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ABSTRACT

Peterson, C.D.; Erlandson, J.M.; Stock, E.; Hostetler, S.W., and Price, D.M., 2017. Coastal eolian sand-ramp development
related to paleo-sea-level changes during the latest Pleistocene and Holocene (21–0 ka) in San Miguel Island, California,
U.S.A. Journal of Coastal Research, 33(5), 1022–1037. Coconut Creek (Florida), ISSN 0749-0208.

Coastal eolian sand ramps (5–130 m elevation) on the northern slope (windward) side of the small San Miguel Island (13
km in W-E length) range in age from late Pleistocene to modern time, though a major hiatus in sand-ramp growth
occurred during the early Holocene marine transgression (16–9 ka). The Holocene sand ramps (1–5 m measured
thicknesses) currently lack large dune forms, thereby representing deflated erosional remnants, locally covering thicker
late Pleistocene sand-ramp deposits. The ramp sand was initially supplied from the adjacent island-shelf platform,
extending about 20 km north of the present coastline. The sand-ramp deposits and interbedded loess soils were 14C dated
using 112 samples from 32 archaeological sites and other geologic sections. Latest Pleistocene sand ramps (66–18 ka)
were derived from across-shelf eolian sand transport during marine low stands. Shoreward wave transport supplied
remobilized late Pleistocene sand from the inner shelf to Holocene beaches, where dominant NW winds supplied sand to
the sand ramps. The onset dates of the sand-ramp deposition in San Miguel are 7.2 6 1.5 ka (sample n¼14). The internal
strata dates in the vertically accreting sand ramps are 3.4 6 1.7 ka (n¼ 34). The sand ramps in San Miguel show wide-
scale termination of sand supply in the latest Holocene time. The sand-ramp top dates or burial dates are 1.7 6 0.9 ka (n
¼ 28). The latest Holocene sand ramps are truncated along most of the island’s northern coastline, indicating recent
losses of nearshore sand reserves to onshore, alongshore, and, possibly, offshore sand sinks. The truncated sand ramps in
San Miguel Island and in other sand-depleted marine coastlines provide warnings about future beach erosion and/or
shoreline retreat from accelerated sea-level rise accompanying predicted global warming.

ADDITIONAL INDEX WORDS: Island shelf platform, paleo-wind and wave climate, coastal erosion, coastal
archaeology.

INTRODUCTION
The small semi-arid San Miguel Island (37 km2) is located

offshore of the south-central California coast (Figure 1). It

provides an ideal location to establish the timing of Holocene

eolian sand-ramp development on its windward slopes relative

to changing sea levels under conditions of a restricted shelf

sand source and modeled paleo-wave climate forcing. Many of

the eolian sand ramps are erosional remnants that have

become truncated at eroded shorelines, thereby separating

them from their previous sources of beach sand supply. Most of

the present sand ramps show variable stages of deflation,

gullying, and/or slope failure. The sand ramps on the windward

slopes of San Miguel are not characterized by large positive-

relief dune forms, such as transverse, parabolic, or linear dune

ridges; however, such features might have existed earlier in the

sand-ramp development. Because of the lack of preserved dune

forms, the sand-ramp deposit features are referred to as coastal

eolian sand ramps.

Unlike the mainland dune sheet complexes in the San

Francisco, Monterey, Santa Maria-San Antonio, and Los

Angeles coastal areas (Cooper, 1967; Orme, 1992; Peterson et

al., 2015), the source of sand to the San Miguel Island sand

ramps was not influenced by mainland rivers or continental

shelf sand transport (Johnson, 1972). The northern Channel

Islands, including San Miguel Island, are separated from the

mainland continental shelf by the Santa Barbara Basin. The

depths of the Santa Barbara Basin, 200–500 m below mean sea

level (MSL), exceed those of the lowest sea-level wave bases

during the late Pleistocene time (Flemming et al., 1998). San

Miguel sand ramps contain significant abundances (�20%) of

calcium carbonate components (Johnson, 1972). The calcium

carbonate components reflect calcite/aragonite sources from

marine organisms that inhabited the offshore island-shelf

platform, as shown for other nearby Channel Islands (Muhs et

al., 2009). Of particular significance to this study of sea-level-

forced sand supply from an island-shelf platform is the
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extraordinary dating control of Holocene sand-ramp deposition

on San Miguel Island. The timing of Holocene sand accretion on

the windward (north) side of San Miguel Island is established

from dated archaeological sites that are hosted in, above, and/

or below sand-ramp deposits (Erlandson, Rick, and Peterson,

2005). San Miguel Island contains one of the earliest and best

preserved records of maritime Native American occupation

along the western coast of North America (Erlandson et al.,

1996; Erlandson et al., 2011). In this paper, the extensive

records of archaeological site stratigraphy and associated

radiocarbon dating of sand-ramp deposits that are available

from the small San Miguel Island are utilized.

The stratigraphic records of the preserved sand ramps on the

northern side of San Miguel (Figure 2) are complex, but silty

paleosol marker beds and caliche paleosols are distinctive field

aids for distinguishing between Holocene and late Pleistocene

ages of the sand-ramp development. The latest Pleistocene

sand ramps along the northern side of San Miguel Island

locally overlie uplifted marine terraces (Johnson, 1972). The

late Pleistocene sand ramps and associated caliche-cemented

eolianite deposits from the northern side of the island are

dissected by numerous gullies, exposing their stratigraphic

development. Silty soil and paleosol horizons, including the

Simonton-Green Mountain soils (Johnson, 1972), are locally

preserved along the width and length of San Miguel Island. The

distinctive soils represent low-stand loess deposits (Peterson et

al., 2014), with the youngest loess paleosols (21–6 ka) generally

separating the underlying latest Pleistocene sand-ramp depos-

its from the overlying Holocene sand-ramp deposits. The onset

of extensive Holocene sand-ramp emplacement (~7 ka) in San

Miguel Island (Johnson, 1972) generally follows slowing of the

Holocene marine transgression in middle Holocene time.

Historic sand dune migration across the San Miguel hilltops

(mid-1900s) resulted from early historic livestock grazing and

the destabilization of vegetated prehistoric sand deposit

surfaces (Johnson, 1972; Rick, 2002). Stabilizing vegetation

has now recolonized most of the sand-deposit surfaces,

following the removal of livestock from San Miguel Island.

Despite the migration of sand across San Miguel hilltops in the

last century, the Holocene sand ramps on the northern side of

the island are undergoing localized erosion from sea-cliff

retreat, headward gullying, eolian deflation, and slope failure.

In places, the gullying and slope failure of the sand ramps are

mixing (1) artifacts from successive Native American occupa-

tion sites, (2) Native American artifacts with late Pleistocene

faunal remains, and (3) Holocene and Pleistocene faunal

remains (Erlandson, 2000; Rick, Erlandson, and Vellanoweth,

2006; Rick et al., 2009).

In this article, the timings of Holocene sand-ramp deposition,

stabilization, and recent erosion are compared to changing

positions and rates of the Holocene marine transgression

across the small island-shelf platform, located NW of San

Miguel Island (Figure 1). The dating of sand-ramp develop-

ment in San Miguel Island is based on 112 14C dated samples,

collected from 32 archaeological sites that are hosted in the

sand ramps, island bluff tops, and inland hilltops (Erlandson,

Rick, and Peterson, 2005). The supply of Holocene eolian sand

is related to onshore transport of shelf sand deposits by W-NW

storm surf, as presently reported from offshore wave buoys and

as simulated in regional paleo-wind and wave stress climate

models (21–0 ka time span) (Alder and Hostetler, 2015). The

onset of sand-ramp erosion during the latest Holocene time is

related to diminished wave transport of available shelf deposits

in the deepening inner shelf and the losses of the existing beach

Figure 1. San Miguel Island, located offshore of the south-central California

coastline, is separated from the mainland by the Santa Barbara Basin

(dotted white line .250 m depth below MSL). Large coastal dune sheets

(stippled), cites (solid circle), and the Santa Barbara offshore wave buoy

(NOAA, 2016), LLNR 198 (solid square) are shown. Unlike the large dune

sheet complexes at San Francisco, Monterey, Santa Maria-San Antonio, and

the Los Angeles areas, the source of sand to the isolated San Miguel Island

was not influenced by mainland rivers or by mainland shelf sand supply.

Figure 2. Oblique aerial photo of San Miguel Island’s middle section; view is

to the east. Holocene sand ramps are locally developed over late Pleistocene

sand-ramp deposits on the northern side (windward side) of San Miguel

Island (photo left). Active sand bands, or sand streamers, that cross the

island from NW to SE (photo background) are partly sourced from

remobilized late Pleistocene sand/dune deposits. Prevailing winds on San

Miguel are from the NW (Johnson, 1972; NOAA, 2016). Both the Holocene

and underlying Pleistocene sand-ramp deposits along the northern side of

the island are truncated at the locally eroding coastline. Kelp-covered

bedrock exposures (dark) located offshore of the retreating coastline (photo

foreground) are surrounded by sand in the island inner shelf.
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sand to upland, alongshore, and/or offshore sand sinks. With

predicted future rising sea levels (Vermeer and Rahmstorf,

2009), the expected acceleration of coastal erosion could

threaten numerous archaeological and paleontological sites

located along the current San Miguel Island coast (Erlandson,

2008; Reeder, Rick, and Erlandson, 2011). The recent wave

erosion of beach and eolian sand-ramp deposits serves as a

warning about future beach erosion in other island littoral

systems, following potential sea-level rise from predicted global

warming (Meehl et al., 2007; Rahmstorf, 2007).

