
Portland State University Portland State University 

PDXScholar PDXScholar 

Chemistry Faculty Publications and 
Presentations Chemistry 

2016 

Oxyhalogen-Sulfur Chemistry: Kinetics and Oxyhalogen-Sulfur Chemistry: Kinetics and 

Mechanism of Oxidation of N-acetylthiourea by Mechanism of Oxidation of N-acetylthiourea by 

Aqueous Bromate and Acidified Bromate Aqueous Bromate and Acidified Bromate 

Kudzanai Chipiso 
Portland State University 

Wilbes Mbiya 
Portland State University 

Thai Tran 
Portland State University 

Reuben H. Simoyi 
Portland State University, rsimoyi@pdx.edu 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/chem_fac 

 Part of the Chemistry Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Chipiso, K., Mbiya, W., Tran, T., & Simoyi, R. H. (2016).Kinetics and Mechanism of Oxidation of N-
acetylthiourea by Aqueous Bromate and Acidified Bromate. South African Journal of Chemistry. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Chemistry Faculty 
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make 
this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/chem_fac
https://pdxscholar.library.pdx.edu/chem_fac
https://pdxscholar.library.pdx.edu/chem
https://pdxscholar.library.pdx.edu/chem_fac?utm_source=pdxscholar.library.pdx.edu%2Fchem_fac%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=pdxscholar.library.pdx.edu%2Fchem_fac%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/chem_fac/126
mailto:pdxscholar@pdx.edu


Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of
Oxidation of N-acetylthiourea by Aqueous Bromate and

Acidified Bromate

Kudzanai Chipisoa, Wilbes Mbiyaa, Thai Trana and Reuben H. Simoyia,b,*

aDepartment of Chemistry, Portland State University, Portland, OR 97207-0751, USA.
bSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban 4014. South Africa.

Received 22 August 2015, revised 11 October 2015, accepted 14 October 2015.

ABSTRACT

The oxidation of N-acetylthiourea (ACTU) by acidic bromate has been studied by observing formation of bromine in excess
bromate conditions. The reaction displays an induction period before formation of bromine. The stoichiometry of the reaction
was determined to be 4:3: 4BrO3

– + 3(CH3CO)NH(NH2)C=S + 3H2O ® 4Br– + 3(CH3CO)NH(NH2)C=O + 3SO4
2– + 6H+ (A) with a

complete desulfurization of ACTU to its urea analogue. In excess bromate conditions the stoichiometry was 8:5: 8BrO3
– +

5(CH3CO)NH(NH2)C=S + H2O ® 4Br2 + 5(CH3CO)NH(NH2)C=O + 5SO4
2– + 2H+ (B). Bromine is derived from an extraneous

reaction in which bromide from stoichiometry (A) reacts with excess acidic bromate. The oxidation of ACTU by aqueous bromine
gave stoichiometry (C): 4Br2(aq) + (CH3CO)NH(NH2)C=S + 5H2O ® 8Br– + (CH3CO)NH(NH2)C=O + SO4

2– + 10H+. Reaction (C)
is much faster than reactions (A) and (B), with a lower limit bimolecular rate constant of 2.1 ×105 M–1 s–1 such that appearance
of bromine signals complete consumption of ACTU. We were unable to trap any intermediate sulfur oxo-acids of ACTU on its
oxidation pathway to N-acetylurea. As opposed to other substituted thioureas, none of its intermediates were stable enough to be
isolated and detected.
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1. Introduction
The chemistry of thiourea and its derivatives has received

