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Abstract 

How does an evolutionary process interact with a decentralized, distributed system in order 
to produce globally coordinated behavior? Using a genetic algorithm (GA) to evolve cellular au
tomata (CAs), we show that the evolution of spontaneous synchronization, one type of emergent 
coordination, takes advantage of the underlying medium's potential to form embedded particles. 
The particles, typically phase defects between synchronous regions, are designed by the evolu
tionary process to resolve frustrations in the global phase. We describe in detail one typical 
solution discovered by the GA, delineating the discovered synchronization algorithm in terms of 
embedded particles and their interactions. We also use the particle-level description to analyze 
the evolutionary sequence by which this solution was discovered. Our results have implications 
both for understanding emergent collective behavior in natural systems and for the automatic 
programming of decentralized spatially extended multiprocessor systems. 

1. Introduction 

The spontaneous synchronization of independent processes is one of the more widely observed 
dynamical behaviors in nature. In many such phenomena, synchronization serves a vital role 
in the collective function of the constituent processes. The spiral waves exhibited during the 
developmental and reproductive stages of the Dictyostelium slime mold [4], the morphogenesis of 
embryonic structures in early development [11], the synchronized oscillations of neural assemblies 
which have been thought to playa significant role in encoding information [8], and the marked 
seasonal variation in the breeding activity of sexually reproducing populations are just a few 
examples of the temporal emergence of global synchronization. 

The importance of global synchronization has been recognized for decades outside of natural 
science as well. From the earliest days of analog and digital computer design, the functioning 
of an entire computing device has been critically dependent on achieving global synchronization 
among the individual processing units. Typically, the design choice has been to use a central 
controller which coordinates the behavior of all parts of the device. In this way, the interaction of 
individual units is modulated so that the transfer of information among the units is meaningful. 

But what if the option of a central controller is not available? Given the widespread ap
pearance of synchronization in decentralized and spatially extended systems in nature, evidently 
evolution has successfully overcome this problem. Evolution has effectively taken advantage of 
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the spatially local dynamics in its production of organisms which, on the one hand, consist of 
potentially independent subsystems, but whose behavior and survival, on the other hand, rely 
on emergent synchronization. These observations leave us with an unanswered but biologically 
significant question. By what mechanisms does evolution take advantage of nature's inherent 
dynamics? 

We explore this question in a simple framework by coupling an evolutionary process-a ge
netic algorithm (GA)-to a population of behaviorally rich dynamical systems-one-dimensional 
cellular automata (CAs). In this scheme, survival of an individual CA is determined by its ability 
to perform a synchronization task. 

Recent progress in understanding the intrinsic information processing in spatially extended 
systems such as CAs has provided a new set of tools for the analysis of temporally and evolu
tionarily emergent behavior [1, 6, 7]. Beyond describing solutions to the computational task, in 
this paper we use these tools to analyze in some detail the individual CA behavioral mechanisms 
responsible for increased fitness. We also analyze how these mechanisms interact with selection 
to drive the CA population to increasingly sophisticated synchronization strategies. 

2. Cellular Automata 

CAs are arguably the simplest example of decentralized, spatially extended systems. In spite 
of their simple definition they exhibit rich dynamics which over the last decade have come to 
be widely appreciated [5, 12, 13]. A CA consists of a collection of time-dependent variables sL 
called the local states, arrayed on a lattice of N sites (or cells), i O,l, ... ,N-l. We will 
take each to be a Boolean variable: s~ E {O, 1}. The collection of all local states is called the 
configuration: St = s? s: ... Sf-I. So denotes an initial configuration (IC). Typically, the equation 
of motion for a CA is specified by a look-up table ¢ that maps a site's neighborhood 1]: to a new 
local state for that site at the next time step : S~+l = ¢(1]~), where 1]; = S~-T ••• s~ ... S~+T and 
r is called the CA's radius. (In contexts in which i and t are not relevant, we will simply use 1] 
with no sub- or superscripts to denote a neighborhood.) The global equation of motion ~ maps 
a configuration at one time step to the next: St+l = ~(St), where it is understood that the local 
function cp is applied simultaneously to all lattice sites. It is also useful to define an operator 
~ that operates on a set of configurations or substrings of configurations-that is, on a formal 
language-by applying ~ separately to each member of the set. 