Background
Holocene dune sheet development along the central Cal-

ifornia coast has been linked to shelf sand supply from

shoreward wave transport during the Holocene marine

transgression (Cooper, 1967; Johnson, 1972; Knott and Eley,

2006; Orme, 1992; Peterson et al., 2015). Recent luminescence

dating of the San Francisco and Monterey dune sheets (Figure

1) has demonstrated that across-shelf eolian sand supply from

offshore depocenters occurred during glacial low-stand inter-

vals (Peterson et al., 2015). This article addresses eolian sand-

ramp development in San Miguel Island during late Pleisto-

cene marine low stands and the Holocene marine transgres-

sion. During late Pleistocene glacial low stands, including

marine isotope stages MIS2, MIS4, and MIS6, the lowest

eustatic sea levels dropped to elevations of -100 to -130 m

(Figure 3A). During interglacial high stands (MIS1, MIS5, and

MIS7), the highest eustatic sea levels approached modern sea

level (Bard, Hamelin, and Fairbanks, 1990). During the

Holocene transgression, the regional sea level rose from about

-110 m at 16 ka to-30 m at 9 ka, or a sea-level rise rate of~10

m ka-1 (Figure 3B) (Clark, Mitrovica, and Alder, 2014;

Peterson et al., 2010; Reeder-Myers et al., 2015). The rate of

sea-level rise began to decline after 9 ka, reaching 4–5 m ka-1 at

7 ka and only ~1.0 m ka-1 during the latest Holocene time (�3

ka). Future rates of relative sea-level rise could greatly

increase, by as much as a factor of 10, to reach ~1 m above

modern MSL by 2100, following predicted future global

warming during this century (Grinsted, Moore, and Jevrejeva,

2010; Rahmstorf, 2010; Vermeer and Rahmstorf, 2009).

The offshore shelf platform (0–200 m water depth) located

NW of San Miguel Island is ~20 km in width and length

(Figure 4). About 60% of the surface area of the island-shelf

platform is less than 100 m in water depth. That area would

have been exposed to eolian sand transport during late

Pleistocene marine low stands (Figure 3A). The Holocene

marine transgression submerged the shallow shelf platform

from the northern, western, and eastern sides. Wave refraction

would have redirected deep-water waves from the W, NW, and

N toward the central axis of the shelf platform, transporting

remobilized shelf sand toward the northern shores of San

Miguel. Some of the shelf sand that bypassed San Miguel

Island during latest Pleistocene and Holocene times could have

supplied some of the sand in the dune fields on the northern

coastline of Santa Rosa Island (Johnson, 1972; Orr, 1968),

which is located SE of San Miguel Island.

San Miguel Island and Santa Rosa Island (Figures 1 and 4)

experienced substantial paleo-climate changes across the late

Pleistocene/Holocene transition and later vegetation changes

in mid-late Holocene time, possibly attributable to human-

caused fire. Archaeological and pond/pollen sites on the two

small islands have been analyzed for changes in vegetation

types, from 12 ka to the present (Anderson et al., 2010;

Erlandson et al., 1996; West and Erlandson, 1994). Late

Pleistocene coastal conifer forests in the highlands converted

to pine, sage, and grasslands by 11,800 cal BP as the climate

Figure 3. Part A: Eustatic sea levels varied from near present sea level at 0

m elevation to-130 m during the last glacial maximum (LGM) at ~20 ka.

Sea levels during most of late Pleistocene time ranged from-50 to-100 m

elevation. The late Pleistocene sea-level curve was redrafted from Bard,

Hamelin, and Fairbanks (1990). Part B: Relative sea level (RSL) rise is

shown for the Holocene marine transgression, as recorded on the central part

of the west coast of North America (solid line) (Peterson et al., 2010) and

modeled for the San Miguel Island area (solid squares) (Reeder-Myers et al.,

2015). Paleo-sea levels ranged from-110 m to-100 m elevation at 16 ka to 0

m at present time. Rates of sea-level rise decreased greatly between 9 and 6

ka.

Figure 4. San Miguel Island-shelf platform with depth contours (m) relative

to modern mean sea level (MSL). See Figure 1 for the position of the San

Miguel Island-shelf platform, located seaward of the Santa Barbara Basin.
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warmed. By 9150 cal BP, coastal sage scrub covered the hill

slopes, and after ~6900 cal BP grasslands became more

prevalent, possibly because of human-caused fires (Anderson

et al., 2010). In summary, the warming and drying conditions of

the early Holocene (prior to 9 ka) should have promoted eolian

sand transport on San Miguel Island relative to the late

Pleistocene time. As shown in this article, however, the sand-

ramp development in San Miguel Island peaked in mid-

Holocene time (7–4 ka), requiring a different origin/mechanism

for changing sand supply to the northern (windward) slopes of

the small islands.

METHODS
Shallow measured sections, 29 in number, were estab-

lished in gully cuts, sea cliffs, sand-deflation troughs, and

headwall scarps in Holocene and late Pleistocene sand ramps

and hilltop deposits in San Miguel Island (Figure 5) (Peterson

et al., 2006). The measured sections range from 2 to 27 m in

depth below surface. The representative sections include

measurements of distinctive soil and paleosol horizons, as

defined by (1) grain size (AM/CAN Stratigraphic grain size

cards), (2) dry color (Munsel color charts), (3) cementation

(Birkeland, 1999), and (4) quantitative analyses of uncon-

fined shear strength, as measured by penetrometer resis-

tance (kg cm-2). Sand grain sizes are as follows: very fine

lower (vfL) 6–88 lm, very fine upper (vfU) 88–125 lm, fine

lower (fL) 125–177 lm, fine upper (fU) 177–250 lm, medium

lower (mL) 250–350 lm, and medium upper (mU) 350–500

lm. Soil-profile development was calibrated against thermo-

luminescence (TL) and radiocarbon (14C) ages of the sand-

ramp deposits to establish soil chronosequences (Peterson et

al., 2006). The soil chronosequences are used to help

discriminate between late Pleistocene and Holocene ages of

sand-ramp deposit emplacement in San Miguel. Details

about the dating of the two TL samples from the measured

sections SANM3 and SANM15 are presented in Peterson et

al. (2006). The methods of compiling the sand-ramp deposit

stratigraphy and 14C data from archaeological site records

are outlined here.

Sand layer and loess stratigraphic relations, together with

corresponding 14C dated samples (n ¼ 112), were compiled

from 32 San Miguel archaeological sites (Figure 5) (Erland-

son, Rick, and Peterson, 2005). The 14C samples were selected

from charcoal and marine shells associated with shell

middens (Erlandson and Rick, 2002) in recorded archaeolog-

ical sites. The sample dates were adjusted for isotopic

fractionation, and the shell dates were corrected for both

global and regional marine reservoir effects. The Holocene

dates were calibrated (Calib4.3) for 61 standard deviation

(SD) (61r) uncertainties (Erlandson, Rick, and Peterson,

2005). For the purposes of this article, calibrated radiocarbon

dates (cal year BP) are converted to thousands of years (ka),

as rounded to 100 years (0.1 ka). The standardized sample

dates (ka) permit comparisons to published TL dates, sea-

level curves, and paleo-climate records, which are all

provided in ka time scales. Here, the individual sample dates

are referred to as dates, and the averaged group dates are

referred to as ages. Archaeological site records were reviewed

to establish the vertical positions of the 14C dated samples

relative to eolian deposit tops, bottoms, and/or internal

strata. All Holocene radiocarbon sand-ramp bottom samples

were collected within 10 cm of the bottom sand contact. All

radiocarbon sand-ramp top samples were collected to within

10 cm of the upper sand contact below terminal midden

materials. This sample collection methodology represents the

greatest stratigraphic accuracy that can be expected for

subaerial granular deposits on moderately steep slopes.

Potential errors in age estimates that could be associated

with syndepositional mixing, time lags, and/or transported

radiocarbon materials are reduced by multiple samples from

multiple sites in the densely sampled San Miguel study area.

The radiocarbon sample relative position data and corre-

sponding sample radiocarbon analyses are published in

Erlandson, Rick, and Peterson (2005). Summarized 14C

sample site names, position coordinates, elevations, strati-

graphic positions, and corresponding standardized dates

from San Miguel Island are presented in this article.

The relative stratigraphic positions include (1) Holocene

sand-ramp top (HRT), (2) Holocene sand-ramp internal

strata (HRS), (3) Holocene sand-ramp bottom (HRB), (4)

Simonton soil top (SST), and (5) Simonton soil internal strata

(SSS). The HRB date is from the lowest (oldest) sand layer at

the site, and it constrains the onset of sand-ramp deposition

at the site. The HRT date is from the youngest terminal sand

layer at the site, and it represents the end of prehistoric sand-

ramp deposition at the site. Sand-ramp surfaces that are not

buried by midden materials or are still actively mixing,

accreting, or transporting sand are not reported here.