considerable attention because of its important applications in
synthesis of biologically-active compounds. They form the back-
bone in structures of these drugs and the biological activities of
most of the thiourea-derived drugs depend on the existence of
the thiourea moiety.1 Thiourea and its derivatives are thus a vast
group of very active biological molecules.2–8 Major pathway to
their bioactivation is oxidative and specifically via S-oxygenation
in which there is a successive addition of oxygen to the sulfur
center until oxidative saturation is attained at sulfate.9–11 Small
molecule thioureas are oxygenated predominantly by catalysis
from the flavin-containing monooxygenases12,13 to form reactive
sulfenic acids that reversibly react with glutathione14–19 to drive
oxidative stress through a redox cycle. The higher molecular
weight versions tend to be metabolized by the CYP450 system of
enzymes.20–22 There is a new thrust in medicinal chemistry that
involves substituted thioureas as therapeutic drugs for several
diseases.23 No other pharmacophore possesses such a wide
range of biological activity. For example, comparatively, the
4-aminoquinoline pharmacophore has been exploited in a variety
of ways to derive antimalarials24–26, but it is exclusively for one
disease and has not found significant use for any other disease.
The ease of synthesis of substituted thioureas27–33 means that
there are now hundreds of these analogues available which
have not yet been characterized.7,34 Although effective, drugs
containing the thiourea functional group have been found to
exhibit some toxicity. Methimazole, for example, an antithyroid
drug used in the treatment of hyperthyroidism and Graves

Disease, has been associated with idiosyncratic toxicity, charac-
terized by skin reactions, leucopenia, agranulocytosis, aplastic
anemia, hepatitis and cholestasis.35,36 The relationship between
idiosyncratic adverse reactions and reactive metabolites is not
well established. There is circumstantial evidence, however, that
reactive metabolites are involved in the onset of idiosyncratic
adverse reactions.37,38 Sulfur atom has been thought to be the site
of bioactivation of these organosulfur compounds resulting in
conceivably toxic metabolites.39 Biological oxidations of small
molecules such as N-acetylthiourea, N-methylthiourea show
that sulfur is a soft nucleophile, and is easily oxidized by oxi-
dants such as iodine, HOBr and HOCl, which are found in the
physiological environment albeit in low concentrations.40 The
difference in oxidative environment and oxidizing species has a
large bearing on the intermediates and subsequent products.
Although there are similarities in the oxidation patterns displayed
by these small molecules, they is no generic pathway for their
oxidation. Kinetics and mechanistic studies of N-acetyl thiourea
(ACTU) with chlorite, showed complex behaviour41 which is
different from the behaviour displayed when unsubstituted
thiourea is oxidized by chlorite in acidic medium.42

N-acetylthiourea and its derivatives serve as highly potent and
isozyme selective activators for the recombinant form of human
histone deacetylase-8 in the assay system containing fluor-de-lys
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as a fluorescent substrate.43 This is an activity not manifested
by the parent thiourea. We report, in this manuscript, on the
oxidation mechanism of ACTU by acidic bromate and aqueous
bromine. Its oxidation mechanism can be correlated with its
physiological effect.

2. Experimental Procedures

2.1. Materials
The following reagent grade chemicals were used without

further purification: sodium bromate, perchloric acid (70–72 %),
sodium bromide, bromine, sodium perchlorate, soluble starch,
sodium thiosulfate (Fisher), and ACTU (Sigma). Bromine solutions,
being volatile, were kept capped and standardized spectropho-
tometrically before each set of experiments. Stock solutions of N
acetyl thiourea were prepared just before use.

2.2. Methods
The rapid reactions of ACTU with bromine were followed on a

Hi-Tech Scientific™ SF61-DX2 double-mixing stopped-flow
spectrophotometer. These reactions were monitored by follow-
ing formation of bromine at 390 nm (e = 142 M–1 cm–1). ACTU has
no absorbance in the visible region, while aqueous bromine has
an isolated peak at 390 nm. Thus absorbance at this peak was
used for analytical determination of aqueous bromine. Slower
reactions involving N-acetylurea formation following oxidation
of ACTU by acidified bromate were monitored on a conven-
tional Perkin-Elmer Lambda 25 UV-Vis spectrophotometer. All
kinetics experiments were performed at 25.0 ± 0.1 °C and at an
ionic strength of 1 M (NaClO4). All solutions were prepared
using doubly-distilled deionized water from a Barnstead Sybron
Corporation water purification unit capable of producing both
distilled and deionized water (Nanopure). Mass spectra of
product solutions were taken on a Thermo Scientific LTQ-
Orbitrap XL Discovery mass spectrometer (San Jose, CA)
equipped with an electrospray ionization source operated in the
positive mode.