The CAs in the GA experiments reported below had r = 3, N = 149, and spatially periodic 
boundary conditions: s~ = s~+N 

3. The Synchronization Task 

Our goal is to find a CA that, given any initial configuration So, within M time steps reaches a 
final configuration that oscillates between all Os and all Is on successive time steps: ~(1 N) = ON 
and ~(ON) = IN. M, the desired upper bound on the synchronization time, is a parameter of the 
task that depends on the lattice size N. This is perhaps the simplest non-trivial synchronization 
task for a CA. 

The task is nontrivial since synchronous oscillation is a global property of a configuration, 
whereas a small-radius (e.g., r 3) CA employs only local interactions mediated by the sites' 
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neighborhoods. Thus, while the locality of interaction can directly lead to regions of local syn
chrony, it is more difficult to design a CA that will guarantee that spatially distant regions are 
in phase. Since regions that are not in synchrony can be distributed throughout the lattice, 
a successful CA must transfer information over large space-time distances (~ N) to remove 
phase defects separating regions that are locally synchronous, in order to produce a globally 
synchronous configuration. 

For reference, consider a simple benchmark radius 3 CA CPosc, which is a naive candidate 
solution with q>osc(1N) = ON and q>osc(ON) = IN. Its look-up table is defined by: CPosc(ry) = 1 if 
1] 07

; CPosc(1]) = a otherwise. 

We defined the performance pfi (cp) of a given CA cP on a lattice of size ~N to be the fraction 
of ]( randomly chosen initial configurations on which cP produces correct final behavior. We then 
measured Pfo4 (CPosc) to be 0.54, 0.09, and 0.02, for ~N = 149, 599, and 999, respectively. (The 
behavior of a CA on these three values of N give a good idea of how the behavior scales with 
lattice size.) 

CPosc is not a successful solution precisely because it is unable to remove phase defects. A 
more sophisticated CA must be found to produce the desired collective behavior. It turned out 
that the successful solutions discovered by our GA were surprisingly interesting and complex. 

4. Details and Results of G A Experiments 

We used a GA, patterned after that in our previous work on density classification [2, 3, 10], 
to evolve CAs that perform the synchronization task. The GA begins with a population of P 
randomly generated "chromosomes"-bit strings encoding CAs by listing each cP's output bits in 
lexicographic order of neighborhood configuration. For binary r = 3 CAs, the chromosomes are 
of length 128(= 22r+l). The size of the space the GA searches is thus 2128-far too large for any 
kind of exhaustive search. 

With the lattice size fixed at N = 149, the fitness F1( cp) of a CA in the population is calculated 
by randomly choosing] ICs that are uniformly distributed over po E [0.0,1.0] (where po denotes 
the fraction of 1s in so) and iterating cP on each IC for a maximun1 of M time steps. F1( cp) is the 
fraction of the] ICs on which cP produces the correct final dynamics: an oscillation between ON 
and IN. No partial credit is given for incompletely synchronized final configurations. 

In our experiments, we used F1( cp) as an estimate of P{f (cp) with ] ~ ]( and N = 149. It 
should be pointed out that sampling ICs in FI( cp) with uniform distribution over po E [0.0,1.0] 
is highly skewed with respect to the unbiased distribution of ICs in pfi (cp), which is binomially 
distributed over po E [0.0,1.0] and very strongly peaked at po = 1/2. Preliminary experiments 
indicated that while both kinds of distributions allowed the GA to find high performance rules, 
the uniform distribution helped the GA to make more rapid progress in early generations. 

In each generation the GA goes through the following steps. (i) A new set of] ICs is generated 
from the uniform distribution. (ii) F1( cp) is calculated for each cp in the population. (iii) The 
population is ranked in order of fitness; equally fit CAs are ranked randomly relative to one 
another. (iv) E of the highest fitness ("elite") CAs are copied without modification to the next 
generation. (v) The remaining (P E) CAs for the next generation are formed by single-point 
crossovers between pairs of elite CAs chosen randomly with replacement. The offspring from each 
crossover are each mutated m times, where a mutation consists of flipping a randomly chosen bit 
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in a chromosome. This defines one generation of the GA; it is repeated G times for one GA run. 