Multiple samples from individual sites yield ranges of dates,

attributable in part to variations in radiocarbon materials

and depositional processes within the site. The SST dates

represent the termination of the youngest loess accumulation

at the site prior to burial by eolian sand deposits and/or shell

midden materials.

Spatially variable erosion of sand ramps and beach

shorelines along the remote northern coast of San Miguel

Figure 5. Location of measured sections (SANM) and 14C and TL dated

sand-ramp deposit sites (three letter abbreviations) in San Miguel Island.

Details about measured section positions and radiocarbon dating laboratory

analyses are provided in Erlandson, Rick, and Peterson (2005) and Peterson

et al. (2006).
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have not been studied or documented. San Miguel beach

access is restricted because of sensitive archaeological sites

and pinniped rookery haul outs. For this study, modern

satellite imagery (4 January 2015 at 1700 PST) is used to map

(1) subaerial winter beach widths (swash line to sea cliff) of

less than 50 m during a tidal stage of mean lower low water

(MLLW) and (2) apparent gullies that dissect/erode Holocene

sand-ramp deposits along distances of at least 100 m

landward from the beach backshore. A 50-m-wide low-tide

sand beach on a fully exposed NE Pacific Ocean coastline will

permit waves to attack the sea cliff during combined major

winter storm surf and high tides. Such conditions, for the

purposes of this article, yield episodically erosive backshore

settings.

The narrow beach widths (,50 m) and apparent gullying of

dune ramps represent a depletion of shoreline sand supply to

San Miguel’s windward sand ramps. Wider beaches (.100 m

width) with apparent foredune development at the base of

active sand ramps are also mapped from the satellite imagery.

The presence of wider beaches and non-eroded sand ramps/

foredunes are assumed to represent a modern net surplus of

beach sand supply. These proxies are used to differentiate

episodically eroded shorelines/sand ramps from stable or

accreting shorelines/sand ramps along the remote northern

coast of San Miguel. Net historic shoreline retreat or accretion

are not evaluated in this study.

RESULTS
In this article, measured sections of exposed coastal eolian

deposits are used to compare sand-ramp and hilltop deposit

composition, thickness, vertical sequences, and 14C dates from

representative San Miguel Island sites. Late Holocene sand

ramps are also analyzed for evidence of landward headward

gullying and truncation at sea cliffs, which are indicative of

ongoing erosion of sand-ramp deposits in the northern coast of

San Miguel.

Sand-Ramp Deposit Texture, Soil Development, and
Stratigraphic Sequences

The compositions of eolian sand-ramp deposits and hilltop

eolian deposits in San Miguel are established in selected

measured sections (Figure 5), chosen on the bases of Quater-

nary deposit mapping by Johnson (1972) and archaeological

site investigations by Erlandson, Rick, and Peterson (2005).

The sand-ramp deposits contain fine to medium-upper size

siliclastic sand (125–500 lm) with minor components of

carbonate sand-size fragments (Figure 6). Thin interbeds of

sandy silt (loess soils) contain vFL sand (,85 lm) to silt size

material. The dominant grain size of the measured Holocene

sand-ramp deposits is typically fU or medium lower (mL)

ranging from 175–350 lm in apparent mean size. Late

Pleistocene sand-ramp deposits are discriminated from Holo-

cene sand-ramp deposits on the basis of relative soil profile

development and cementation. Holocene sand-ramp deposits

contain only thin weak B accumulation horizons (Bw) and little

to no cementation. Penetrometer resistance values of Holocene

sand-ramp deposits generally ranged from 0.5–2.0 kg cm-2.

Late Pleistocene sand-ramp deposits are characterized by the

presence of well-developed accumulation zones (Bt), usually

associated with underlying carbonate caliche accumulation

horizons (Bk) (Birkeland, 1999) and penetrometer resistance

values �2.5 kg cm-2 (Peterson et al., 2006).

Holocene sand ramps, with measured slope gradients of 15–

60%, represent thin veneers over underlying late Pleistocene

sand ramps (Figure 7); however, thicker Holocene sand-ramp

deposits do occur from infills of pre-existing gullies and against

pre-existing topographic benches in the northern hill slopes of

San Miguel. The steepest Holocene sand ramps (�70% grade)

show evidence of shallow slope failure by (1) deformed cross-

bedding, (2) deformed paleosol horizons, and/or (3) the presence

of reworked Pleistocene soil caliche fragments of gravel size in

near-surface sand deposits. Pleistocene caliche fragments were

either mixed with Holocene sand colluvium, as measured in

SANM7, SANM9, and SANM11 (Figure 6), or were observed as

float on the Holocene sand-ramp surfaces. Modern sand-ramp

gradients of �35% generally do not show evidence of slope

failure or downslope transport of eroded caliche fragments.

Most of the low angle sand-ramp surfaces (�35% grade) have

become stabilized by late historic vegetative recolonization

(Figure 2). Cemented late Pleistocene sand-ramp surfaces

reach 85% grade. Some exposed caliche strata or Bk soil

horizons locally exceed 170% grade (608 slope angle). Wind-

carved yardang features (Johnson, 1972) are present in some

gullied late Pleistocene sand-ramp deposits, demonstrating

localized sand-ramp erosion by eolian deflation.

Measured Holocene sand-ramp deposits in exposed sections

range from 1 m to 5 m in vertical thickness (Figures 6 and 8).

Exposed late Pleistocene sand-ramp deposits reach thicknesses

of 5 to 20 m. The late Pleistocene deposit thicknesses represent

minimum values unless basal beach or wave-cut terrace units

were exposed. Nevertheless, the late Pleistocene sand-ramp

deposits are generally much thicker, by three to five times,

Figure 6. Measured sections of sand-ramp deposit stratigraphy are shown,

generally from the NE areas of San Miguel Island. See Figure 5 for positions

of measured sections and nearest 14C dated sites. Measured sections include

elevations (m), depth below surface (m), sand grain size, soil profile

accumulation horizons (Bw and Bt/Bk), uppermost Simonton soil loess

deposit (Ss), penetrometer resistance (P), and deposit dates (ka). Sand grain

sizes include upper (U) and lower (L) values of very fine (vf), fine (f), and

medium (m) size sand.
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than the overlying Holocene sand-ramp deposits. The Holocene

sand-ramp deposits locally thicken at slope benches and bluff

tops such as at SANM13. The greater sand-ramp thicknesses at

slope benches and bluff tops are presumably attributable to

lower slope gradients that reduce downslope sand movement,

and/or detached wind flow, that permits localized sand

accretion in low-velocity zones. Holocene sand ramps along

the NW side of San Miguel Island (Figure 8) are generally

narrower, thinner, and lower than those from the NE side of

San Miguel (Figure 6). Basal dates of the Holocene sand-ramp

deposits from archaeological sites near measured sections

SANM2 (7.2 ka) and SANM13 (5.2 ka) are substantially

younger than underlying Simonton soil loess deposits dated

near SANM2 and SANM4 (8.2 ka) and SANM5 (9.4 ka).

The dated late Pleistocene sand-ramp sections range in age

from .40 ka (SANM2) to 66 ka (SANM3) to .150 ka (SANM15)

(Figures 6, 8, and 9A). The TL-dated sand-ramp deposit date

(66 6 4 ka; Peterson et al., 2006) in the SANM3 measured

section (Figure 9B) suggests that the underlying marine beach/

cobble platform at 5- to 7-m elevation is correlated to the MIS5a

highstand (Figure 3A). The wave-cut terrace at SANM3 occurs

at 4–5 m above MSL. A more prominent wave-cut terrace

occurs at 10 m MSL along much of the NW coastline of San

Miguel Island, such as at SANM18. If this low terrace

correlates to the terrace at the dated SANM3 measured

section, then much of the northern shoreline of San Miguel

Island is backed by the MIS5a high-stand terrace at ~83 ka. If

the lowest terrace platforms are correlated to the last major

high stand (MIS5a), which reached 10–20 m below present

MSL, then tectonic uplifts of 10-30 m in 83 ka could translate

into long-term uplift rates of 0.25–0.37 m ka-1 for the north-

central coastline of San Miguel Island. Similar uplift rates have

been reported for nearby Channel Islands (Muhs et al., 2012;

Muhs et al., 2014; Sorlien, 1994). Additonal luminesence dating

of marine terrace beach-sand deposition is needed to more

Figure 8. Measured sections of sand-ramp deposit stratigraphy are shown,

generally from the NW areas of San Miguel Island. See Figure 5 for positions

of measured sections and nearest 14C dated archaeological sites. Measured

sections include elevations (m), depth below surface (m), soil profile

accumulation horizons (Bw and Bt/Bk), uppermost Simonton soil loess

deposit (Ss), penetrometer resistance (P), and deposit dates (ka). Sand grain

sizes include upper (U) and lower (L) values of very fine (vf), fine (f), and

medium (m) size sand.

Figure 9. Part A: Photo of late Pleistocene sand-ramp deposits (Pr) and

underlying beach conglomerate (Pb) in a sand-ramp sequence (.150 ka)

near the SANM15 measured section (Figures 5 and 8). A low-stand loess

layer, the Simonton soil (Ss), caps the latest Pleistocene sand-ramp deposits.

