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The ultimate objective of laser speckle flowmetry (and a host of specific implementations such as laser speckle
contrast analysis, LASCA or LSCA; laser speckle spatial contrast analysis, LSSCA; laser speckle temporal con-
trast analysis, LSTCA; etc.) is to infer flow velocity from the observed speckle contrast. Despite numerous dem-
onstrations over the past 25 years of such a qualitative relationship, no convincing quantitative relationship
has been proven. One reason is a persistent mathematical error that has been propagated by a host of workers;
another is a misconception about the proper autocorrelation function for ordered flow. Still another hindrance
has been uncertainty in the specific relationship between decorrelation time and local flow velocity. Herein we
attempt to dispel some of these errors and misconceptions with the intent of turning laser speckle flowmetry
into a quantitative tool. Specifically we review the underlying theory, explore the impact of various analytic
models for relating measured intensity fluctuations to scatterer motion, and address some of the practical
issues associated with the measurement and subsequent data processing. © 2008 Optical Society of America

OCIS codes: 030.6140, 110.6150, 120.3890, 120.6150, 280.2490.

1. INTRODUCTION
Over 25 years ago, Fercher and Briers [1] put forth the
idea of estimating flow velocity based on the contrast of
laser speckle. The concept was to infer a temporal corre-
lation time constant from the observed speckle contrast
and subsequently to relate this time constant to the flow
velocity. Since that time, various researchers [2–4] have
demonstrated this qualitative relationship, yet no con-
vincing quantitative relationship has been shown. One
reason is a persistent mathematical error that has been
propagated by a host of workers. Another is a misconcep-
tion about the proper statistical relationship between mo-
tion of the scatterers and the resulting spatial and tem-
poral speckle contrast. Many researchers use the
Lorentzian model for such a relationship. In fact, the
Lorentzian is a homogeneous line profile appropriate only
for Brownian motion. In such a case, the dynamics of a
single particle are representative of the ensemble. The
other extreme is an inhomogeneous (Gaussian) profile
that corresponds to a process in which the dynamics are
particular to the individual scatterers. The proper model
for complex motion such as blood flow is undoubtedly in-
termediate between these two extremes. Still another
hindrance to the development of laser speckle flowmetry
as a quantitative tool has been an unsubstantiated pro-
posed relationship between decorrelation time and local
flow velocity. Herein we address each of these three gen-
eral issues. The intention is the realization of this mea-
surement concept as a quantitative tool for full-field flow
assessment.

2. THEORY AND RESULTS
Here we review the theory of laser speckle contrast imag-
ing for the assessment of flow and discuss a number of is-

sues that have impeded its becoming a quantitative tool.
Specifically we address persistent mathematical errors,
discuss various mathematical correlation functions, and
finally treat the issue of interpretation of the data
inferred from a typical measurement.

A. Persistent Mathematical Error
The concept of laser speckle flowmetry relies on the asso-
ciation between speckle contrast and camera integration
time. This is expressed at a fundamental level by the re-
lationship between the instantaneous intensity i�r̄ , t� and
its corresponding measured intensity,

I�r̄,t� =
1

T�−�

�

dt�i�r̄,t��rect� t − t�

T � , �1a�

where T is the camera integration time, the integration
window is defined as

rect�x� � �1 �x� � 1/2

0 else
, �1b�

and dependence on the spatial coordinate r̄ is denoted ex-
plicitly. Contrast is typically defined as the quotient of the
mean and standard deviation of the measured intensity,

K�r̄� �
�I�r̄�

�I�r̄�
. �2�

We are specifically interested in the imaging condition.
In such a situation, subject motion, or flow, is reflected as
a boiling of the speckle pattern rather than a translation.
Experimentally a combination of boiling and translation
is observed in the vicinity of the image plane, and pure
boiling only at the precise focus [5]. Note that ordered mo-
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tion results in a translating speckle pattern only for the
condition of misfocus. Under these conditions, the speckle
motion and object motion are related through the misfo-
cus distance (and the direction from focus) and the image
magnification.

From Eq. (1) it is easily shown that the first-order sta-
tistics of the integrated intensity in Eq. (2) are given by

E	I�r̄,t�
 � �I�r̄� =
1

T�−�

�

dt�E	i�r̄,t��
rect� t − t�

T � = �i�r̄�

�3a�

and

�I
2�r̄� =

1

T�0

T

d�Ci�r̄,���2�1 − �/T��, �3b�

where E denotes expectation and Ci is the covariance of
the instantaneous intensity. Note that the term in square
brackets in Eq. (3b) was missing in the original publica-
tion by Fercher and Briers [1] and although this omission
has been pointed out by numerous authors [6–8], the
incorrect formula persists in the literature [9,10].

