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• Reconstructability Analysis (RA) = a probabilistic 
graphical modeling methodology

• RA = Info theory + Graph theory

• Graphs, applied to data, are models:
• node = variable; link = relationship

• RA uses not only graphs (a link joins 2 nodes), 
but hypergraphs (a link can join 2 nodes)

WHAT IS RA?
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WHY RA MIGHT BE OF INTEREST TO YOU 1/2

• Can detect many-variable or non-linear
interactions not hypothesized in advance, i.e., it is 
explicitly designed for exploratory search

• Transparent (not black box), easily interpretable
• Designed for nominal variables
• Can also analyze continuous variables via binning
• Prediction/classification, clustering/network models
• Time series, spatial analyses
• Overlaps common statistical & machine-learning

methods (but has unique features)
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WHY RA MIGHT BE OF INTEREST TO YOU 2/2

• Web-accessible user-friendly software (OCCAM) 
• Analyses at 3 levels of refinement:

– coarse (very fast, many variables)
– fine (slower, 100s of variables)
– ultra-fine (slow, < 10 variables) 

• Standard application: frequency data f(Ai, Bj, Ck, Zl)
• Variety of non-standard capabilities

– Data: set-theoretic relations & mappings
– Predict continuous variables
– Integrate multiple inconsistent data sets
– Regression-like Fourier version 
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PAST/PRESENT RA APPLICATIONS
• BIOMEDICAL

Gene-disease association, disease risk factors, gene expression, 
health care use & outcomes, dementia, diabetes, heart disease, 
prostate cancer, brain injury, primate health, surgery

• FINANCE-ECONOMICS-BUSINESS
Stock market, bank loans, credit decisions, apparel analyses, 
market segmentation

• SOCIAL-POLITICAL-ENVIRONMENTAL
Socio-ecological interactions, wars, urban water use, rainfall, forest
attributes

• MATH-ENGINEERING
Logic circuits, automata dynamics, genetic algorithm & neural 
network preprocessing, chip manufacturing, pattern recognition, 
decision analysis

• OTHER
Textual analysis, language analysis
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OVERLAP with STATISTICAL, MACHINE 
LEARNING METHODS

Relation to log linear (LL) (& logistic regression)
models & to Bayesian networks (BN)

Where methods overlap, they are equivalent

LL

RABN
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1. input data to RA
– form of data (cases X variables)
– data cases indexed by individual, time, space

2. model output from RA
3. basics of RA
4. for more information

1. DATA 2. MODEL
3. RA
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Variables
• Type:  nominal; bin if continuous (continuous DV needn’t be binned)

• Number: few variables to 100s (in principle, to 1000s or more)

• Distinctions:

directed system
– Predict/classify a DV (output) from IVs (inputs)

neutral system
– No IV-DV distinction: association, clustering / network

FORM OF DATA
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• frequency(Ai,Bj,Ck,Zl) or individual cases

N = sample size

Cases are indexed by
individual (in a population),
time, or
space

frequency(ABCZ) / N = pdata(ABCZ)

FORM OF DATA

 A B C Z 
case1 A0 B0 C0 Z0

case2 A1 B2 C3 Z1

…     
caseN A0 B0 C0 Z0

 

    frequency
A0 B0 C0 Z0 13 
A0 B0 C0 Z1   2 
A0 B0 C1 Z0   9 
A0 B0 C1 Z1 11 
… … … … __ 
     N 
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ID ,0,0,ID
APOE ,2,1,Ap
Gender ,2,1,Sx
Education ,3,1,Ed
AgeLastExam ,3,1,Ag Z = 0 no disease; Z = 1 disease
rs1801133 ,3,1,A
rs3818361 ,4,1,B
rs7561528 ,3,1,C
rs744373 ,3,1,D
rs6943822 ,3,1,E
rs4298437 ,3,1,F
rs7012010 ,3,1,G
rs11136000 ,3,1,H
rs10786998 ,4,1,J
rs11193130 ,4,1,K
rs610932 ,3,1,L
rs3851179 ,3,1,M
rs3764650 ,4,1,N
rs3865444 ,4,1,P
Dementia ,2,2,Z

DEMENTIA EXAMPLE

#ID Ap Sx Ed Ag A B C D E  F  G  H J K L M  N  P  Z 
101 0 0 2 2 1 1 0 1 2 2 1 1 2 0 1 1 2 2 1 
103 0 0 2 1 0 2 2 0 1 1 1 2 2 0 1 1 0 1 0 
111 0 1 2 1 2 2 1 1 0 1 1 2 1 1 2 2 0 1 0 
112 0 0 2 2 2 2 1 1 1 2 1 1 0 2 2 0 0 2 0 
118 0 1 0 2 2 2 2 0 0 1 1 1 . . 1 1 0 2 0 
120 0 1 2 2 1 2 1 1 0 1 1 2 1 1 1 2 0 . 1 
121 0 0 2 2 2 2 1 1 2 0 0 0 2 0 1 1 1 . 1 
122 0 0 1 2 1 2 1 1 2 0 0 2 2 0 1 1 1 1 0 
123 0 0 2 2 2 2 2 0 1 1 0 0 2 0 2 1 0 1 1 
   . . . 