View is to the south in a ~15 m deep gully. Part B: Late Pleistocene sand-

ramp deposits (66 ka) at SANM3 TL site (Figure 6) overlie the late

Pleistocene beach sand (Pb) and cobble conglomerate (photo foreground)

from the inferred MIS5a marine terrace (~83 ka). A large Holocene sand

ramp (photo upper left) overlies the late Pleistocene sand-ramp deposits that

are locally exposed in the sea cliff (photo foreground).

Figure 7. Part A: Photo of an active Holocene sand ramp (Hd), 6–7 ka in

basal age, that climbed to ~80 m elevation on the northern side of San

Miguel Island, between measured sections SANM1 and SANM2 (Figures 5

and 6). No large-scale transverse, parabolic, or linear dune ridges occur on

the deflated sand-ramp surface. The seaward base of the sand ramp is

truncated and the lower slopes are being recolonized by vegetation. Part B:

Same profile (35% surface gradient) of the Holocene sand ramp (box in photo

background) shown from a greater distance, which demonstrates that the

thin Holocene sand-ramp deposits, (Hr) in the photo background, overlie late

Pleistocene sand-ramp deposits, (Pr) in the photo foreground, as exposed in

caliche cemented strata below the dashed line (white). The late Pleistocene

sand-ramp deposits near SANM2 (.40 ka) (Figure 6) overlie the MIS5a

marine terrace (not shown in photo).
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firmly establish the ages of the marine terraces on San Miguel

Island.

The Simonton soil loess is dated back to ~18–20 ka in site

YRD (Table 1) near the measured section SANM15 (Figures 8

and 9A). This coastal loess deposit represents a marine low-

stand interval (Peterson et al., 2014). If the other interbedded

loess layers in measured sections SANM2, SANM4, SANM16,

and SANM19 (Figures 6 and 8) represent marine low-stand

intervals, then the associated sand-ramp deposits were also

emplaced during marine low-stand intervals. The low-stand

interval sand ramps would have been supplied by eolian

transport of low-stand beach/dune deposits across the emerged

island-shelf platform during late Pleistocene time (Figure 3A).

Sand deposits derived from Holocene sand ramps in the

windward side of San Miguel are mostly absent from the higher

hilltops at elevations of 150 to 250 (Figures 8 and 10). Only

limited evidence shows that such sand migrations locally

reached the southern coast of San Miguel (Braje, 2010; Braje,

Erlandson, and Rick, 2013; Erlandson, Rick, and Peterson,

2005). Historically active sand streamer deposits on the hilltops

were widely reactivated and locally sourced, in part from

reactivated late Pleistocene and Holocene hilltop sand soils.

Shallow exposures of the hilltop sand deposits were dominated

by subhorizontal strata and interbedded deflation strata. The

modern topography includes interconnected deflation corridors

and associated linear sand ridges but rarely any parabolic dune

fronts. The reactivated Pleistocene sand sources are indicated

by the presence of rounded ped fragments (transported

concretions) in the remobilized hilltop sand deposits. The

relative contributions, if any, of Holocene sand ramps to the

highest hilltop sand deposits were not resolved in this study.

Loess deposits, identified as Simonton or Green Mountain soils

(Johnson, 1972) cap late Pleistocene sand deposits in some

hilltop sites. The terminal loess cap in measured section

SANM20 is dated to 14 ka in the nearby caliche forest site

(FLF) (Figure 5) (Erlandson, Rick, and Peterson, 2005;

Johnson, 1972).

The variable thicknesses of the larger Holocene sand-ramp

deposits that mantle the northern slopes of San Miguel Island

(Figures 6, 8, and 10) could reflect (1) localized beach sand

supply, (2) localized wind transport capacity, and/or (3) localized

sand-ramp deposition in slope terrace benches and bluff tops

(Figure 11A). Some small Holocene sand ramps are guided

upslope by pre-existing gullies and remnant late Pleistocene

sand-ramp features (Figure 11B). In this study, only exposed

sections from sea-cliff gully cuts and/or deflation troughs could

be measured in San Miguel because of the proximity of identified

archaeological sites. Pleistocene sand-deposit thicknesses

reached 25 m in SANM18, but thicker late Pleistocene sand-

ramp sections could occur on the northern terraced slopes of San

Miguel. The thickest Holocene sand-ramp deposits that are

reported in this study (~5-m thick) likely under-represent

maximum Holocene sand-ramp thicknesses. Such maximum

thicknesses, possibly up to 10 m thick, can be inferred from

topographic mounds at some bluff-edge localities, such as

upslope from SANM13 (Figure 6); however, late Pleistocene

sand-ramp caliche strata, including caliche forest root/stump

casts (Grimes, 2004; Johnson, 1972), locally protrude above the

Holocene sand-ramp surfaces at midslope elevations (30–100

m). The occurrences of these exposed late Pleistocene caliche

strata attest to the generally thin nature of the Holocene sand

ramps on the windward slopes of San Miguel.

Figure 10. Measured sections of sand-ramp deposit stratigraphy are shown

from the western and eastern ends of San Miguel Island and from the higher

hilltop areas. See Figure 5 for positions of measured sections and nearest

radiocarbon dated sites. Measured sections include elevations (m), depth

below surface (m), soil profile accumulation horizons (Bw and Bt/Bk),

uppermost Simonton soil loess deposit (Ss), penetrometer resistance (P), and

deposit dates (ka). Sand grain sizes include upper (U) and lower (L) values of

very fine (vf), fine (f), and medium (m) size sand.

Figure 11. Part A: Photo taken upslope of the shoreline near measured

section SANM3. A large Holocene sand ramp (Hr) in photo background

(upper left) reaches 130 m elevation (top of photo) at 0.75 km distance

landward from the shoreline. Beyond that distance the sand-ramp

transitions into a narrowing sand streamer that terminates at 175 m

elevation at 2.5 km landward distance from the shoreline. The Holocene sand

ramp overlies late Pleistocene sand-ramp deposits (Pr) in photo foreground,

including a dark brown Bt/Bk caliche soil horizon. View is to the south. Part

B: Photo taken upslope of the shoreline between measured sections SANM17

and SANM18. The small Holocene sand ramp (Hr) (photo left) is confined to a

pre-existing sand gully/deflation trough that was eroded into late Pleistocene

sand-ramp deposits (Pr). The gully is bounded/dissected by a wind-eroded

ridge (yardang) of resistant Pleistocene ramp sand. Modern dune hummocks

(mounds), as shown in the photo foreground, are becoming colonized by

stabilizing vegetation (dark).
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Dating Sand-Ramp Deposits
A total of 112 radiocarbon samples from 32 archaeological

sites and geologic sections (Erlandson, Rick, and Peterson,

2005) and two TL samples from measured sections (SANM) are

used to constrain the ages of sand-ramp development in San

Miguel Island (Figure 5). The approximate location coordinates

and elevations of the dated sites used in this article are

presented in Table 1. The dated eolian deposit sites range in

elevation from 5 to 175 m. Six of the sites are �100 m in

elevation, and nine of the sites are �15 m in elevation. The

mean and SD of site elevations are 52 6 43 m, demonstrating

the broad distribution of dated sand-ramp and loess soil-site

elevations in San Miguel.

The relative stratigraphic positions and standardized dates

(ka) of the dated samples that were used to constrain the

estimated ages of the eolian deposits in San Miguel are shown

in Table 2. The dated San Miguel sites include six late

Pleistocene sand ramps and hilltop sand deposits, 28 HRTs,

14 HRBs, 34 HRS, six SSTs, and four Simonton soil internal or

bottom strata. The HRT dates, as standardized to thousands of

years (ka), range from 0.4 ka to 3.1 ka. The HRB dates range

from 5.2 ka to 9.8 ka; however, the oldest sand-ramp bottom

dates (.9.5 ka) are all from one site: WBB. Adjacent sites EBB

and BTB yield multiple constraining onset dates (n ¼ 12) of

,9.0 ka, so the WBB site is considered to be an anomaly. Very

early sand-ramp development (.9.0 ka) at site WWB might

represent eolian sand supply from reactivated late Pleistocene

sand-ramp deposits, which was not connected to the Holocene

marine transgression. More work is needed to establish the

onset ages of widespread sand-ramp development in the NW

end of San Miguel Island. The SST dates throughout San

Miguel Island range from 11.2 ka to 6.5 ka. Sites with multiple

sample dates for the same stratigraphic positions are used to

compare within-site date ranges and variability. For example,

site EMC has nine HRT dates that range from 3.1 ka to 2.4 ka

and yield a group mean and SD of 2.8 6 0.3 ka. Site OTH has

seven HRS dates that range from 6.0 ka to 3.2 ka and yield a

group mean and SD of 4.5 6 1.3 ka. Site OTC has five HRB

dates that range from 6.7 ka to 6.3 ka and yield a group mean

and SD of 6.5 6 0.2 ka. Site BTB has 16 SST dates that range

from 9.4 ka to 8.1 ka and yield a mean and SD of 8.6 6 0.4 ka.

Holocene Sand-Ramp Gullying and Shoreline Erosion
Beaches and the seaward extents of Holocene sand ramps

vary in terms of modern sand supply or depletion along the

northern side of San Miguel Island. Beach erosion and the

corresponding truncation of sand ramps predominate along the

NW side of San Miguel, including the Castle Rock beaches

between Point Bennett and Otter Point (Figures 12 and 13).