3. Results

3.1. Stoichiometry
The stoichiometry in excess acidic bromate was determined

spectrophotometrically using the bromine absorbance at

390 nm. Figure 1 shows the combined spectra of ACTU, aqueous
bromine and product solution at excess bromate conditions.
ACTU has no absorbance in the visible region, and thus the
aqueous bromine peak at 390 nm is isolated and can be used for
analytical determination of bromine at the end of the reaction.
This spectrophotometric method worked for a limited range of
oxidant to reductant ratios; R = [BrO3

–]0/[ACTU]0. At values of R
greater than 1.6; the observed final absorbance of bromine satu-
rated, and further increases in oxidant did not produce any
changes in observed final bromine concentrations. In excess
ACTU conditions, the stoichiometry was determined titrimetrically
by utilizing excess oxidant and determining residual oxidizing
power for a fixed amount of ACTU and varying acidic bromate.

Figure 2 shows the iodometric titration utilized for the deter-
mination of the stoichiometry of the reaction in excess reductant,
though the determination was performed in excess oxidant.
These titrimetric determinations were performed in triplicates.
The titre varied linearly with increase in bromate concentra-
tions. A plot of titre vs bromate concentrations for a fixed amount
of [ACTU]0 of 1.0 mM gave a straight line with an intercept of
1.33 mM (= 4/3). This intercept value represents the amount of
bromate needed to just completely oxidize 1.0 mM with no
excess bromate left to form bromine which will result in a titre
against thiousulfate. The stoichiometry is thus solidly 4:3:

4BrO3
– + 3(CH3CO)N(NH2)C=S + 3H2O ® 4Br– +

3(CH3CO)N(NH2)C=O + 3SO4
2– + 6H+ R1

Spectrophotometric determination in excess bromate condi-
tions gave a stoichiometry of 8:5:

8BrO3
– + 5(CH3CO)N(NH2)C=S + H2O ® 4Br2 +

5(CH3CO)N(NH2)C=O + 5SO4
2– + 2H+ R2

At high excess of bromate, amount of bromine formed was
determined by initial concentrations of ACTU. This can be seen
in Fig. 6 (vide infra).

98% of the sulfur in ACTU was gravimetrically analyzed as sul-
fate. One important reaction in the reaction mixture is the direct
oxidation of ACTU by aqueous bromine. The stoichiometry was
determined titrimetrically, as shown in Fig. 2b, by titrating bro-
mine in aqueous iodine enhanced by soluble starch. The
stoichiometry was determined to be 4:1:

4Br2(aq) + (CH3CO)N(NH2)C=S + 5H2O ® 8Br– +
(CH3CO)N(NH2)C=O + SO4

2– + 10H+ R3
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Figure 1 UV spectra of (a): [ACTU] = 0.00001 M, (b): [Br2] = 0.004 M, (c): [ACTU] = 0.001 M, [H+] = 0.2 M, and [BrO3
–] = 0.005 M.



3.2. Kinetics
In excess acidic bromate, the reaction showed a monotonic

increase in absorbance of aqueous bromine after a short induc-
tion period. No other active absorbance peaks were observed
(see Fig. 3).

No bromine formation was observed when oxidant to
reductant ratio was less than 1.33, i.e. stoichiometry R1. This
indicates that reaction of bromine and ACTU is so rapid that
these two cannot coexist on the time scale of reaction R1.

All kinetics traces shown in Figures 4 to 7 were obtained in trip-
licates. The reaction is strongly catalyzed by acid (see Fig. 4).
Acid, however, is not a reactant in the reaction under study, but it
decreases the quiescent period before commencement of
bromine formation and also rapidly increases the rate of forma-
tion bromine after the induction period. Generally, there was an
inverse square dependence of the induction period with acid
over a limited range of acid concentrations. This effect tailed off
and became an inverse first-order dependence at high acid
concentrations. The formation of bromine, however, was

strongly second order in acid. The reaction was run in highly
excess acid conditions such that it could be assumed that acid
concentrations remained invariant over the lifetime of the
reaction; i.e. essentially buffered. None of the other reagents’
concentrations, [BrO3

–]t, [ACTU]t could be determined at the
onset of formation of bromine such that no relevant kinetics
constants could be evaluated for the rate of formation of
bromine. Acid did not alter final amount of bromine obtained
based on stoichiometry R2, but accelerated the rate of attainment
of the final bromine concentrations.

