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Communication: Visualization and spectroscopy of defects induced
by dehydrogenation in individual silicon nanocrystals

Dmitry A. Kislitsyn,1 Jon M. Mills,1 Vancho Kocevski,2,a) Sheng-Kuei Chiu,3 William
J. I. DeBenedetti,3,b) Christian F. Gervasi,1 Benjamen N. Taber,1 Ariel E. Rosenfield,1
Olle Eriksson,2 Ján Rusz,2 Andrea M. Goforth,3 and George V. Nazin1,c)
1Department of Chemistry and Biochemistry, Materials Science Institute, Oregon Center for Optical, Molecular
and Quantum Science, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
2Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
3Department of Chemistry, Portland State University, Portland, Oregon 97201, USA

(Received 5 May 2016; accepted 13 June 2016; published online 28 June 2016)

We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogena-
tion on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on
the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into
individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually
produces midgap electronic states. We use theoretical calculations to show that the STS spectra
of midgap states are consistent with the presence of silicon dangling bonds, which are found in
different charge states. Our calculations also suggest that the observed initial reduction of the
electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of
surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first
visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide
direct evidence for the existence of diverse dangling bond states on the SiNC surfaces. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4954833]

Silicon nanocrystals (SiNCs) have recently attracted a
great deal of attention as a promising photophysical material
with applications in photovoltaics,1–4 light-emitting devices,5,6

and biological tagging.7,8 SiNCs offer the advantages of
low toxicity and robust surface passivation involving, for
example, formation of covalent Si–C bonds.9,10 Importantly,
the optical properties of SiNCs are strongly dependent on
their dimensions, with a dramatic brightening of radiative
transitions observed for sufficiently small SiNCs,11–14 a
consequence of changes in the electronic structure leading
to the relaxation of the momentum conservation rules known
to suppress radiative transitions in bulk silicon.15–17 While the
ultra-small size of SiNCs is essential for optical applications,
the resulting large surface to volume ratio means that SiNCs
are very susceptible to their chemical environment and the
presence of defects on their surfaces.

A wide variety of approaches for controlling the SiNC
surface chemistry have been developed, including passivation
with organic molecules18–20 as well as oxidation.21–23 One
of the most common defects found at SiNC surfaces,
regardless of the surface passivation technique, is the silicon
dangling bond (DB). For example, DBs exist at Si-SiO2
interfaces24,25 and at the surfaces of alkyl-passivated SiNCs.26

DBs can also be produced by mild oxidation of hydrogenated
SiNCs27 and by exposure to ultra-violet radiation.28,29 DBs

a)Present address: Department of Materials Science and Engineering, North-
western University, Evanston, Illinois 60208, USA.

b)Present address: Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, NY 14853, USA.

c)Author to whom correspondence should be addressed. Electronic mail:
gnazin@uoregon.edu

are known to act as non-radiative recombination centers
leading to de-excitation of electronically excited states.30 In
contrast, charged DBs have been found to serve as radiative
recombination centers in SiNCs with sufficiently large gap
energies.31 Further, depending on their charge and local stress,
DBs at the surface of oxidized SiNCs were predicted to
be capable of inducing intermittency in the SiNC photo-
luminescence.32 However, the varied impact of the different
DB charge states on SiNC photophysics, especially in the
context of the different possible surface passivations, remains
to be fully addressed.

While the DB-induced electronic states in SiNCs
have received a great deal of attention,33,34 conventional
experimental techniques are often limited to ensemble-level
measurements, where the variations in DBs structures and
local environments are averaged out.32 A promising approach
for addressing individual defects on SiNC surfaces is scanning
tunneling microscopy (STM), which has proven to be uniquely
suited for studies of individual DBs on silicon single-
crystal surfaces.35–38 Further, STM enables scanning tunneling
spectroscopy (STS),39 a technique that has been used to
visualize the electronic structures of individual DBs,36 as
well as complex structures composed of many DBs.38,40–42