The eroding sand ramps are truncated at the shoreline and are

gullied by headward erosion to at least 100 m landward from

the shoreline. In the north-central part of the island, between

Otter Point and Harris Point, narrow beaches (,50 m in

across-shore width) transition to wider beaches (50–100 m in

width) at the NE end of Simonton Cove. The sand ramps in

Simonton Cove show decreasing gullying with increasing

distance to the NE, suggesting more recent episodes of beach

sand supply to the NE sand ramps in Simonton Cove. Both

wide beaches (.100 m width) and the presence of foredunes

linked to sand ramps occur at the eastern end of Cuyler Cove at

the NE side of San Miguel. The large Holocene sand ramps at

the eastern end of Cuyler Cover show no evidence of gullying by

headward erosion, though deflation has locally oversteepened

their midelevation (30–100 m elev.) slopes.

Modern littoral transport directions along the northern sides

of San Miguel Island are interpreted from changes in shoreline

orientations, beach widths, and nearshore sand shoals (Figure

13). Averaged winter significant wave heights (H1/3) of 1.5–3.5

m and extreme storm waves to 7–8 m height generally

approach the northern side of San Miguel Island from the

NW. Mean wave direction from hourly recordings (mean~2908

TN) averaged for winter months (December/January/February

[DJF]) for two years, 2014 and 2015, are from Santa Barbara

Buoy LLNR 198 (NOAA, 2016). Wave refraction turns the

nearshore waves to more shore-normal directions, splitting

longshore transport to the SW and NE in the Castle Rock

beaches and driving NE transport in Simonton Cove. Wave

refraction around Harris Point reorients nearshore wave

approach in Cuyler Cove, resulting in eastward littoral

transport in Cuyler Cove. Littoral sand along the NE facing

coast of San Miguel was transported south to feed the Cardwell

Point spit/shoal at the SE end of San Miguel. Some sand either

Table 1. Sites that provide age constraints on eolian sand ramps in San

Miguel Island.

Site Name Code UTMn UTMe

Elevation

(m)

Yardang Canyon SANM3 3771300 741270 10

Nidever Canyon SANM15 3769900 744180 130

East Cuyler Harbor ECH 3770200 745500 60

Eastmost Cuyler EMC 3770400 746000 30

E. Cuyler Ridge ECR 3770300 746400 15

W. Culer Beach WCB 3771000 743500 100

Cardwell Cairn CDC 3768100 748600 15

Sky Hill SYH 3770900 743000 110

Liberrys Hill LBH 3771600 743000 100

Beach Rock BHR 3771600 742000 75

East Charcoal ECL 3771500 741800 60

Charcoal Cove CCC 3771300 741800 35

Charcoal Canyon CCN 3771000 741500 35

Yardang YRD 3770800 741100 35

Range Pole RPC 3770800 741100 55

Hatch Cover Cove HCC 3770600 740400 25

Otter Harbor OTH 3770900 738700 35

Dry Lake DYL 3770300 738500 135

H. Wash HWS 3769600 737400 85

Otter Cave OTC 3770900 738600 35

Bowl Cove BLC 3770600 738400 40

Anubis Point ABP 3770300 737500 15

Big Dune BGD 3769100 737400 90

E. Busted Balls EBB 3769600 737100 35

Busted Balls BTB 3769100 736700 35

W. Busted Balls WBB 3769000 736700 35

Abalone Point ALP 3769000 736700 15

Lion Rocks LNR 3768900 735700 10

Point Bennett PTB 3768500 735800 5

South Beach SHB 3768600 736200 5

Fossil Forest FLF 3769300 742600 175

Leuzarder Point LZP 3768200 738300 10

The TL dated sites are coded (SANM); all remaining sites (XXX) were dated

by radiocarbon methods (Erlandson, Rick, and Peterson, 2005). Sample

locality position coordinates (UTM 10S) northings and eastings (m) are

approximated to protect archaeological sites. Elevations are averaged for

sample localities to the nearest 5 m.
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bypassed Abalone Point at the western side of San Miguel or

crossed low inland topography to feed wide beaches and a small

nearshore sand shoal, located just SE of Point Bennett. In

summary, some littoral sand appears to have been lost from the

northern coastline to the SE and SW ends of the island, thereby

contributing to the apparent beach erosion and sand-ramp

truncation along most of the northern coast of San Miguel.

DISCUSSION
In this section, the origins of coastal eolian sand ramps are

related to island-shelf platform topography, changing paleo-sea

levels, and paleo-wind/wave forcing of across-shelf sand supply

to the northern side(s) of San Miguel Island. The destabiliza-

tions of Holocene sand ramps by erosive gullying, deflation, and

slope failures are related to net losses of nearshore sand

reserves in latest Holocene time. Truncated Holocene sand

ramps are used as proxies to help predict potential beach

erosion from future sea-level rise.

Morpho-Stratigraphic Model of Sand-Ramp
Development

Twenty-five measured sections are plotted for elevation and

easting position in two transects, northern and central, which

extend along the west-east length (~13 km) of San Miguel

(Figure 14). The northern transect represents sand-ramp

accretion against the northern slopes. Terraced bluff slopes

along the northern side of San Miguel reach 0.5–1.0 km in

landward width and 10–130 m in elevation. The central

transect in San Miguel Island represents thinning of migratory

sand/dune deposits and widespread loess deposition across the

island hilltops. The central hilltop areas reach 3–5 km in width

and 100–250 m in elevation.

Table 2. Radiocarbon dated sand-ramp sequences in San Miguel Island.

Locality/Site Strat.

Age

(ka) Locality/Site Strat.

Age

(ka) Locality/Site Strat.

Age

(ka)

SANM/3 PRB 66 RPC/433 SST 8.2 EBB/607a SST 8.2

SANM/15 PRB .150 HCC/467 HRS 4.9 EBB/607b SST 8.9

ECH/9a HRT 0.5 OTS/SM181 PRS 40 BTB/2a SST 8.3

ECH/9b HRB 5.2 OTH/481a HRT 0.4 BTB/2b SST 8.4

EMC/87a HRT 2.4 OTH/481b HRT 0.6 BTB//2a SST 8.5

EMC/87b HRT 2.5 OTH/481c HRT 1.0 BTB//2b SST 8.8

EMC/87c HRT 2.6 OTH/481d HRT 1.2 BTB/3 SST 9.4

EMC/87d HRT 2.6 OTH/481e HRT 1.2 BTB/4a SST 8.1

EMC/87f HRT 2.8 OTH/481f HRS 1.3 BTB/4b SST 8.2

EMC/87g HRT 3.0 OTH/481g HRT 1.3 BTB/5 SST 8.3

EMC/87h HRT 3.0 OTH/481h HRT 1.3 BTB/606a SST 8.2

EMC/87i HRT 3.0 OTH/481i HRS 3.2 BTB/606b SST 8.4

EMC/87j HRT 3.1 OTH/481j HRS 3.7 BTB/606c SST 8.6

EMC/87k HRS 4.0 OTH/481k HRS 3.4 BTB/606d SST 9.0

EMC/87l HRS 4.2 OTH/481l HRS 3.9 BTB/606e SST 9.1

EMC/87m HRS 4.5 OTH/481m HRS 5.7 WBB/522a SST 9.0

EMC/87n HRS 4.6 OTH/481n HRS 5.9 WBB/522b HRB 9.6

ECR/149 HRT 0.3 OTH/481o HRS 6.0 WBB/522c HRB 9.8

ECR/152 HRT 2.7 OTH/481p SST 6.5 WBB/522d HRB 9.8

ECR/161 HRS 4.4 OTH/481q SST 7.2 ALP/525a HRT 0.5

ECR/163 HRS 2.9 DYL/485 HRT 0.5 ALP/525b HRS 1.2

ECR/166 HRT 2.3 DYL/488 HRS 2.6 ALP/525c HRS 3.1

WCB/535 HRS 3.2 HWS/467 HRT 1.3 ALP/525d HRS 3.0

CDC/172 HRB 6.3 OTC/605a HRB 6.3 ALP/D525 HRS 1.7

SYH/SM186 HRB 6.2 OTC/605b HRB 6.6 LNR/528a HRT 1.2

SYH/SM187 PHTC 10.1 OTC/605c HRB 6.4 LNR/528b HRT 1.4

LBH/350a SST 6.7 OTC/605d HRB 6.6 LNR/528c HRT 1.4

LBH/350b SST 7.4 OCT/605e HRB 6.7 LNR/528d HRT 1.5

LBH/350c SST 11.2 BLC/AC1 HRS 3.4 LNR/528e HRS 4.8

BHR/SM172 PRS 21.5 ABP/503a HRS 5.5 LNR/528f HRS 5.8

ECL/SM171 PRS .40 ABP/503b HRT 1.2 PTB/SM177 SSS 17.4

CCC/SM174 HRB 6.6 ABP/503c HRS 2.3 SHB/602a HRS 0.1

CCC/388 HRB 7.2 ABP/503d HRS 2.5 SHB/602b HRS 0.3

CCN/438a SST 8.6 ABP/503e HRS 2.8 SHB/602c HRS 0.5

CCN/438b SST 10.6 ABP/504 HRS 2.9 SHB/602d HRS 0.5

YRD/179a HRB 7.9 ABP/RSC1a SST 9.1 FLF/SM131 SSS 14

YRD/SM180 SSS 18 ABP/RCS1b SST 9.4 LZP/520a HRS 3.6

YRDS/SM178 SSB 20.1 BGD/510 HRS 1.2 LZP/520b HRS 5.7

The SANM dates are from TL dating (Peterson et al., 2006). SM designated sample number ages were derived from recalibrated radiocarbon dates from

Johnson (1972). All other sample dates are from calibrated radiocarbon dates presented in Erlandson, Rick, and Peterson (2005). Details about, radiocarbon

materials, calibrations, and laboratory identification numbers are provided in Erlandson, Rick, and Peterson (2005) and are summarized in Peterson et al.