Fr( tP) is a random variable since its value depends on the particular set of I ICs selected to 
evaluate tP. Thus, a CA's fitness varies stochastically from generation to generation. For this 
reason, we choose a new set of ICs at each generation 

For our experiments we set P 100, E = 20; I = 100, m = 2; and G = 50. M was chosen 
from a Poisson distribution with mean 320 (slightly greater than 2lv). Varying M prevents 
selecting CAs that are adapted to a particular M. A justification of these parameter settings is 
given in [9]. 

We performed a total of 65 GA runs. Since F lOO ( tP) is only a rough estimate of performance, 
we more stringently measured the quality of the GA's solutions by calculating Pr!o4 (tP) with 
N E {149, 599, 999} for the best CAs in the final generation of each run. In 20% of the runs 
the GA discovered successful CAs (Pr!o4 = 1.0). More detailed analysis of these successful CAs 
showed that although they were distinct in detail, they used similar strategies for performing the 
synchronization task. Interestingly, when the GA was restricted to evolve CAs with '{' = 1 and 
'{' = 2, all the evolved CAs had Pr!o4 ~ 0 for N E {149, 599, 999}. (Better performing CAs with 
'(' = 2 can be designed by hand.) Thus'{' = 3 appears to be the minimal radius for which the GA 
can successfully solve this problem. 

. . . . 
J.l • .... 

"( ~ .... -:=-: 
-:=-: .... -".: 8 

Site 74 0 Site 74 
(a) Space-time diagram. (b) Filtered space-time diagram. 

Figure 1: (a) Space-time diagram of <Payne starting with a random initial condition. (b) The same space
time diagram after filtering with a spatial transducer that maps all domains to white and all defects to 
black. Greek letters label particles described in the text. 

Figure la gives a space-time diagram for one of the GA-discovered CAs with 100% perfor
mance, here called tPsync' This diagram plots 75 successive configurations on a lattice of size 
N 75 (with time going down the page) starting from a randomly chosen IC, with I-sites col
ored black and O-sites colored white. In this example, global synchronization occurs at time step 
58. 

How are we to understand the strategy employed by tPsync to reach global synchronization? 
Notice that, under the GA, while crossover and mutation act on the local mappings comprising a 
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CA look-up table (the "genotype"), selection is performed according to the dynamical behavior 
of CAs over a sample of rcs (the "phenotype"). As is typical in real-world evolution, it is very 
difficult to understand or predict the phenotype from studying the genotype. So we are faced 
with a problem familiar to biologists and increasingly familiar to evolutionary computationalists: 
how do we understand the successful complex systems (e.g., ¢>sync) that our GA has constructed? 

5. Computational Mechanics of Cellular Automata 

Our approach to understanding the computation performed by the successful CAs is to adopt the 
"computational mechanics" framework for CAs developed by Crutchfield and Hanson [1, 6, 7]. 
This framework describes the "intrinsic computation" embedded in the temporal development of 
the spatial configurations in terms of domains, particles, and particle interactions. A domain is, 
roughly, a homogeneous region of space-time in which the same "pattern" appears. For example, 
in Figure la, two types of domains can be seen: regions in which the all-Is pattern alternates 
with the all-Os pattern, and regions of jagged black diagonal lines alternating with jagged white 
diagonal lines. The notion of a domain can be formalized by describing the domain's pattern 
using the minimal deterministic finite automaton (DFA) that accepts all and only those spatial 
configurations that are consistent with the pattern. 

Since the domains in Figure Ia are described by simple DFAs, they represent relatively simple 
patterns. Once the domains have been detected, nonlinear filters can be constructed to filter 
them out, leaving just the deviations from those regularities (Figure 1 b). The resulting filtered 
space-time diagram reveals the propagation of domain boundaries. If these boundaries remain 
spatially localized over time, then they are called particles. (For the discussion later, we have 
labeled some of the particles in Figure 1 b with Greek letters.) These "embedded" particles 
are one of the main mechanisms for carrying information over long space-time distances. This 
information might indicate, for example, the partial result of some local processing which has 
occurred elsewhere at an earlier time. Logical operations on the information particles carry are 
performed when they interact. The collection of domains, domain boundaries, particles, and 
particle interactions for a CA represents the basic information-processing elements embedded in 
the CA's behavior-the CA's "intrinsic" computation. 