Figure 5 shows the effect of bromate concentrations on the
reaction. In this case, induction period has an inverse dependence
on initial bromate concentrations and a linear dependence on
rate of formation of bromine after the induction period. For all
the scans in Fig. 5 the oxidant reductant ratios were greater than
1.6. The different bromate concentrations, provided that the
oxidant to reductant ratios were greater than 1.6, did not alter
the final amount of bromine formed. Figure 6 shows the effect of
ACTU concentrations at constant acid and bromate concentra-
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Figure 2 (a) Iodometric titration to determine stoichiometry of ACTU and BrO3
– reaction R1. Fixed: [ACTU] = 0.001 M, [H+] = 0.4 M, and varied

[BrO3
–] from 0.002 M to 0.006 M. X-axis intercept = 0.001327. The ratio is 4:3. (b) Spectrophotometric determination of stoichiometry in the ACTU vs

bromine reaction. Fixed: [ACTU] = 0.001 M, and varied [Br2] from 0.005 M to 0.009 M, X-axis intercept = 0.0039 M. The ratio is 1:4.
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Figure 3 Multiple scan of ACTU in acidified bromate, each scan acquired after 30 s. [ACTU] = 0.001 M, [H+] = 0.1 M and [BrO3
–] = 0.1 M.

Figure 4 Effect of acid variation on the reaction between BrO3
– and ACTU. Fixed: [ACTU] = 0.003 M, [BrO3

–] = 0.006 M, and varied [H+]= (a) 0.1 M,
(b) 0.15 M, (c) 0.2 M, (d) 0.25 M and (e) 0.3 M. INaClO-4 = 1 M.

Figure 5 Effect of BrO3
– variation on the reaction. Fixed: [ ACTU] = 0.001 M, [H+] = 0.1 M and varied [BrO3

–] = (a) 0.0025 M, (b) 0.05 M, (c) 0.1 M,
(d) 0.15 M and (e) 0.2 M. INaClO-4 = 1.0 M



tions. All these experiments were performed at oxidant to
reductant ratios greater than 1.6 (reaction R2) and thus the
amount of final bromine formed is determined by [ACTU]0. Final
bromine concentrations were 0.80[ACTU]0 according to reaction
R2 stoichiometry. At these conditions of high ratios, the induc-
tion period was invariant with rate of formation of bromine
obeying a first order dependence on [ACTU]0. No ACTU is avail-
able at the commencement of bromine formation (Reaction R3 is
fast), and so formation of bromine is dependent on reactive
species derived from the oxidation of ACTU.

Figure 7 shows spectrophotometric traces of the direct Br2 –
ACTU reaction. They were all run in stoichiometric excess of bro-
mine such that there is residual bromine at the end of the reac-
tion. A plot of residual absorbance vs [Br2]0 gave an intercept
value that corroborates stoichiometry R3 (plot not shown) This
intercept value indicates the concentration of bromine needed
to just completely oxidize the ACTU concentration utilized in all
the series of experiments (0.90 mM). The reaction is nearly diffu-
sion-controlled and is faster than the mixing time of our
stopped-flow apparatus of 1 ms. The reaction is first order in

both bromine and ACTU. Due to the imprecision in the kinetics
measurements, we could only evaluate a lower-limit bimolecular
rate constant of 2.1 ×105 M–1 s–1 (no error bars since this repre-
sents a lower limit value).

4. Mechanism
The reaction of the unsubstituted thiourea was studied by

Simoyi et al.44 in 1994. The remarkable difference is that reaction
of ACTU is much faster. This would suggest that ACTU is unable
to stabilize any intermediates on its oxidation pathway to product
N-acetylurea. We ran different stoichiometric ratios of oxidant to
reductant and obtained the ESI spectra of the final product in
each case. In excess oxidant, the only peak obtained was for the
product at m/z = 103.05. Figure 8 shows the ESI spectrum of a
reaction solution in which the reductant, ACTU, is in
stoichiometric excess. Any intermediates that can be stabilized
should be detected in this environment. Only the unreacted
substrate, at m/z = 119.03 and the product are observed. The
expected peak for a possible sulfinic acid, m/z = 135.03 is not
observed. Neither is a possible sulfonic acid at m/z = 151.03
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Figure 6 Fixed: [H+]0 = 0.1 M, [BrO3
–]0 = 0.05 M and varied [ACTU]0 = (a) 0.00025 M, (b) 0.00050 M,(c) 0.00075 M,(d) 0.0010 M, (e) 0.0013 M and

(f) 0.0015 M. INaClO-4 = 1.0 M.