(2006). Site/sample position coordinates and sample positions (Strat) within the eolian deposits are also summarized in Peterson et al. (2006). Stratigraphic

positions include Holocene sand-ramp top (HRT), Holocene sand-ramp bottom (HRB), Holocene sand-ramp internal strata (HRS), Pleistocene sand-ramp

bottom (PRB), Pleistocene sand-ramp internal strata (PRS), Pleistocene sand-ramp top (PRT), Pleistocene hilltop sand caliche forest (PHTC), Simonton soil

top (SST), and Simonton soil internal strata (SSS). The calibrated radiocarbon dated samples (61r) were converted to standardized dates (ka) by rounding to

the nearest 0.1 ka. Sample locality position coordinates and elevations are shown in Table 1.
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Two general relations are apparent from the morpho-

stratigraphic development of the sand deposits in San Miguel

Island. The Holocene sand-ramp deposits are generally much

thinner than the late Pleistocene sand-ramp deposits. The

thicker late Pleistocene sand-ramp deposits were likely derived

from the long duration(s) of low-stand marine conditions

(Figure 3A). Sand deposits in the emerged island-shelf platform

were transported by eolian processes to the windward slopes of

San Miguel Island, where sand ramps developed episodically for

at least 150 ka at SANM15 (Figures 5 and 8). Alluvial processes

likely recycled some of the subaerial sand deposits back across

the emerged shelf to low-stand beaches, thereby completing a

cycle of sand supply on the isolated island-shelf platform.

A second general relation, that of restricted Holocene sand-

ramp development, is attributed to the much shorter period of

Holocene sand supply to the northern side of San Miguel

during middle to late Holocene time (Table 2, Figure 3B).

Specifically, Holocene sand-ramp deposits generally pinch out

with increasing landward distance and/or increasing elevation

on the northern slopes of San Miguel (Figure 14). The apparent

migration of sand/dunes across the top of San Miguel Island

during the mid-1900s was misleading, as much of the hilltop

active sand supply was from the historic destabilization of

vegetated late Pleistocene and Holocene sand-ramp and hilltop

deposits (Rick, 2002). For the most part, the prehistoric

Holocene sand ramps failed to reach the highest central

hilltops, though they did cross the lower inland elevations of

the eastern and western ends of San Miguel.

Ages of Holocene Sand-Ramp Depositional Onset,
Duration, and Termination

Standardized dates (ka) of samples collected from Holocene

eolian deposit sites in San Miguel Island were analyzed for

Figure 13. Map of modern shoreline beach widths and Holocene sand-ramp

gullies/deflation troughs along the northern sides San Miguel Island. Deep

water mean wave directions (MWDs) are averaged from hourly measure-

ments for winter months (DJF) for two years, 2014 and 2015, to yield a

bearing of 2908 TN. The data were downloaded from the Santa Barbara buoy

LLNR 198 (Station 46054; DJF, 2014–2015) as reported online (NOAA,

2016). Approximated nearshore wave directions are based on assumed

refraction. Littoral transport directions are interpreted from alongshore

changes in beach widths and nearshore sand shoal widths, relative to

shoreline orientations. Beach widths are mapped for ,50 m width

(erosional), 50–100 m width, and .100 m width with incipient foredune

development (stable or accreting). Apparent gullies/deflation troughs in

Holocene sand ramps, of at least 100 m distance from the shoreline, are

mapped for orientation and length (black lines). Measured sections (solid

squares) are numbered in Figure 5.

Figure 14. Stratigraphic sections from two west-east transects (northern

and central) along San Miguel Island showing summarized eolian deposit

ages (Holocene/Pleistocene), site elevations (m), and positions (UTM 10S

eastings in km). Remobilized sand deposits in the island highlands (.100 m

elevation in the central transect) are shown as Pleistocene in age because of

the presence of rounded peds from Pleistocene sand soils; however, some of

the remobilized sand might have derived from windward Holocene sand

ramps.

Figure 12. Part A: Eroded shoreline, near SANM18, showing narrow

beaches and truncated sand ramps. The large Holocene sand ramps (photo

background) are now beheaded in that they do not reach the beach sources of

sand supply. Wave runup is also attacking the seaward extents of late

Pleistocene sand ramps (photo foreground). Part B: Sea-cliff erosion (photo

foreground) and headward gully/deflation trough erosion (photo back-

ground) of a sand-ramp sequence near SANM17, including (1) Holocene

sand ramp (Hr) above the dotted line; (2) Simonton soil (Ss), about 0.5 m in

vertical thickness, between the dotted and dashed lines; and (3) sand/caliche

layer in a Pleistocene sand ramp (Pr) below the dashed line. View is up slope,

to the south.
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means and SDs (61r) of four groups, as defined by relative

stratigraphic positions (Table 3). The four stratigraphic

position groups and associated mean ages include HRTs (n ¼
28, 1.7 6 0.9 ka), HRSs (n¼34, 3.4 6 1.7 ka), HRBs (n¼14, 7.2

6 1.5 ka), and SSTs (n¼26, 8.6 6 1.0 ka). The mean ages of the

four stratigraphic groups increase with relative depth. The

mean onset of Holocene sand-ramp emplacement in San Miguel

(7.2 ka) confirms the ~7 ka estimate that was proposed by

Johnson (1972); however, the variation in sand-ramp bottom

dates (61r ¼ 1.5 ka) is substantial, though some of the

variability is attributed to one anomalous site (WBB). The

mean age of buried or inactive sand-ramp tops (1.7 ka)

represents the widespread termination of sand supply to the

windward slopes of San Miguel. Some of the currently active

Holocene sand ramps are remnants of sand-ramp surfaces that

were destabilized by historic live-stock grazing; however, the

steeper active sand ramps (45% grade) are experiencing

downslope sand movement from ongoing sand-ramp deflation

and slope steepening.

Estimated ages of Holocene sand-ramp development in 19

sites from the northern side of San Miguel Island are presented

on the bases of dated sample stratigraphic positions (Figure 15).

Multiple samples from similar stratigraphic positions are

averaged for each site (Table 2). The site group ages are plotted

against site east-west position (UTM easting) and site elevation

(m). No apparent consistent trends occur between site internal

strata ages (5.3–2.3 ka) and location or elevation. The youngest

date (0.5 ka) of terminated sand-ramp deposition (ramp top

date) is from site ECH at the eastern end of Cuyler Cove. Wide

beaches (.100 m) and incipient foredunes are locally developed

at the eastern end of Cuyler Cove (Figure 13). The other six sites

recording sand-ramp top dates range from 2.8 ka to 1.0 ka. No

consistent trends occur between the termination of sand-ramp

deposition and elevation in the seven sites shown in Figure 15.

The oldest sand-ramp bottom dates (~9.7 ka) are from one site:

WBB. The next oldest sand-ramp site is YRD with a sand-ramp

bottom date of 7.9 ka. That site together with three other sites

from the middle-northern coastline of San Miguel, record sand-

ramp bottom ages ranging from 7.9 ka to 6.2 ka. There are no

consistent relations between sand-ramp bottom ages and

elevations of the sand ramps at sites OTC, YRD, CCC, and

SYH, from the middle-north side of San Miguel Island.

Modeled Paleo-Wind and Wave Climate Forcing
Modeled paleo-wind stress and deep-water wave directions

(21–0 ka) off the coast of south-central California (Figure 1) are

used to constrain interpretations of shelf-sand delivery to San

Miguel Island during the MIS1 marine transgression. During

the last glacial maximum (LGM) at 21–18 ka, the eustatic sea

level dropped to -130 m elevation (Figure 3A) with winter-

storm wave base possibly extending to about-150 m in the NW

side of the island-shelf platform (Figure 4). Reeder, Rick, and

Erlandson, (2011) have used paleogeographic arguments to

estimate LGM sea level in the Channel Islands to-110 m. In

either case, eustatic sea level had risen to within several meters

of its present position by the latest Holocene time (�3 ka)

(Figure 3B). Paleo-sea-level pressure gradients were down-

sampled from the GENMOM model (Alder and Hostetler,

2015), which combines the GENESISv3 atmospheric model

(Alder et al., 2011) and the MOMv2 oceanic model (Pacanowski,

1996) to yield paleo-wind and wave stress vectors for the south-

central California coast region. The coupled GENMOM model

outputs are verified at 0 ka, 6 ka, and 21 ka time intervals using

terrestrial and oceanic climate data (Alder and Hostetler,

2015). The GENMOM model outputs are used to simulate

seasonal surface-pressure equilibrium time slices at 3 ka

intervals for the last 21 ka (Figure 16).