In the example presented in Figure Ia the domains and particles are easy to see by inspection. 
However, often CAs produce space-time behaviors in which regularities exist but are not so 
easily discernible. Crutchfield and Hanson have developed automatic induction methods for 
"reconstructing" domains in space-time data and for building the nonlinear filters that reveal 
the hidden particles, allowing the intrinsic computation to be analyzed. In Figure 1 b, the filtering 
not only allows us to determine the location of the particles in the space-time diagram, but it 
also helps in readily identifying the spatial and temporal features of the particles. 

To perform the synchronization task, ¢>sync produces local regions of synchronization (alter
nating 1* and 0* patterns, where w* represents some number of repetitions of string w). In 
many cases, adjacent synchronized regions are out of phase. Wherever such phase defects occur, 
¢>sync resolves them by propagating particles-the boundaries between the synchronized regions 
and the jagged region-in opposite directions. Encoded in ¢>sync'S look-up table are interactions 
involving these particles that allow one or the other competing synchronized region to annihilate 
the other and to itself expand. Similar sets of interactions continue to take place among the 
remaining synchronized regions until the entire configuration has one coherent phase. 
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Site 148 0 
(e) $ (gen. 13) 

Refineme~t of SS velocities. 
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Stabilization of the S domain. 

Site 
(f) $ (gen. 20) 
- 4 

SS creates domain D. 

Figure 2: Evolutionary history of ¢;3ync: (a) FlOO versus generation for the most fit CA in each population. 
The arrows indicate the generations in which the GA discovered each new significantly improved strategy. 
(b)-(f) Space-time diagrams illustrating the behavior of the best ¢; at each of the five generations marked 
in (a). The lCs are disordered except for (b), which consists of a single 1 in the center of a field of Os. The 
same Greek letters in different figures represent different types of particles. 

148 

In the next section we will make this intuitive description more rigorous. In particular, we 
will describe the evolutionary path by which our GA discovered ¢sync, using the computational 
mechanics framework to analyze the mechanisms embedded in the increasingly fit CAs created 
by the GA as a run progresses. 

6. The Evolution to Synchronization 

Figure 2a plots the best fitness in the population versus generation for the first 30 generations 
of the run in which ¢sync was evolved. The figure shows that, over time, the best fitness in the 
population is marked by periods of sharp increases. Qualitatively, the overall increase in fitness 
can be divided into five "epochs". The first epoch starts at generation 0 and each of the following 
epochs corresponds to the discovery of a new, significantly improved strategy for performing the 
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synchronization task. Similar epochs were seen in most of the runs resulting in CAs with 100% 
performance. In Figure 2a, the beginning of each epoch is labeled with the best CA in the 
population at that generation. 

Epoch 0: Growth of Disordered Regions. To perform the synchronization task, a CA 
¢ must have ¢(07) = 1 and ¢(17) = O. These mappings insure that local regions will have 
the desired oscillation. Such a synchronized region is a domain-denote it S-with a temporal 
periodicity of two: 0* = ~(1 *), and 1* = ~(O*). Since the existence of the S domain is guaranteed 
by fixing just two bits in the chromosome, approximately 1/4 of the CAs in a random initial 
population have S. 

However, S's stability under small perturbations depends on other output bits. For example, 
¢o is a generation 0 CA with these two bits set correctly, but under ¢o a small perturbation in S 
leads to the creation of a disordered region. This is shown in Figure 2b, where the IC contains a 
single 1 at the center site. In the figure, the disordered region grows until it occupies the whole 
lattice. This behavior is typical of CAs in generation 0 that have the two end bits set correctly. 
Increasing the number of perturbation sites in S leads to a simultaneous creation of disordered 
regions all over the lattice, which subsequently merge to eliminate synchronous regions. Thus, 
CAs like ¢o have zero fitness unless one of the test ICs has po = 0.0 or Po = 1.0. 

Epoch 1: Stabilization of the Synchronous Domain. The best CA at generation 1, 
¢l, has FlOO ~ 0.04, indicating that it successfully synchronizes on only a small fraction of the 
lCs. Although this is only a small increase in fitness, the space-time behavior of ¢l (Figure 2c) 
is very different from that of ¢o. Unlike ¢o, ¢l eliminates disordered regions by expanding (and 
thereby stabilizing) local synchronous domains. The stability of the synchronous regions comes 
about because ¢1 maps all the eight neighborhoods with six or more Os to 1, and seven out of 
eight neighborhoods with six or more Is to O. Under our lexicographic ordering, most of these 
bits are clustered at the left and right ends of the chromosome. This means it is easy for the 
crossover operator to bring them together from two separate CAs to create CAs like ¢l. 