Note that the variance of the integrated intensity in
Eq. (3b), which is a first-order statistic, requires knowl-
edge of the second-order statistic of the instantaneous
intensity. The covariance of the instantaneous intensity
in terms of its autocorrelation is

Ci�r̄,�� + �i
2�r̄� = Ri�r̄,�� = i�r̄,t�i�r̄,t + ���. �4�

Under the assumption that the instantaneous intensity is
due to scatter from a large number of particles, one can
argue that the field is a complex circular Gaussian pro-
cess. As such, one can invoke the complex Gaussian mo-
ment theorem [11] that expresses the fourth-order statis-
tical moment in terms of products of second-order
moments with the result that

Ri�r̄,�� = �i
2�r̄� + �RE�r̄,���2. �5�

This association between the correlation function for
the intensity and that of the field (denoted by the sub-
script E) is known as the Siegert relation [12]. At this
point, the usual practice is to assume that the scattering
particles are undergoing Brownian motion with the result
that the correlation function for the particle velocity (and
thus the field) takes the form [13]

RE�r̄,�� = �i�r̄�exp	− ���/�c
, �6�

where �c is a characteristic correlation time depending on
the mass of the particle and the frictional forces in its en-
vironment. From this relationship we have for the covari-
ance of the instantaneous intensity

Ci�r̄,�� = �i
2�r̄�exp	− 2���/�c
, �7�

and thus for the contrast [Eqs. (2), (3), and (7)],

K�r̄� = � �c

2T�2 −
�c

T
�1 − e−2T/�c���1/2

. �8a�

The corresponding result as given by Fercher and Briers
[1] without inclusion of the triangular window in Eq. (3b)
is

K�r̄� = � �c

2T
�1 − e−2T/�c��1/2

. �8b�

Equations (8a) and (8b) are plotted in Fig. 1, thus illus-
trating the importance of including the triangular win-
dow. One may argue that operation in the long-exposure
regime, where the effect of this triangular window is
minimal, renders this distinction academic [14]. In the
past, limitations imposed by video rate cameras indeed
have forced operation in the long-exposure regime. How-
ever, with recent advances in CCD and CMOS technolo-
gies, this is no longer the case. A more general formula-
tion is now relevant, as data acquisition using shorter
integration times has some distinct advantages.

B. Proper Statistical Model
As originally proposed by Fercher and Briers [1], the re-
lationship of Eq. (8b) could be used in a single exposure
(photograph) to assess flow velocity. This argument relies
on the relative values of the correlation time �c and the
camera integration time T. The idea further assumes that
the correlation time is inversely proportional to the veloc-
ity of the scatterers. Thus if the camera integration time
is long compared to the correlation time, the motion of the
scatterers will blur the speckle and the contrast will be
reduced. On the other hand, if the integration time is
short with respect to the correlation time, the speckle mo-
tion will be effectively frozen and the contrast will remain
high. In the intermediate regime, the contrast should
bear a functional dependence on the ratio T /�c. The diffi-
culty with this argument is that there are multiple char-
acteristic correlation times. One is associated with the or-
dered flow �c=�F, while another is associated with the
unordered Brownian motion �c=�B. The desired behavior
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Fig. 1. (Color online) Historical result due to Fercher and Briers
[1] and correction.
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is observed only if �F��B. Otherwise, the speckle motion
associated with the random Brownian motion destroys
the contrast.

Another fundamental problem with this approach is
that it is often assumed that the exponential correlation
function associated with Brownian motion is appropriate
for organized motion. As pointed out by Fercher and
Briers [1], the exponential correlation function corre-
sponds to a Lorentzian line shape, which in the nomen-
clature of laser engineering is referred to as a homoge-
neously broadened line or spectral feature [15]. Such a
correlation law describes a collection of scatterers with
identical dynamic behavior. As an alternative viewpoint,
one might view organized flow as a totally inhomogeneous
broadening phenomenon. For this process, the dynamic
behavior is particular to the individual scatterers. In this
case the line shape for an ensemble of scatterers is Gauss-
ian and as a result, so too is the correlation function. Such
a phenomenon is often referred to as Doppler broadening.
If we adopt such a Gaussian model for the covariance of
instantaneous intensity [16]

Ci�r̄,�� = �i
2�r̄�exp	− 2��/�c�2
, �9�

then the measured contrast is given by

K�r̄� =� �c

2T��2� erf��2T

�c
� −

�c

T
�1 − e−2�T/�c�2

���1/2

.