Modeled paleo-storm wind and wave stress conditions during

the winter months (DJF) for the central part of the west coast of

North America were maximized in the North Pacific Low

Pressure Area (NPLPA), as defined for this article by the 995–

Table 3. Averaged dates of Holocene sand ramp and loess deposition in San Miguel Island.

Sand-Ramp

Age Parameters

All Holocene

Ramp Tops (ka)

All Holocene

Ramp Strata (ka)

All Holocene

Ramp Bottoms (ka)

All Simonton

Soil Tops (ka)

Sample Number (N) 28 34 14 26

Minimum age (ka) 0.4 0.1 5.2 6.5

Maximum age (ka) 3.1 6.0 9.8 11.2

Mean age (ka) 1.7 3.4 7.2 8.6

61 SD (ka) 0.9 1.7 1.5 1.0

Standardized ages (ka) data are from 102 radiocarbon dated samples from 29 sites in San Miguel Island. See Table 2 for relative stratigraphic positions and

standardized dates of individual samples.

Figure 15. Standardized ages (ka) of stratigraphically grouped samples

include sand-ramp top (Top), sand-ramp internal strata (Strata), and sand-

ramp bottom (Bottom) for 19 northern slope sites in San Miguel Island

(upper panel). Some of the ages are from single samples at corresponding

sites, and other ages are from averages of multiple samples in a stratigraphic

group from a single site. Elevations of the 19 sites (solid circles) range from 5

to 130 m (center panel). West-east positions of the 19 sites are shown along

the northern side of San Miguel Island (lower panel). Elevation contours are

at 100 and 200 m. Site geographic data and standardized sample ages are

from Tables 1 and 2.
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1005 hPa surface-pressure contours (Figure 16). The modeled

NPLPA storm center moved north and slightly east from late

Pleistocene time to modern or pre-industrial time. The biggest

change in the NPLPA position occurred between 12 ka and 3 ka.

These variations in the modeled position of the NPLPA

potentially change the average storm-wave approach to a given

coastline. For example, using the central 1005 hPa contour at

the southern boundary of the NPLPA as a common reference

point, the estimated storm wave trajectory to San Miguel Island

varies by 10–158 (clockwise rotation) between 12 ka and 3 ka.

The relative changes in storm-wave directions in San Miguel

were not as substantial as those that occurred further north

along the central part of the west coast of North America

(Peterson et al., 2007; Peterson et al., 2016). Modeled maximum

surface-pressure gradients during winter months (DJF) are

relativelysimilar between the latePleistocene and lateHolocene

time slices, suggesting that winter-storm wave heights did not

change substantially at San Miguel since the early Holocene

time. Because of localized coastal surface-pressure gradients in

the study region, local wind conditions in San Miguel Island are

not interpreted from the regional paleo-climate data; however,

the northern side of the island has been the windward side since

the latePleistocene time, asbased onthe abundancesofboth late

Pleistocene and Holocene sand ramps there. Recent deflation

troughs, remobilized linear dune ridges, and sand streamers in

San Miguel (Figures 2 and 13) trend SE, reflecting dominant

NW winds during late Holocene time.

Latest Pleistocene and Holocene Model of Coastal
Sand Supply

During the LGM (21–18 ka), shorelines on the San Miguel

Island-shelf platform reached maximum distances from the

present San Miguel coastline (Figure 17). Episodic northern

winds could have transported loess from the emerged shelf to

supply the youngest Simonton soil loess internal strata (21–14

ka) across San Miguel (Table 2). It is not known whether the

rapid fall in sea level corresponding to the LGM (Figure 3A)

might have reduced eolian transport of sand to San Miguel.

Such a reduction in eolian sand supply could conceivably have

resulted from (1) increased distances of across-shelf eolian

transport from the lowest stand beach-sand sources and/or (2)

colonization of the recently emerged midshelf sand deposits by

stabilizing vegetation. In any case, a hiatus in the Miguel

Island sand supply appears to have left some Simonton soil

strata unburied, as shown in measured sections SANM2,

SANM4, SANM5, SANM8, SANM12, SANM17, and SANM18

(Figures 6 and 8), until the onset of sand-ramp deposition in the

early-middle Holocene time. Following the LGM, a rapid rise of

sea level during the early part of the MIS1 marine transgres-

sion (12–9 ka) submerged the lowest parts of the previously

emerged shelf (-130 to -60 m elevation). The submergence

would have terminated eolian transport of the lower shelf

sediments, but it would also have initiated the shoreward

movement of the pre-Holocene shelf sand deposits by ocean-

wave transport.

Figure 16. Paleo-wind and wave stress for the 0–21 ka time interval for

winter months (DJF). Surface pressure contours (hPa) are used to establish

pressure gradients that drive winds (arrow vectors). The minimum North

Pacific Low Pressure Area (NPLPA), as defined here by the 995–1005 hpa

contours, represents the winter storm center for the central part of the west

coast of North America. Representative storm wave trajectories to San

Miguel Island (large arrows) are shown for the 0, 12, and 21 ka time slices,

with storm wave origins taken from the central positions of the 1005 hPa

pressure contour. Data for this figure were redrafted from Peterson et al.

(2016), as initially sampled from Alder and Hostetler (2015).

Figure 17. Diagrams of sea-level positions on island-shelf platform, winter-

wave direction and wind forcing (arrows), and associated shelf/beach sand

supply to San Miguel Island during last glacial maximum (LGM) 21–18 ka,

early Holocene transgression (12–9 ka), middle Holocene transgression (9–6

ka), and late Holocene (6–3 ka). The elevation (shelf depth) contours

correspond to the following eustatic sea-level curve ages of -130 m (18–21

ka),-60 m (11 ka),-20 m (8 ka), and 0 m (present), as based on Figure 3B.

Reeder et al. (2015) suggest maximum lowering to only-110 m. Paleo-wave

directions are taken from the modern dominant winter-wave direction

(~2908 TN; Figure 13) and progressively rotated counterclockwise (3.58) for

each successfully older interval based on the apparent shift in storm-wave

trajectory between 3 and 15 ka (Figure 16). Probable wave refraction is

approximated for display purposes.
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The earliest dated Holocene sand-ramp deposits (9.7 ka) in

San Miguel are reported from WBB, located at the NW end of

island, whereas the other Holocene sand-ramp sites in the

middle-north coast yield onset ages of�7.9 ka (Figure 15). Could

the anomalous WBB site represent the onset of coastal sand

supply from marine transgression? Throughout the latest

Pleistocene and Holocene time, deep-water storm waves

approached San Miguel Island from the W-NW (Figure 16).

The oblique wave direction together with the steep inner-shelf

gradient might account for the very early sand-ramp deposition

at the NW end of San Miguel. The distance of marine

transgression over the steeper NW end of the island at 12–9

ka (Figure 17B) would havebeensubstantially shorter thanover

the middle-north inner shelf, possibly permitting earlier arrival

of beach sand at the island’s NW end. Additional work is needed

to establish the earliest dates of coastal sandsupply from marine

transgression to the NW end of San Miguel. Between 9 ka and 6

ka, the rates of sea-level rise decreased from�9 m ka-1 to�4m

ka-1 (Figure 3B). Shoreward wave transport of inner-shelf sand

deposits reached the middle-north side of San Miguel, leading to

the widespread onset of Holocene sand-ramp deposition (~7.9 to

~6.2 ka) at sites OTC, YRD, CCC, and SYH (Figure 15). The SD

of sand-ramp bottom dates in site OTH (n ¼ 5, 1r ¼60.16) is

about an order of magnitude smaller than the SD of sand-ramp

bottom dates from all sites (n¼ 14, 1r¼61.5) (Tables 2 and 3).

Between-site variability of sand-ramp bottom age is much

greater than within-site variability. These relations suggest

that local conditions of littoral transport, subaerial slope

topography, and/or wind-field strengths influenced the timing

of the earliest Holocene sand-ramp deposition on the windward

side of San Miguel Island; however, a general similarity of sand-

ramp bottom ages (7.0x 6 0.8 ka) for the four dated sites from the

middle-north coastline of San Miguel Island points to a critical

initial period of surplus beach-sand supply. This initial period of

surplus beach-sand supply to the middle-north side of San

Miguel corresponds to the substantial slowing of the marine

transgression during the 8–6 ka time interval. Net sand

accretion in most of the sand ramps continued into the late

Holocene time, as recorded by the mean and SD of all internal

sand-ramp strata dates from San Miguel Island (n¼34, 3.4 6 1.7

ka).

Latest Holocene Beach Erosion, Sand-Ramp
Truncation, and Gullying

The mean and SD of sand-ramp top dates from dated sand-

ramp sites in San Miguel Island (n¼28, 1.7 6 0.9 ka) generally

represent the termination of sand-ramp accretion on the

windward slopes of San Miguel (Table 3). Even the sand-ramp

surfaces that are currently active, such as those at the eastern

end of Cuyler Cove (Figures 13 and 18), are associated with net

deflation and localized failures of over-steepened slopes. What

caused the widespread cessation of sand-ramp deposition along

the northern coastline of San Miguel in late Holocene time? Is

the widespread termination of sand-ramp deposition connected

to recent gullying and shoreline truncation of Holocene sand

ramps along much of the northern coastline? These questions

are addressed below in terms of late Holocene rates of marine

transgression. There are at least two major concerns regarding

future shoreline erosion in San Miguel. These are the ongoing

and future losses of wide beach haul-out habitats for major

pinniped rookeries (DeLong and Melin, 2002; Dugan et al.,

2000; Stewart, 1984; Walker et al., 2002) and of coastal

archaeological sites hosted in the vulnerable sand-ramp

shorelines (Erlandson, 2008).