DATA CASES INDEXED BY INDIVIDUAL (#ID)
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DATA CASES INDEXED BY TIME

  X Y Z A B C X Y Z 
t-4 -- -- -- -- -- -- -- -- -- 
t-3 0 1 2 -- -- -- -- -- -- 
t-2 3 4 5 0 1 2 3 4 5 
t-1 6 7 8 3 4 5 6 7 8 
t 9 10 11 6 7 8 9 10 11

 original data transformed data 
   
   Values are labels for variable states at particular times

XYZ = generating variables
Apply mask (here # lags = 2) to data
Mask adds lagged variables, ABC(t) = XYZ(t-1)
E.g., A(t-1) = X(t-2), labeled 3

Masking: time series  atemporal sample
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A,14,1,A
B,14,1,B
C,14,1,C
D,14,1,D
E,14,2,E
F,14,1,F
G,14,1,G
H,14,1,H
I,14,1,I

#A B C D E F G H I
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 71 71 71 71 71 71
71 71 71 95 71 95 71 71 71
95 71 95 95 71 95 71 71 71
95 95 95 95 95 71 71 71 95
71 95 95 90 95 95 71 95 95
95 95 90 90 71 95 95 95 95
95 90 90 90 95 90 95 95 90

…

       
       
  A B C   
  D E F   
  G H I   
       
       
 

DATA CASES INDEXED BY SPACE : 1 generating variable
Moore neighborhood

E = DV
A,B,C,D,F,G,H,I = IVs

IVs & DV have 14 
possible states
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1. input data to RA

2. model output from RA
model = structure (hypergraph) applied to data (GT)
types of structures (GT)
selecting a model (IT)
model = (conditional) probability distribution (IT)

3. basics of RA
4. for more information

1. DATA 2. MODEL
3. RA
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Specific structure AB:BC General structure 
 
 
 

 
LATTICE OF SPECIFIC STRUCTURES (3 variables) 
 

 Neutral  df #  Directed  
       
 ABC*  7  ABZ*  
       
 AB:AC:BC   6  AB:AZ:BZ  loop 
       

AB:AC AB:BC BC:AC 5 AB:AZ AB:BZ  
       

AB:C AC:B BC:A 4 AB:Z*   
       
 A:B:C*  3    

 

* Reference model is data or independence 
# df (degrees of freedom) values are for binary variables 

AB  BCA B C 

MODEL = STRUCTURE APPLIED TO DATA
A structure (graph or hypergraph) is a set of relationships (GT)
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STRUCTURES 4 variables (GT)
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# variables 3 4 5 6

# general structures 5 20 180 16,143
# specific structures 9 114 6,894 7,785,062
 (where 1 variable is DV) 5 19 167 7,580
             (1 DV, no loops) 4 8 16 32
 

    
 

NEED INTELLIGENT HEURISTICS TO SEARCH LATTICE 
 
Can analyze 100s of variables, & for simple models, many more. 

Combinatorial explosion

STRUCTURES (GT)
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FOR PREDICTION / CLASSIFICATION (directed system)

• Variable-based
– no loops many variables (fast) [coarse]

IV:ACZ simple prediction, feature selection

– with loops up to 100s of variables (slow) [fine]
IV:ABZ:BCZ           better prediction

• State-based < 10 variables (v. slow); [ultra-fine]

IV:Z: A1B1Z : B2C3Z1 best prediction; detailed models 

“IV” = ABC (all IVs); Z = DV
All directed system models include an IV component

TYPES OF STRUCTURES (GT)
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TYPES OF STRUCTURES (GT)

No loops With loops

State-based

Complexity

(degrees of 
freedom)

Variable-based

No loops With loops

State-based

Complexity

(degrees of 
freedom)

Variable-based

COARSE FINE             ULTRA-FINE



19

beam search, levels = 3, width = 4 (node = model)
(there are many other search algorithms)

SEARCHING LATTICE OF STRUCTURES

Independence model

complexity
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Directed system:

• Model = calculated conditional probability 
distribution, e.g., pIV:AZ:BZ(Zl | Ai Bj Ck)

• Distribution gives rule to predict DV (Z) from IVs 
(A,B,C) (e.g., rule = 0 means predict Z0)