�10�

The substantial differences between the resulting
contrasts for the Lorentzian [Eq. (8a)] and Gaussian
[Eq. (10)] line shapes are shown in Fig. 2. We view these
two results as limiting behaviors. Undoubtedly the actual
correlation behavior is some mixture of the two statisti-
cally independent processes. In such a case the true
model would be given by the convolution of the two line
shapes, Lorentzian and Gaussian, i.e., a Voigt profile [15].
Historically, the distinction between these two behaviors
was academic because typical camera integration times
were so long that only the asymptotic (large T /�c) behav-
ior was of interest. In this regime we find K�a /�T / tc,

where a is of the order of unity for each of these two lim-
iting behaviors. The factor T /�c is the expected reduction
in the variance due to the number of independent
samples.

Note that in the above discussion we have referred to
the convolution of the two line shapes. While it is obvious
through the Wiener–Khinchin theorem [13] that the expo-
nential and Lorentzian functions form a Fourier trans-
form pair (as do the Gaussian and Gaussian), it is often
not appreciated that these “line spectra” are actually the
first-order probability-density functions (PDFs) of the cor-
responding stochastic processes [13]. Further recall that
for addition of statistically independent random vari-
ables, the PDF of the sum is the convolution of the respec-
tive PDFs. By the convolution theorem, therefore, the net
correlation function for a combined process involving or-
dered and unordered motion is the simple product of the
Gaussian and exponential correlation functions [17].

In the absence of any a priori knowledge of the proper
correlation behavior, therefore, the inferred ratio �c /T for
a measured contrast K will display an uncertainty as
shown in Fig. 3. As seen in this figure, even for operation
in the asymptotic regime, the uncertainties are substan-
tial.

Finally, one must address the issue of the sensitivity of
the measurement. We define this sensitivity factor as the
fractional change in the inferred time constant for a frac-
tional change in the measured contrast

S =
��c /�c

�K/K
. �11�

Note that the definition of sensitivity in Eq. (11) differs
from that of Yuan et al. [18] because it is the decorrelation
time that is of ultimate interest, not the contrast. As
shown in Fig. 4 the sensitivity factors for these two limit-
ing correlation laws are essentially constant in the
asymptotic regime. These results predict, for example,
that within the asymptotic regime, a 2% change in mea-
sured contrast results in a 4% change in the inferred time
constant. The slopes of the curves in Fig. 4 further illus-
trate that operating in this asymptotic region (i.e., where
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T /�c is large) is a poor choice for discriminating between
regions that exhibit similar flows, as the sensitivity to dif-
ferent flow velocities is very low. If operation in the (long-
exposure) asymptotic regime is unavoidable due to equip-
ment limitations, then a means of obviating the issue of
the proper correlation law is to adopt a common definition
of the correlation law such as in Ramirez-San-Juan et al.
[14]. These authors make the point that a common defini-
tion of coherence time of the speckle intensity [19],

�c =�
−�

�

�Ci�r̄,��/�i
2�r̄��d�, �12�

renders the asymptotic behavior of the contrast for the
Lorentzian and Gaussian models identical. This concor-
dance, however, does not make it possible to discriminate
between random and ordered flows. In fact, because the
objective is to assess ordered flows, it is highly desirable
to be able to distinguish between random and ordered
flows.

C. Data Acquisition and Processing Issues
A data acquisition issue that is often treated in an ad hoc
fashion is the limiting form of the speckle contrast. This
issue comes about because heretofore all the statistical re-
lationships discussed have been analytic ones. Specifi-
cally, it is often pointed out, e.g., [6], that the intensity
may be measured over an extended spatial domain
(rather than by a point sensor), and as a result, the
speckle contrast is reduced. Commonly this effect is ex-
pressed in terms of the contrast relationship

K2�T� =
1

T�0

T

d���g1����2�2�1 − �/T��, �13�

where ��1 is a parameter that accounts for the reduction
in the measured contrast due to averaging (by the detec-
tor) over uncorrelated speckles [20], and g1��� is the field
autocorrelation coefficient. The parameter � is sometimes
called a “coherence factor” that depends on the detection
optics [7], but is actually the inverse of Goodman’s inte-
grated speckle parameter M [21]. Unfortunately, the no-
menclature “coherence factor” is sufficiently similar to the

“complex coherence factor” of Mandel and Wolf [22] to
cause confusion. Further, the nomenclature “coherence
factor” may suggest that it is related to the (temporal) co-
herence of the source [23]; under practical measurement
configurations, it is not. To see this, one need only con-
sider the vastly different time scales of the typical source
coherence time and the motion correlation time.