Under the near high-stand conditions of the late Holocene

marine transgression, during the last 5 ka (Figure 3B) onshore

wave transport eroded available offshore sand deposits to the

maximum depths of the winter wave base across the innermost

shelf, located north of San Miguel Island (Figure 17). By the

latest Holocene time (�3 ka), the supply of shelf sand began to

diminish, leading to the widespread termination of sand-ramp

accretion (~1.7 6 0.9 ka) on the northern slopes of San Miguel.

It is assumed that net sand losses from the littoral zone

occurred during that time by one or more processes, leading to

the present conditions of beach retreat and ocean-wave

truncation of sand ramps (Figure 13). The processes of sand

loss from the windward side of San Miguel could include (1)

littoral transport around the western and eastern ends of San

Miguel, (2) eolian transport of ramp sand either upslope or

across the lower elevations of San Miguel, and/or (3) latest

Holocene offshore sand transport following modest rates of sea-

level rise (1m ka-1) during the last 3 ka (Figure 19). Coring and

dating of nearshore sand shoals at the SE and SW ends of San

Miguel could help to constrain estimates of sand loss from

alongshore littoral transport around the eastern and western

ends of the island.

Predicted Future Conditions of Sand-Ramp Stability/
Instability

Two factors are likely to drive the future relative instability

of Holocene sand-ramp deposits on the windward side of San

Miguel Island. They include the ongoing gullying of unconsol-

A

B

Sand ramp

Holocene sand ramp

Late Pleistocene 
caliche stumps

Beach

Foredunes

Figure 18. Part A: Wide beach and sand-ramp foredunes at the eastern end

of Cuyler Cove (Figure 13) imply an abundant sand supply to the adjacent

Holocene sand ramp(s) at the eastern end of San Miguel Island. Part B: The

sand-ramp accretion (boxed inset shown in Part A), however, does not extend

to the eroding Holocene sand ramp at 60 m elevation near measured section

SANM10 (Figures 5 and 6). Eolian deflation and failure of the 45–55%

gradient sand ramps are thinning the Holocene sand cover, exposing the

underlying late Pleistocene sand-ramp soils (Bk horizon), which include in-

situ caliche encrusted/replaced tree stumps or pipes (Grimes, 2004).
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idated sand-ramp deposits and potential increases in the future

rates of sea-level rise. The vegetative recolonization of eolian

deposit surfaces in San Miguel Island has now reached �80%

by relative surface area (Figure 13). The undercutting of gully

headwalls and the progressive rilling and/or wind erosion of

gully-side walls undermines archaeological and paleontological

deposits and mixes differently aged materials in the sand-ramp

gully colluvium (Figure 20A). The progressive gully erosion in

the Holocene sand ramps extends into vegetated surfaces, so

the ongoing vegetative recolonization of the sand ramps might

reduce, but not eliminate, sand-ramp gully erosion in San

Miguel.

The second major instability of the Holocene sand ramps in

San Miguel occurs at the eroding northern shorelines. The

truncated Holocene sand ramps become isolated from adjacent

sources of beach sand supply when they no longer extend to

their former beach and/or foredune sand sources. Truncated

Holocene sand ramps might have some common origins with

bluff-top dunes, cliff-top dunes, or perched dunes, as reported

from other regions around the world (Arbogast, 2000; Hansen

et al., 2010; Haslett, Davies, and Curr, 2000; Jackson and

Nevin, 1992; Saye, Pye, and Clemmensen, 2006). For example,

Haslett, Davies, and Curr (2000) report three stages of perched

dune development in Brittany, France, including (1) onset of

development at ~4.5 ka, (2) stabilization, and (3) coastal

erosion leading to truncation at a receding sea cliff. This model

is somewhat similar to the sequence reported for the Holocene

sand ramps in San Miguel, though only the first stage in

Brittany was formally related to sea-level change conditions. In

San Miguel Island, all three stages of sand-ramp evolution

were influenced by changes in sea level and/or rates of sea-level

change.

Along the northern side of San Miguel Island, the storm wave

runup, eolian deflation, and pinniped haul-out activities

further erode the exposed seaward faces of the truncated sand

ramps (Figure 20B). The few remaining wide beaches (.100 m

width) and associated Holocene sand ramps, located at the NE

end of Simonton Cove and at the eastern end of Cuyler Cove

(Figure 13), are susceptible to future beach retreat. Such

retreat is expected to accelerate from future increasing rates of

sea-level rise associated with predicted global warming in the

next century (Grinsted, Moore, and Jevrejeva, 2010; Rahm-

storf, 2010; Vermeer and Rahmstorf, 2009). The current

distribution of truncated sand ramps on the northern side of

San Miguel indicates that littoral sand reserves are at a

minimum and that the remaining active sand ramps will not

survive future beach retreats of 100–150 m.

CONCLUSIONS
Sand ramps that developed along the northern side of San

Miguel Island in the latest Pleistocene time and Holocene time

record episodes of shelf sand supply to the northern side of the

island by eolian across-shelf transport during marine low

stands and by onshore wave transport across the inner shelf

during the Holocene marine transgression. The Holocene sand

ramps represent a relatively thin veneer over the thicker late

Pleistocene sand-ramp deposits; however, the Holocene sand-

ramp deposits locally thicken in abandoned gully troughs,

topographic benches, and bluff tops. The current sand ramps

generally lack large transverse or parabolic dune forms,

reflecting past conditions of limited sand supply or recent

conditions of deflation and slope failure.

The widespread onset of Holocene sand-ramp deposition

occurred after the initial slowing of the marine transgression

after 9 ka; however, sand-ramp bottom dates from the middle-

north coast vary by 60.9 ka, demonstrating localized influences

on sand-ramp development from inner-shelf gradients, wind-

ward slope topography, and/or wind flow dynamics. The sand

ramps continued to vertically accrete sand through late

Holocene time but demonstrate a gradual termination of

deposition in latest Holocene time (�3ka). The termination of

sand-ramp deposition was followed by sand-ramp erosion,

Figure 19. Losses of sand from the latest Holocene beaches and Holocene

sand ramps could occur by alongshore transport around the island, overland

transport across the island, and/or offshore transport following sea-level rise

and a seaward shift in the across-shore profile (Bruun, 1962).

Figure 20. Part A: A worked stone tool (artifact) lying on top of a pygmy

mammoth tusk (~10 cm width), as preserved in a late Pleistocene sand-

ramp-colluvium deposit near SANM17 (Erlandson, 2000). The artifact is not

in in-situ context with the Pleistocene mammoth tusk (Agenbroad, 1998;

Gray and Harz, 1998), but rather it fell down onto the tusk from an overlying

9-ka shell midden deposit in an actively eroding sand-ramp gully. Part B:

Wave-runup eroded sand-ramp sequence showing (1) truncated Holocene

sand ramp (Hr), overlying (2) an early Holocene shell midden (Sm), dated at

~10 ka, overlying (3) a Simonton soil layer (Ss) between the dotted and

dashed lines (white), overlying (4) late Pleistocene sand-ramp deposits (Pr)

with a brown paleosol caliche horizon (PdBt/Bk). The eroding shoreline

location in the photo is near the measured section SANM21. The yellow hoe

handle is 1.0 m in height. View is to the west.
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including runoff gullying, eolian deflation, failures of over-

steepened slopes, and truncation at retreating shorelines. 

The sand ramps that were truncated at retreating sea cliffs 

are now cutoff from their previous sand sources, probably 

including pre-existing wide beaches and associated foredunes. 

The termination of surplus sand supply to the northern side of 

San Miguel Island is related to a nearly stationary zone of winter 

wave scouring in the innermost shelf during the late Holocene 

period of minimal sea-level rise. The widespread occurrences of 

truncated sand ramps in San Miguel represent evidence of 

disappearing nearshore sand reserves, which are being lost to 

alongshore, overland, and/or offshore sand sinks. The lack of 

continued shelf-sand supply to the northern shorelines in San 

Miguel in the latest Holocene time raises concern about the 

future existence of the remaining beaches and the shoreline 

sand-ramp deposits. Both are threatened by events of continued 

loss of nearshore sand reserves and potential future sea-level 

rise linked to predicted global warming. At stake in San Miguel 

Island are pinniped rookery haul-out beaches and numerous 

archaeological and paleontological sites located along the 

eroding coastline (Braje, 2010). The broader implications of 

truncated sand ramps in other marine coastlines around the 

world are that such features could foretell future losses of sand-

depleted beaches in the event of accelerated sea-level rise from 

predicted future global warming. The use of recently truncated 

sand ramps to highlight local shoreline sensitivity to future 

losses of nearshore sand reserves have been underappreciated 

in the coastal research community. 
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