MODEL = PROBABILITY DISTRIBUTION (IT)
for directed system: conditional distribution

for neutral system: joint distribution
gotten by applying data to a structure
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1. High information (or low error) in model
For directed system

– Info-theory measure: high H, reduction of uncertainty of DV
– Generic measure: high %correct, accuracy of prediction

2. Low complexity: df, degrees of freedom

3. Information  complexity tradeoff
– Statistical significance (Chi-square p-values)
– Integrated measures: AIC, BIC 

(Akaike & Bayesian Information Criteria)
– BIC a conservative selection criterion

SELECTING A MODEL (IT)
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2 variables: IV=A; DV = Z; T(A:Z)=mutual information (association) 

• Uncertainty reduction is like variance explained

Model AZ = predict Z, i.e., reduce H(Z), by knowing A 

• Uncertainty reduced = T(A:Z); uncertainty remaining = H(Z|A)

H = T(A:Z) / H(Z)  fractional uncertainty reduction (will express in %)

UNCERTAINTY REDUCTION: SIMPLE EXAMPLE

T(A:Z) H(Z|A)

H(A) H(Z)

H(A,Z)



23

• p(Z1)/p(Z0)= 1:1, not knowing A  2:1 or 1:2, knowing A

• H(Z) = T(A:Z) / H(Z) = 8%

• 8% reduction in uncertainty is large (unlike variance!) 

 Z0 Z1  
A0 .67*.5 .33*.5 .5 
A1 .33*.5 .67*.5 .5 

df=3 .5 .5  
 

H(A) H(Z)

T(A:Z)

UNCERTAINTY REDUCTION: SIMPLE EXAMPLE
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Criterion model H(%) df %c BIC
Variable-based (with loops)

BIC       IV: Ap Z : Ed Z : K Z  16      5    70    59
p-value IV: Ap Z : Ed Z : K Z : C Z : L Z       18      9    71
AIC       IV:    B Ap Z : Ed Z : K Z : C Z 20    11    72
State-based

BIC  (model below; each interaction = 1 df) 20      6    72    81
IV:Z: Ap1Z : Ed0Z : K2Z : Ap0Ed2C2Z : Ap0Ed1C2K1Z : Ap0Ed1C0K1Z

Models integrate multiple predicting interactions

IV = ApEdCKL… (all the independent variables);                   %c( IV:Z ) = 52

SELECTING A MODEL DEMENTIA EXAMPLE
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PROBABILITY DISTRIBUTION DEMENTIA EXAMPLE

DATA MODEL    IV:ApZ:EdZ:KZ 
IV  obs p(Z | IV) calc p(Z | IV)  (p-value) correct (p-value) 

Ap Ed K freq Z0 Z1 Z0 Z1 rule prule #  % pAp 
0 0 0 4 0.0 1.000 .122 .878 1 0.131 4 100.0 0.028 
0 0 1 8 .125 .875 .124 .876 1 0.033 7 87.5 0.002
0 0 2 4 .250 .750 .294 .706 1 0.409 3 75.0 0.138 
0 1 0 31 .645 .355 .616 .384 0 0.198 20 64.5 0.707 
0 1 1 37 .622 .378 .619 .381 0 0.147 23 62.2 0.714 
0 1 2 23 .783 .217 .827 .173 0 0.002 18 78.3 0.072 
0 2 0 66 .636 .364 .640 .360 0 0.023 42 63.6 0.894 
0 2 1 61 .656 .344 .644 .357 0 0.025 40 65.6 0.942 
0 2 2 33 .848 .152 .842 .158 0 0.000 28 84.8 0.020 
0 -- -- 267 .648 .352 .648 .352 0     
1 0 0 1 .000 1.000 .026 .974 1 0.343 1 100.0 0.571 
1 0 1 7 .143 .857 .026 .974 1 0.012 6 85.7 0.134 
1 0 2 2 .000 1.000 .074 .926 1 0.228 2 100.0 0.514 
1 1 0 13 .308 .692 .234 .766 1 0.055 9 69.2 0.709 
1 1 1 24 .167 .833 .237 .763 1 0.010 20 83.3 0.633 
1 1 2 11 .545 .455 .478 .522 1 0.884 5 45.5 0.146 
1 2 0 32 .219 .781 .254 .746 1 0.005 25 78.1 0.732 
1 2 1 39 .256 .744 .256 .744 1 0.002 29 74.4 0.735 
1 2 2 17 .529 .471 .504 .496 0 0.973 9 52.9 0.040 
1 -- -- 146 .281 .719 .281 .719 1     

   413 .518 .482 .518 .482 0  291 70.5  
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Decision tree from conditional probability distribution
(Increase or decrease of risk given by odds ratios.)

