expect the dynamics to get trapped in the weak-flow regions.
The behavioral features of the finite-size dynamics can be almost completely understood in
terms of the eigenvalues and eigenvectors of the infinite-population flow operator.

The behavior of evolutionary search algorithms is often informally described as moving
along a “fitness landscape” directly defined by a fitness function. It is clear from both our
experiments and our analysis that this geographic metaphor, originally due to Wright [46],
can be misleading. The fitness function is only a partial determinant of the dynamics. Even
with a fixed fitness function, population size, mutation rate, and other parameters of the search
process can radically alter the population dynamical behavior of the system, revealing or hiding
much of the structure in the fitness landscape. Moreover, significant features of the population
dynamics, such as the metastability and destabilization of epochs, are endogenous in the sense
that they cannot be understood from a naive analysis of the landscape alone.

Let us recall that for typical evolutionary problems the genetic sequence spaces explored
by populations are vast. In our case of bit strings with modest length L = 60, the size of the
sequence space is already 2L ≈ 1018. It is clear that at any point in time the population can
occupy only a minute proportion of the sequence space. It is therefore logical to assume that
the population in principle could become trapped in certain regions of this state space. It has
become fashionable to assume that the fitness functions over the sequence spaces that occur
for typical evolutionary search problems can be modeled as “rugged landscapes” [36]. These
rugged landscapes have wildly fluctuating fitness values even on very small genome-variation
scales and possess a large number of local fitness optima. It has been assumed that after some
time, the population is likely to be found localized around some suboptimal fitness peak in the
sequence space. This notion of locality is also common in the analysis of quasispecies in the
molecular evolution theory [12]. There, the population consists of a cloud of mutants around a
local fitness optimum called the “wild type”. A balance exists between the forces of mutation
and crossover that makes the population diffuse away from the peak and the force of selection
that tends to restore the population towards the peak. Within this view it becomes natural
to associate metastable evolutionary behavior with hopping between these local fitness optima.
The population stabilizes at the local peak until one of the mutants at the outer edge of the
quasispecies cloud discovers a new and higher fitness peak. The population is metastable until
a mutant crosses a “valley” of lower fitness towards a higher fitness peak. The local fitness
optimum therefore presents a fitness barrier that has to be crossed by an individual of the
population. The height of this barrier is determined by some measure of the “steepness” of the
local fitness peak.

This view of metastability is in sharp contrast with the mechanism presented in this paper.
Kimura was the first to advocate that many of the point mutations that occur on the molecular
level are neutral with respect to fitness [28]. There is often a large degeneracy between the
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genotype and the fitness or functionality of its phenotype—many genotypes lead to the same
or similar fitness. This means that although the fitness landscape might be rugged, there are
always neutral ridges along which the genotype can move without affecting fitness. In some
cases local optima might disappear completely from the fitness landscape, as in the Royal Road
fitness function. As we discussed in section 6.4, if we let Sn denote that subspace of all sequences
containing strings of fitness n, then there are always points in Sn that are only a single mutation
away from Sn+1. In any particular time interval, the population is not likely to be localized
in sequence space, but instead diffuses randomly within subspace Sn until one of its mutants
moves into the higher-fitness subspace Sn+1. Metastability occurs here on the phenotypic level
of fitness or functionality. As we have seen, the fitness distribution stabilizes on an epoch center
~P n, while the best individuals in the population randomly diffuse through the subspace Sn. The
fitness distribution remains stable until one of the mutants moves into Sn+1. The time that
this takes depends on the relative number of points in Sn that connect to the subspace Sn+1.
In general, there is only a very small proportion of such “portal” genotypes in Sn. (In our case
the proportion is on the order of 2−K .) The consequence is that the metastability here is due
to an entropic barrier—in which large fitness-neutral volumes must be traversed. The entropy
of the population in Sn has to increase until almost all points in Sn have been visited by the
population and a connection to Sn+1 is discovered. Thus, increased phenotypic sophistication
is reached by passing through conditions of increased genotypic disorder. This mechanism is
quite different from the metastable behavior in sequence space due to local fitness barriers. We
believe that the kind of entropy-induced metastable behavior described above is very common
in evolutionary search. It will occur as long as there is a large degeneracy between the genotype
and its actual functionality.

8.3 Future Work

We are currently studying in more detail the process of aligning blocks from a converged popula-
tion. We hope that this will eventually enable us to predict the distribution of epoch durations
in these entropic metastable states. In addition, we plan to include in the analysis other as-
pects of evolutionary systems such as crossover, geographically distributed populations with
migration, and noise in the fitness function. We are currently studying more general fitness
functions to see how the metastable behavior generalizes to those that have both entropic bar-
riers and local optima and, moreover, to determine which macroscopic variables defined on
fitness landscapes are most informative in predicting actual population dynamical behavior.