As suggested by the preceding discussion, the math-
ematical foundations of quasi-elastic light scatter (QLS)
[12] and LSCA are sufficiently similar, that it is often as-
sumed that the measurement requirements are identical.
Specifically, it appears to be a foregone conclusion that for
LSCA measurements, the acquisition geometry should be
chosen such that the speckle size matches the detector
pixel size, e.g., [18]. This has been demonstrated as opti-
mum for QLS measurements in order to maximize the
signal [6]. That this matching condition violates the (spa-
tial) Nyquist sampling requirement is usually ignored.
Further, the data processing for LSCA and QLS are sub-
stantially different. In particular, subsequent to LSCA
data acquisition, one must calculate a local speckle con-
trast from the appropriate sample statistics. Implicit in
the use of these sample statistics is the assumption that
the initial speckle image(s) as acquired by the camera
faithfully represent(s) the speckle field. This can be so
only if the sampling is at or above the Nyquist rate, i.e.,
the smallest speckle is at least twice the size of the pixel.
This is most easily accomplished by a reduction of the
f-stop of the lens [21]. While violation of this sampling cri-
terion technically does not result in aliasing, because the
integration over the individual detector elements is effec-
tively a spatial low-pass filtering operation [21], the spa-
tial structure of the speckle pattern under the matching
condition is not preserved.

Calculation of the local speckle contrast subsequently
uses the sample statistics for the mean and variance.
Specifically, the local contrast is given by the following:

K =
S

M
,

M =
1

Ns
�
i=1

Ns

Ii, S2 =
1

Ns − 1�
i=1

Ns

�Ii − M�2, �14�

where the region in question is Ns=L	W pixels. Subse-
quently one could invert the relationship of Eq. (8a) or
Eq. (10) to obtain an estimate of the correlation time.
Note, however, as demonstrated by Duncan et al. [24], the
local contrast computed as in Eq. (11) displays a probabil-
ity distribution function depending on the size of the local
neighborhood and the speckle size with respect to the
pixel. These local contrast values, even for a fully devel-
oped, polarized speckle pattern can depart substantially
from the theoretical value of unity. Thus one could attach
error bounds to the correlation times inferred through
such a process.

The sample statistics of Eq. (14) are explicitly for the
local spatial contrast within a single image. Extension of
the definition of these statistics into the temporal direc-
tion is possible as in the temporal LASCA (tLASCA) [9],
modified laser speckle imaging (mLSI) [25], or quantita-
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tive temporal speckle contrast imaging (qTSCI) [26] con-
cepts. Such temporal statistics are effective for dealing
with scatter from stationary structures. Local neighbor-
hoods encompassing both spatial and temporal domains
can prove useful as well [24].

D. Interpretation of Inferred Correlation Time
In addition to the uncertainties associated with a proper
choice of correlation behavior and statistical distribution
of the sample statistics for local contrast is the problem of
the relationship between the inferred time constant �c
and the velocity V. It has been assumed that �c and V are
inversely related, however, a specific relationship remains
elusive. One suggested relationship [27] is

�c =

/2�

V
, �15�

that is, the correlation time is the quotient of a physical
length scale (in this case the wavelength) and the local ve-
locity. The authors [27] admit that this relationship is
speculative and give no first principles argument as to its
veracity. Nevertheless this relationship has entered the
literature as fact [9]. A more physically realistic relation-
ship, however, can be found from the expression for the
normalized intensity covariance due to Goodman [19]:

Ci�r̄,��

�i
2�r̄�

= �2J1��DV�


z �
��DV�


z � �
2

, �16�

where D is the pupil diameter. This result is based on a
phase screen model of the object motion and predicts
decorrelation for a physical length scale of the order of the
point-spread function (PSF), which, for a circular pupil as
assumed here, is a simple Airy function [28]. Contrast as
a function of integration time for this model is compared
to the Brownian and Gaussian forms in Fig. 5. Clearly
this behavior is intermediate between these two limiting
forms, more closely resembling the Lorentzian results for
long-time exposures and the Gaussian for short-time ex-

posures [16]. This effect could easily account for the non-
linear relationship between time constant and velocity as
observed by Parthasarathy et al. [29]. Consistent with the
correlation functions previously discussed, it is easily
shown that in the asymptotic regime, the contrast is
K�a /�T /�c.