Figure 2c shows that under ¢l, the synchronous regions fail to occupy the entire lattice. A 
significant number of constant-velocity particles (here, boundaries between adjacent S domains) 
persist indefinitely and prevent global synchronization from being reached. Due to the temporal 
periodicity of the S domains, the two adjacent S domains at any boundary can be either In
phase or out-of-phase with each other. We will represent the in-phase and the out-of-phase defects 
between two S domains as SS and S8 respectively. A more detailed analysis of ¢l'S space-time 
behavior shows that it supports one type of stable S8 particle, a, and three different types of 
stable SS particles: (3, " and 8, each with different velocities. Examples of these particles are 
labeled in Figure 2c, and their properties and interactions are summarized in Table 1. (We should 
note that we have used the same set of Greek letters to represent different types of particles in 
different rules.) 

For most ICs, application of ¢l quickly results in the appearance of these particles, which then 
go on to interact, assuming they have distinct velocities. A survey of their interactions indicates 
that the a particle dominates: it persists after collision with any of the S S particles. Interactions 
among the three SS particles do take place, resulting in either a single (3 or a pair of a's. Thus, 
none of the interactions are annihilative: particles are produced in all interactions. As a result, 
once a set of particles comes into existence in the space-time diagram, one can guarantee that at 
least one particle persists in the final configuration. For almost all values of po, ¢l'S formation 
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of persistent particles ultimately prevents it from attaining global synchrony. Only when Po is 
very close to 0.0 or 1.0 does (PI reach the correct final configurations. This accounts for its very 
low fitness. 

1/ Cellular Automata 1/ Particles and Interactions 

Chromosome Generation Label Domain Temporal Velocity 
(1~l49 1'599 1'999) 

.104 , 1 04 ' 1 0 4 Boundary Periodicity 

<Pl 1 a SS 2 -112 
F8A19CE6 f:! ::>::> 4 -1 4 
B65848EA (0.00, 'Y SS 8 -1 '8 
D26CB24A 0.00, () 55 2 C 
EB51C4AO 0.00) fJ + a -+ a, 'Y + a -+ a, b + a -+ a 

<P2 = 5 a I SS 2 -1/2 
F8A1AE2F fJ SS 6 0 
CF6BC1E2 (0.33, 
D26CB24C 0.07, f3+a-+0 
3C266E20 0.03) 

<P3 13 a SS 4 -3 /4 
F8AIAE2F f:! SS 6 U 
CE6BC1E2 (0.57, 'Y SS 12 1/ 4 
C26CB24E 0.33, b SS 2 1/2 
3C226CAO 0.27) fJ + a -+ I,!}, f + a -+ I,!}, b + a -+ I,!} 

¢Jayne = 100 
i 

a SS - 0 
FEB1C6EA fJ 1)::> 2 1 
B8EOC4DA (1.00, 'Y SD 2 -1 
6484A5AA 1.00, b 1)::> 4 -3 
F410C8AO 1.00) J.l SD 2 3 

1I DD 2 -1 
Decay:a --oj. f + j Annihilatlve: f + b --oj. I,!}, J.l + fJ --oj. I,!} 

!teactIve: fJ + f --oj. 1I ld mod 4 = 1), 1I + b --oj. (j, J.l + 1I --oj. 'Y 
Reversible: f3 + 'Y --oj. b + J.l (d mod 4 :f. 1), J.l + {; --oj. 1+ fJ 

Table 1: ¢Jayne and its ancestors: Particles and their dynamics for the best CAs in early generations of the 
run that found ¢Jayne' The table shows only the common particles and common two-particle interactions 
that playa significant role in determining fitness. 0 indicates a domain with no particles. Each CA <P is given 
as a hexadecimal string which, when translated to a binary string, gives the output bits of <P in lexicographic 
order (TJ = 07 on the left). 