We are also investigating epochal evolution from an information and computation theoretic
point of view [7]. Selection can be seen as installing structural information from the fitness
function into the genotypes. Mutation and crossover, in contrast, can be seen as randomizing
the bits in the genetic representation and thereby destroying the information that selection has
stored in them, while providing a necessary source of genetic novelty. The genetic representation
itself—the string length and the strings’ blockiness in our simple GA—also imposes restrictions
on how much of the fitness function’s structure can be stored in the gene pool.

It is already evident from the preceding investigations that epochal dynamics leads to in-
teresting informational behaviors of the population. At an innovation, for instance, the whole
population becomes converged. This means that essentially all bits of the founder string are
stored in the population, not just the “functional” bits in the aligned block, but also the
arbitrary bits this founder string happens to have in the unaligned blocks. (This kind of phe-
nomenon has also been called “hitchhiking” in the GA literature [34].) Thus, at an innovation,
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more raw information is stored in the population than is necessary for improved fitness. During
the epoch the unaligned blocks start to diversify again and the founder string information orig-
inally stored in these unaligned blocks is destroyed. This thermalization process increases the
population entropy, but is actually a prerequisite for the search being able to find increasingly
better genotypes. We shall present this complementary thermodynamic analysis elsewhere.

Eventually, we would like to extend the analysis to evolutionary processes in which there is
a nontrivial mapping between the genotype and the phenotype, such as found in our other work
on a genetic algorithm that evolves cellular automata [8, 9], work that originally motivated the
preceding investigations. We presume that entropic metastability will also be observed in these
more complex adaptive systems as long as there is enough redundancy between a genotype and
its phenotype.
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A. Uniqueness of the Asymptotic Fitness Distribution

We will show that the matrix G̃ has only one positive definite eigenvector as was claimed in
section 5.5. Since individuals with fitness 0 have probability 0 of being selected we have Si0 = 0
and G̃i0 = 0. Because there is positive probability for any nonzero-fitness string to be selected
and since, with positive probability, mutation can take a string with fitness j into a string with
fitness i for any j and i, we have

G̃ij > 0, j > 0. (A.1)

Define a new matrix H that is the restriction of G̃ to the positive fitness subspace. This is
given by

Hij = G̃ij, i, j > 0. (A.2)

In addition, define the vector ~Q to be the N -dimensional nonzero fitness projection of the
(N + 1)-dimensional fitness distribution ~P to be

Qi = Pi , i > 0. (A.3)

We can now turn the eigenvector equation

G̃ · ~P = f ~P (A.4)

into an eigenvector equation for H,
H · ~Q = f ~Q, (A.5)

and into an equation for the zeroth component P0,

P0 = f−1

N∑

j=1

G̃0jPj. (A.6)

52



Since H is a positive definite matrix, Perron’s theorem applies: H has a unique positive
definite eigenvector, the eigenvalue of which is larger than all other eigenvalues. This means that
H has a unique positive eigenvector ~Qmax with maximal eigenvalue fmax. Since all components
G̃0j are positive we have from equation A.6 that P0 is positive. Specifically, we have

P0 =

∑N

j=1 G̃0jQ
max
j

fmax

(A.7)

and so ~P = (P0, Q1, . . . , QN) is the unique eigenvector of G̃ with maximal eigenvalue. Since all

other eigenvectors of H have at least one negative component, the above eigenvector ~P is the
unique positive definite eigenvector of G and therefore ~P is the only eigenvector of G that can
be interpreted as a fitness distribution.

B. Finite Population Dynamics Convergence in the Infinite Population Limit

We will show that as the population size increases, the finite population dynamics approaches
arbitrarily closely the infinite population dynamics for any finite number of time steps T .
The proof presented here is a more elaborate version of a proof that was outlined in [35].
(Useful mathematical background can be found in [17].) Note that we will prove that the
finite population dynamics converges towards the infinite population dynamics as given by
G, provided that G accurately describes the dynamics of fitness distributions for an infinite
population.

In the infinite population limit the dynamics is deterministic. Let ~I(t) denote the fitness
distribution at time t in the infinite-population limit. For the finite population the dynamics in
fitness distribution space is stochastic. Let ~P (t) denote the finite population fitness distribution
at time t. We define the distance between the ith component of the finite population fitness
distribution and the infinite population fitness distribution at time t to be

δi(t) = |Ii(t) − Pi(t)|. (B.1)

At time t = 0 the fitness distribution for the finite population is taken to be the infinite
population distribution ~I(0). Using equation 6.1 for the transition probabilities we can calculate

the probability that δi(1) > ε for some arbitrary component, 0 ≤ i ≤ N . The vector ~P (1) is

given by a multinomial sample of size M of the expected distribution ~I(1) = G(~I(0)). Using
Chebysev’s inequality we find that

Pr[δi(1) > ε] ≤ Ii(1)(1 − Ii(1))

Mε2
≤ 1

4Mε2
, (B.2)

using the inequality x(1 − x) ≤ 1/4.