Ap1

Other EdK
Ap0

Ed0K0, Ed0K1

Ed2K2

Increased risk of disease: predict Z1

Predict Z0

Decreased risk of disease; predict Z0

Other EdK

Ed2K2

Predict Z1

Decreased risk of disease: predict Z0

PROBABILITY DISTRIBUTION DEMENTIA EXAMPLE
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1. input data to RA
2. model output from RA

3. basic RA algorithms (IT, inside the black box)
– generate model
– evaluate model

4. for more information

1. DATA 2. MODEL
3. RA
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data: observed ABC (df=7)        model: calculated ABCAB:BC 
 

 C0 C1 C0 C1 
 B0 B1 B0 B1 B0 B1 B0 B1

A0 143 77 253 182 A0 142 72 254 188
A1 227 46 411 139 A1 227 52 409 134

     1478         
              
              

   B0 B1 B0 B1
   A0 396 259 655 C0 370 123 493 

   A1 638 185 823 C1 664 321 985 

   1034 444 1034 444 

       model: AB:BC (df=5) 

1.Projection 2.Composition 

3.Evaluation

GENERATE MODEL 
frequencies shown, not probabilities
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• Projection = sum frequencies or probabilities

• Composition
Maximize model entropy subject to model constraints

Model entropy: H(pmodel) = -  pmodel log2 pmodel
E.g., for model AB:BC, maximize H(pAB:BC) subject to

pAB:BC(AB)= pdata(AB)
pAB:BC(BC)= pdata(BC)

Composition is critical computational step; done
(a) Algebraically (very fast) loopless models
(b) Iteratively (Iterative Proportional Fitting) models with loops

GENERATE MODEL 
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• Evaluation (1 = data dependent; 2 = data independent)

1. [ref=data] 

error, Tmodel = Hmodel – Hdata  

=  pdata log2(pdata/pmodel)

[ref=independence]

information, Imodel = Hind – Hmodel 

=  pdata log2(pmodel/pind)

uncertainty reduction = H(DV) - Hmodel(DV | IV)

2. [ref=independence]
complexity = df = dfmodel – dfind

EVALUATE MODEL (1/2)

data

model

ind

T

I
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Trade off information (or error) & complexity, define 
best model criterion, via:

Use likelihood ratio Chi-square, LR = k N T
• p-values from LR, df, Chi-square table

Or linear combinations of information & complexity
• AIC = LR + 2 df
• BIC = LR + ln(N) df

EVALUATE MODEL (2/2)
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1. input data to RA
2. model output from RA
3. basic RA algorithms

4. for more information
– DMM (RA) web page
– Software: OCCAM
– MORE INFORMATION ON RA
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DMM (RA) WEB PAGE
http://pdx.edu/sysc/research-discrete-multivariate-modeling
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SOFTWARE: OCCAM (access on DMM page)
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OCCAM Initial Screen
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BASIC OCCAM ACTIONS

• Search = exploratory modeling, examine many
models, find best or good ones
(OCCAM actions: Search, SB-Search)

• Fit = confirmatory modeling, look at one model in 
detail (see probability distribution) & use for prediction 
(OCCAM actions: Fit, SB-Fit)

(OCCAM actions: Show Log, Manage Jobs = managerial functions)
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• Review articles on DMM page

– “Wholes & Parts in General Systems Methodology” (accessible)
– “An Overview of Reconstructability Analysis” (encompassing)

• Krippendorff, Klaus (1986). Information Theory. 
Structural Models for Qualitative Data (Quantitative 
Applications in the Social Sciences Monograph #62). 
New York: Sage Publications.

• International Journal of General Systems

• Kybernetes, Vol. 33, No. 5/6 2004: special RA issue

INFORMATION ON RA
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• OCCAM is available for use
(but consult with me before doing anything other than 
variable-based models without loops)

• Plan to make OCCAM open-source; contact me 
if you would like to be involved

• zwick@pdx.edu

• Thank you.
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Criterion model H(%) df %c
BIC          IV:ApZ:EdZ:CZ              16      5      70

H = TIV:ApZ:EZ:CZ(ApEdC:Z) / H(Z) = 14%

T(ApEdC:Z) H(Z|ApEdC)

H(ApEdC) H(Z)

H(ApEdCZ)

UNCERTAINTY REDUCTION: DEMENTIA EXAMPLE
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• In 5-generating-variables spatial example, model could be:

• IV: ABCD Z:EFG Z:HIJ Z

       
       
   A    
  B Z C   
   D    
       
       

 

       
       
  E F G  
      
      
       
       

 
       
       
       
   I    
       
       
       

 

       
       
       
   J    
       
       
       

 

       
       
       
   H    
       
       
       

 

HYPOTHETICAL MODEL SPATIAL EXAMPLE
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