Epoch 2: Suppression of In-Phase Defects. Following the discovery of <PI, the next 
sharp increase in fitness is observed in generation 5, when the best CA in the population, CP2, 
has FlOo ~ 0.54. The rise in fitness can be attributed to CP2'S ability to suppress in-phase (55) 
defects for ICs with very low or very high po. 

The space-time behavior of CP2 is dominated by two new and different 55 particles, labeled 
a and (3 (see Table 1; examples are labeled in Figure 2d). In addition to the suppression of 
55 boundaries, a and (3 annihilate each other; even on some Ies with intermediate po, CP2 is 
able to reach synchronous configurations due to these annihilations. However, since the velocity 
difference between a and (3 is only 1/2, the two particles might fail to annihilate each other 
before the maximum of M time steps have elapsed. 

In spite of these improvements, CP2 still fails on a large fraction of its fitness tests. Often the 
same type of particle occurs more than once in the configuration. Since they travel at the same 
velocity, these identical particles cannot interact, so they persist in the absence of particles of a 
different type. Global synchrony is achieved (possibly in more than M time steps) only when the 
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number of a particles and /3 particles in any configuration are equal. Our studies of rP2 show that 
the probability of occurrence of /3 is about twice that of a, so their numbers are often unequal. 

From the standpoint of the genetic operators acting on the CA rules, a small change in the 
relevant entries in rP is sufficient to significantly modify the properties of the domain boundaries. 
As a result, it is the mutation operator that seems to play the primary role in this and subsequent 
epochs in discovering high-performance CAs. 

Epoch 3: Refinement of Particle Velocities. A much improved CA, rP3, is found in 
generation 13. Its typical behavior is illustrated in Figure 2e. rP3 differs from rP2 in two respects, 
both of which result in improved performance. First, as noted in Table 1, the velocity difference 
between a and " the two most commonly occurring particles produced by rP3, is larger (1 as 
compared to 1/2 in rP2), so their annihilative interaction typically occurs more quickly. This 
means rP3 has a better chance of reaching a synchronized state within M time steps. Second, the 
probabilities of occurrence of a and, are almost equal, meaning that there is a greater likelihood 
they will pairwise annihilate, leaving only a single synchronized domain. 

In spite of these improvements, it is easy to determine that rP3 's strategy will ultimately fail 
to synchronize on a significant fraction of ICs. As long as S5 particles exist in the space-time 
diagram, there is a non-zero probability that a pair of S S defect sites would be occupied by 
a pair of identical particles moving in parallel. In the absence of other particles in the lattice 
such a particle pair could exist indefinitely, preventing global synchrony. Thus a completely new 
strategy is required to overcome persistent parallel-traveling particles. 

Epoch 4: The Final Innovation. In the 20th generation a final dramatic increase in fitness 
is observed when rP4 is discovered. rP4 has FlOG ~ 0.99 and displays quite different space-time 
behavior (Figure 2f). Following the discovery of rP4 and until the end of the run in generation 
100, the best CAs in each generation have FlOG = 1.00. Also, no significant variation in the 
space-time behavior is noticeable among the best CAs in this run. In particular, rP4'S strategy is 
very similar to that of rPsync, a perfected version of rP4 that appeared in the last generation. Here 
we will make our earlier intuitive description of rPsync'S strategy more rigorous. 

As can be seen in Figure la, after the first few time steps the space-time behavior of rPsync 
is dominated by two distinct types of domains and their associated particles. While one of the 
domains is the familiar S, the other domain-denoted D in Table 1- consists of temporally 
alternating and spatially shifted repetitions of 1000 and 1110. The result is a pattern with 
temporal and spatial period 4. In terms of the domain's regular language, though, D has temporal 
period 2: (1000)* = ~((1110)*) and (1110)* = <P((1000)*). 

Using a transducer that recognizes the Sand D regular languages, Figure la can be filtered to 
display the propagation of the particles embedded in the space-time behavior of rPsync (Figure 1 b). 
As pointed out earlier, such filtered space-time diagrams allow us to readily analyze the complex 
dynamics of 4>sync'S particles and their interactions. As shown in Table 1, 4>sync supports five 
stable particles, and one unstable "particle", a, which occurs at S5 boundaries. a "lives" for 
only one time step, after which it decays into two other particles, , and /3, respectively occurring 
at SD and D5 boundaries. /3 moves to the right with velocity 1, while, moves to the left at 
the same speed. 