With the above inequality on the transition probabilities we can prove that for any γ < 1,
any β > 0, and any finite number of time steps T , there is a population size M such that
for populations larger than M with probability at least γ, any component ~Pi(t) of the fitness

distributions ~P (t) stays within β of the infinite population trajectory. Specifically, we want to
prove that for sufficiently large populations one has

Pr [δi(1) ≤ ε(1) and δi(2) ≤ ε(2) and . . . and δi(T ) ≤ ε(T )] > γ, (B.3)
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where the ε(t) are uniformly smaller than the chosen bound β for all t. Since the process has
the Markovian property that the next fitness distribution depends only on the current one, we
can factor the left-hand side of B.3 into conditional probabilities:

Pr [δi(1) ≤ ε(1)]
T−1∏

t=1

Pr [δi(t + 1) ≤ ε(t + 1)|δi(t) ≤ ε(t)] . (B.4)

Thus, we need to bound each of these conditional probabilities. Given a population with fitness

distribution ~P = ~I(t) + ~δ(t), the expected distribution ~P ′ at the next time step is G(~P ). To

first order in ~δ(t) this is given by

〈~P (t + 1)〉 = G(~I(t) + ~δ(t)) = ~I(t + 1) + DG · ~δ(t) + O(δ2), (B.5)

where the Jacobian matrix DG is evaluated with ~I(t):

DGij =
G̃ij − jIi(t + 1)

f(t)
, (B.6)

where we denote the average fitness of the infinite population distribution ~I(t) as f(t). We now
need to place an upper bound B on the absolute values of the eigenvalues of this matrix such
that we can write ∣

∣
∣
∣
∣

N∑

j

DGijδj(t)

∣
∣
∣
∣
∣
≤ Bδi(t). (B.7)

The bound B is nothing other than the norm of the matrix DG, which we can obtain by

explicitly substituting a vector ~δ into equation B.6,

DG · ~δ =
G̃ · ~δ − ~I(t + 1)〈δ〉

f(t)
, (B.8)

where 〈δ〉 =
∑N

j jδj. Since fi ≥ 0, Ii(t+1) > 0, and δi > 0 for all i, the two terms in the above
expression are of opposite sign and therefore the norm of the above expression is bounded by
the norm of the larger of the two terms. That is, we have

∣
∣
∣
∣
∣

N∑

j

DGijδj(t)

∣
∣
∣
∣
∣
≤ max{|(G̃ · ~δ)i|

f(t)
,
Ii(t + 1)〈δ〉

f(t)
} ≤ N

f(t)
δi. (B.9)

Here we have used the inequalities 〈δ〉 ≤ N , Ii(t + 1) ≤ 1, and fN ≤ N , with fN being the

largest eigenvalue of G̃. We can therefore write

|〈Pi(t + 1)〉 − Ii(t + 1)| ≤ N

f(t)
δi(t). (B.10)

Using Chebysev’s inequality again on the multinomial transition probabilities we obtain

Pr [|Pi(t + 1) − 〈Pi(t + 1)〉| > ε] ≤ 1

4Mε2
. (B.11)
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Furthermore, we have that

|Pi(t + 1) − 〈Pi(t + 1)〉| ≤ ε ⇒ δi(t + 1) ≤ ε +
N

f(t)
δi(t) . (B.12)

Now, if we define

ε(t + 1) = ε +
N

f(t)
ε(t), (B.13)

then we find that

Pr [δi(t + 1) ≤ ε(t + 1)|δi(t) ≤ ε(t)] > 1 − 1

4Mε2
. (B.14)

Looking over a series of time steps, if we define

ε(t) =
t−1∑

n=0

ε

[
N

f(t)

]n

(B.15)

and take ε(1) ≡ ε, then we find for the joint probability of equation B.4 that

Pr [δi(1) ≤ ε(1) and δi(2) ≤ ε(2) and . . . and δi(T ) ≤ ε(T )] >

[

1 − 1

4Mε2

]T

. (B.16)

Requiring this probability to be greater than γ we obtain

M >
1

4ε2(1 − γ
1

T )
. (B.17)

We also require that ε(t) < β for all t ≤ T . From the definition of ε(t), we see that this
requirement implies

ε(T ) < β ⇒ ε < β

[
T−1∑

n=0

(
N

f(t)

)n
]−1

≡ β

c[T ]
, (B.18)

where

c[T ] =
T−1∑

n=0

(
N

f(t)

)n

. (B.19)

Concluding, we see that if we choose M such that

M >
c[T ]2

4β2(1 − γ
1

T )
, (B.20)

then, for all t ≤ T , the δi(t) are smaller than β with probability greater than γ. Since the right-
hand side in B.20 is finite for any finite T , γ < 1, and β > 0 we can always find a population
size M such that the above inequality is satisfied. This concludes the proof. Note that if we
take the limit T → ∞ there is no finite population M for which the deviations δi(t) remain
arbitrarily small for arbitrary time.
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