Figure 7 Effect of varying bromine during reaction with ACTU, in the presence of bromide ions . Fixed: [ACTU] = 0.0009 M, [Br– ] = 1 M, and varied
[Br2] = (a) 0.004 M, (b) 0.005 M, (c) 0.006 M, (d) 0.007 M, (e) 0.008 M.



observed. Another substituted thiourea, tertamethylthiourea,
has shown all possible oxo-acid intermediates before formation
of product tetramethylurea.45

Thus the mechanism involves simply the expected oxybromine
kinetics.46 Rate-determining step is the initial oxidation of ACTU;
subsequent oxidations of the intermediates to N-acetylurea are
facile. The rate of the overall reaction conforms to the rate law:

Rate = k0[BrO3
–][H+]2[Red] (1)

In Equation (1), Red can be any 2-electron reductant. Involve-
ment of acid is through protonation of bromate to bromic acid;
followed by the acidification of bromic acid to produce the active
oxidizing species:

H+ + BrO3
–
� HBrO3 R4

HBrO3 + H+
� H2BrO3

+ R5

H2BrO3
+ + 2e–

® HBrO2 + OH– R6

With reaction R6 as the rate-determining step, then overall rate
law Equation (1) can be justified. Standard oxybromine kinetics
involve Br– as the 2-electron reductant which is oxidized to
HOBr:

H2BrO3
+ + Br–

� HBrO2 + HOBr R7

Composite reaction R7 is written as:

BrO3
– + 2H+ + Br–

� HBrO2 + HOBr R8

If sequence R4 to R8 is correct, according to the standard
oxybromine kinetics, then oxidation of the sulfur center should
proceed through 2-electron oxidations via sulfenic (S(I)), sulfinic
(S(II)) and sulfonic (S(IV)) acids. This is a sequence that has been
suggested in several oxidations of thiols and thiocarbamides.47

Thus the initial oxidation of ACTU would be by the generated
reactive species HOBr:

HOBr + (CH3CO)NH(NH2)C=S ®

((CH3CO)NH)(NH2)C-SOH + H+ + Br– R9

((CH3CO)NH)(NH2)C-SOH is the expected unstable sulfenic
acid which should subsequently be rapidly oxidized further to
the sulfinic acid and sulfonic acids:

HOBr + ((CH3CO)NH)(NH2)C-SOH ®

((CH3CO)NH)(NH2)C-SO2H + H+ + Br– R10

HOBr + ((CH3CO)NH)(NH2)C-SO2H ®

((CH3CO)NH)(NH2)C-SO3H + H+ + Br– R11

Cleavage of the C-S bond should occur on oxidation of the
sulfonic acid:

HOBr + ((CH3CO)NH)(NH2)C-SO3H + H2O ®

((CH3CO)NH)(NH2)C=O + SO4
2– + 3H+ + Br– R12

With HOBr as the major oxidizing species, then observed rate
law (1) will hold in the form of (2) through reaction R8:

Rate = k0[BrO3
–][H+]2[Br–] (2)

Initial bromide concentrations to initiate reaction R8 are
derived from a direct reaction of bromic acid with ACTU:

HBrO3 + (CH3CO)NH(NH2)C=S ®

((CH3CO)NH)(NH2)C-SOH + HBrO2 R13

HBrO2 + (CH3CO)NH(NH2)C=S ®

((CH3CO)NH)(NH2)C-SOH + HOBr R14

Followed by reaction R10. The trace amounts of bromide
formed in R10 are amplified through reaction R8.
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Figure 8 ESI spectrum of the product of oxidation of ACTU in stoichiometric excess of ACTU.



5. Conclusion
This short mechanistic study has shown that despite similarities

in thioureas, their oxidations can differ wildly. ACTU is unable to
generate stable sulfur oxo-acids on the pathway towards
formation of product N-acetylurea. Thus it is much more easily
oxidized that the parent thiourea and other substituted thioureas
such as trimethyl- and tetramethylthiourea.
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