The following simple scenario illustrates the role of the unstable particle a in ¢sync'S synchro
nization strategy. Let rPsync start from a simple IC consisting of a pair of S5 domain boundaries 
which are a small distance from one another. Each S5 domain boundary forms the particle a, 
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which exists for only one time step and then decays into a f3-, pair, with f3 and, traveling at 
equal and opposite velocities. In this example, two such pairs are formed, and the first inter
action is between the two interior particles: the f3 from the left pair and the , from the right 
pair. As a result of this interaction, the two interior particles are replaced by 8 and j.L, which 
have velocities of -3 and 3, respectively. Due to their greater speed, the new interior particles 
can intercept the remaining f3 and ,particles. Since the pair of interactions, + 8 ---t 0 and 
j.L + f3 ---t 0 are annihilative, and because the resulting domain is S, the configuration is now 
globally synchronized4• The bask innovation of 41sync over 413 is the formation of the D domain, 
whkh allows two globally out-of-phase S domains to compete according to their relative size and 
so allows for the resolution of global phase frustration. D achieves this by replacing S domains 
with itself-a nonsynchronizable region. 

The particle interactions in the filtered space-time diagram in Figure 1b (starting from a 
random IC) are somewhat more complicated than in this simple example, but it is still possible 
to identify essentially the same set of particle interactions (f3 +, ---t 8 + j.L, f3 + , ---t v, and 
, + 8 ---t 0) that effect the global synchronization in the CA. 

7. Concluding Remarks 

In summary, the GA found embedded-particle CA solutions to the synchronization task. Al
though such perfectly performing CAs were distinct in detail and produced different domains 
and particles, they all used similar strategies for performing the task. It is impressive that the 
GA was able to discover complex orchestrations of particle interactions resulting in 100% correct 
solutions such as that described for 41sync. The computational mechanics framework allowed us 
to "deconstruct" the GA's solutions and understand them in terms of particle interactions. In 
general, particle-level descriptions amount to a rigorous language for describing computation in 
spatially extended systems. 

Several issues, important for putting the preceding results in a more general context, should 
be mentioned in closing. First, implicit in the definition of a CA is a globally synchronous update 
clock. That is, a CA's local states are updated at the same time across the lattice. (And this 
is a fundamental architectural difference with many of the natural processes mentioned in the 
introduction.) But since each site has a processor 41 whkh determines local behavior and site
to-site interactions, the effect of the underlying global update need not be manifest directly in 
globally synchronous configurations5 • In this light, our choice of the synchronization task means 
that we have considered one partkular aspect of how this dynamical behavior might emerge: i.e., 
can local information processing and communication be designed by a GA to take advantage of 
the globally synchronous update signal? 

Second, this observation suggests an alternative and potentially more important study to 
undertake: the evolution of a decentralized, distributed system whose components are fully 

40ne necessary refinement to this explanation comes from noticing that the (3-1 interaction depends on the 
inter-particle distance d, where 0 S; d S; 2r. If d mod 4 =f. 1, then we have the interaction (3 + 1 ~ 6 + J-l. But if d 
mod 4 1, then we have (3 + 1 ~ v. The particle v is essentially a defect in the D domain. 

5Indeed, one of the earliest mathematical articulations of a similar synchronization problem in a distributed 
system-the firing-squad synchronization problem (FSSP)-uses a globally synchronous update clock. In spite 
of the global update mechanism, it is the site-to-site interactions among the individual processors in the FSSP 
that makes the problem interesting and difficult. Although FSSP was first proposed by Myhill in 1957, it is still 
being actively studied [14]. 
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asynchronous. We hope to return to this more difficult GA study in the future. 

Third and finally, biological evolution is a vastly more complex process than the restricted 
framework we've adopted here. Its very complexity argues for new methods of simplifying its 
analysis-methods that are sensitive to the interaction between the nonlinear dynamics of indi
vidual behavior, on the one hand, and population dynamics guided by natural selection, on the 
other. Our goal is to delineate the evolutionary mechanisms that drive the emergence of useful 
structure. Given this, we believe that detailed analysis of simplified models, such as the one 
presented above, is a prerequisite to understanding the emergence and diversity of life. 
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