Finally, from Eq. (16), we obtain the decorrelation time

�c =
w

V
, �17a�

where w is the characteristic width of the Airy function

w =

z

D
, �17b�

and the velocity V and PSF are referred to a common
plane. This result makes physical sense; once the volume
of scatters moves a distance of the order of w, it is re-
placed by a new volume containing scatterers that are un-
correlated with those in the previous volume element.
Again note that if the velocity is defined within the object
plane, the PSF must be referred to the object plane as
well.

3. DISCUSSION AND CONCLUSIONS
We have highlighted a number of issues that have
hindered the concept of LSCA becoming a quantitative
tool for the estimation of flow:

1. a persistent erroneous formula expressing contrast
as a function of integrated instantaneous covariance of
intensity;

2. the inappropriate use of the Lorentzian field corre-
lation relationship;

3. a tendency to operate in the long-exposure
asymptotic regime and the subsequent lack of sensitivity;

4. a common assumption that the requirements of QLS
and LCSA measurements are the same; and

5. the oft-cited, nonphysical association between the
decorrelation time and its associated flow velocity. In par-
ticular, we emphasize that association of the exponential
correlation model with any ordered motion is patently in-
consistent, as such a model is valid only for completely
nonordered motion.

The situation for multiple scattering is equally chal-
lenging. In this regime one must consider the absorption
and scatter “coefficients” �a and �s in relation to the di-
mensions of the structures being probed. As example, for
whole blood at the He–Ne wavelength of 633 nm, 1/�s
�3 �m [30], so that for any vessel of this order or larger,
one must consider the possibility of higher-order effects.
Based on the previous discussions, it is clear that the cor-
relation function for an nth-order process is simply the
nth power of the correlation function (appropriately
weighted by the probability of the higher-order effects
[31]). For example a second-order exponential process has
an effective correlation time that is half that of the first-
order process. In the limit of diffusing wave spectroscopy
(DWS), motions of the order of 
 /�n are sufficient for
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decorrelation [32]. Higher-order scatter has the effect of
shifting the contrast curves to the right. Interpretation of
the speckle contrast of such higher-order process in terms
of a first-order process would thus have the effect of over-
estimating the true first-order correlation time.

On the other hand there are approaches for mitigating
the effects of these higher-order scatter processes. One is
to employ linearly polarized illumination and to assess
the contrast of only the co-polarized backscatter compo-
nent. The cross-polarized component (if there is one) is
undoubtedly associated with a higher-order scatter event.
Of course a separate measurement of any cross-polarized
component can give valuable clues as to the existence of
these higher-order scatter events. Other discrimination
methods include the use of multiple illumination wave-
lengths or multiple detectors viewing the same scatter
volume from different perspectives [32].

Substantial challenges remain if LSCA is to become a
quantitative tool for assessing flow. The proper correla-
tion law undoubtedly lies between the Lorentzian and
Gaussian limits. A plausible correlation law based on
rigid-body motion has been hypothesized, but remains to
be verified experimentally. An advantage of this rigid-
body model is that it offers a compelling physical link be-
tween the decorrelation time constant and the local veloc-
ity. However, this too must be verified experimentally.

Much effort remains in linking the uncertainties in the
estimated local velocities to the measured contrast, tak-
ing into account the probability distributions of the
sample statistics. Note that one important parameter in
the distribution of the sample statistics of speckle con-
trast is the relationship between speckle size, detector
size, and processing neighborhood. In particular, the
proper relationship between speckle and detector sizes is
an important issue to be addressed. It is often assumed
that the matching condition [18], which has been demon-
strated as optimum by researchers in the field of QLS [6],
should be applied to LSCA measurements. That this con-
dition violates the Nyquist (spatial) sampling require-
ment is usually ignored.

Finally, the issue of optimum integration time with re-
spect to the decorrelation time needs to be resolved. One
way to proceed would be to acquire data at much higher
frame rates and to subsequently explore this relationship
numerically, after detection. This approach was indeed
chosen by Yuan et al. [18], but their conclusions suffered
from a number of the errors and misconceptions cited
herein.

Much effort is required before LSCA can be claimed to
be a quantitative tool for flow assessment. The issue is
not whether there is an answer (i.e., a quantitative link
between speckle contrast and local velocity), but rather
that there are many answers, each dependent on specific
assumptions about the relationships between particle
dynamics and light scatter.
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