However, until now, no STM/STS results describing DBs on
SiNC surfaces have been reported, even though STS has been
used to study quantum-confined,43 as well as defect-induced,44

electronic states in individual SiNCs.
In this report, we describe, for the first time, spatially

resolved STS mapping of charged and neutral DB defects
created by current-induced dehydrogenation of individual
hydrogen-terminated SiNCs. SiNCs were sprayed onto an
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Au(111) substrate held in high-vacuum conditions and studied
using an ultra-high vacuum (UHV) cryogenic scanning
tunneling microscope (STM)45 (see the supplementary
material for further experimental details).46 The deposited
SiNCs formed a near-monolayer film on Au(111), with
individual SiNCs appearing as protrusions with lateral
dimensions of 2–4 nm, as shown in Fig. 1(a). To characterize
the electronic structures of individual SiNCs, we recorded the
differential tunneling conductance (dI/dV) as a function of the

FIG. 1. STM/STS characterization and theoretical modeling of SiNCs. (a)
Topography of an area showing several SiNCs. (b) Enlarged topography
corresponding to the dashed square in (a). (c) STS spectra measured at
locations A and B marked in (b). Curves A1–A7 show transformations of
the LDOS spectra in location A with successive application of bias volt-
age pulses (see text for details). States marked “H” and “E” correspond to
occupied and unoccupied states, respectively, except for features caused by
“reverse” tunneling, as described in the text. Spectra are offset for clarity.
(d) Model of fully hydrogen-passivated SiNC (composition H172Si239). (e)
Theoretical LDOS spectra averaged over the entire NC surface. Spectra FH
and R correspond to the fully hydrogen-passivated SiNC in (d), and to the
completely reconstructed SiNC in (f), respectively. Spectrum PR corresponds
to a partially reconstructed version of SiNC from (d), with 33% of dihydrides
converted to monohydride dimers. DB0, DB+, and DB− are spectra of the
completely reconstructed model with an additional DB and charges 0, +e,
and −e, correspondingly. Spectrum SDB− illustrates the effect of “bipolar”
tunneling on STS of electronic states with LDOS described by curve DB−.
Spectra were Gaussian-broadened by 100 mV, with onsets corresponding
to the discrete energy levels obtained from DFT calculations. All spectra
were modeled assuming a finite bias voltage drop inside the SiNC (see
text). (f) Model of a monohydride-passivated SiNC (composition H100Si239)
with 2×1:H surface reconstruction and silicon core identical to that of (d).
Location of the DB is also indicated. For further details of the measurements
including spatial drift estimates, see the supplementary material.46

applied bias voltage and location. Thus produced dI/dV (STS)
spectra are interpreted as energy-dependent local density of
states (LDOSs) spectra with the bias voltage giving the energy
scale.46 Thirty individual SiNCs were studied in this fashion,
as detailed in the following for one representative SiNC
[Fig. 1(b)].

STM-induced dehydrogenation of single-crystal silicon
surfaces has been studied in detail in the past two decades, with
significant insights achieved into the physical mechanisms
of hydrogen desorption47 and the electronic structures of
dehydrogenated areas.48,49 Generally, elevated bias voltages
are required, with the exact magnitude of the bias voltage and
tunneling current strongly affecting the mode of desorption,
which can involve either direct electronic or multiple-
vibrational excitation of the Si–H bond via tunneling
electrons.50 This process is thus referred to as electron-
stimulated desorption (ESD).51 Depending on the chosen
parameters of the voltage pulse, hydrogen desorption can
either occur one atom at a time or involve several atoms.52 In
our experiments, in order to induce desorption of hydrogen,
we applied voltages in the range of ∼2.5–3 V, chosen to be
sufficiently low to prevent extensive changes to the SiNC
surfaces. For single-crystal silicon surfaces, the desorption of
hydrogen at such bias voltages was previously attributed to
multiple vibrational excitation via electrons tunneling through
the σ∗ (Si–H) unoccupied orbital.47,50,53

Before ESD was induced by STM, LDOS spectra
measured at different locations on “pristine” SiNCs showed
progressions of electronic states with electronic bandgaps
closely matching those predicted by theoretical calculations.44

For example, in the case of the chosen representative SiNC
from Fig. 1(b), the apparent bandgap of ∼2.5 eV was found,
formed by an occupied state H A1

1 and an unoccupied state
EA1

1 in curve A1 of Fig. 1(c) [we define the bandgap as
the voltage difference between the onsets of conduction].
This bandgap value is expected to be larger than the real
bandgap due to the finite bias voltage drop inside the NC:
in a biased tunnel junction involving a NC, a finite voltage
drop occurs across the NC volume shifting the energy of
all electronic states by αeVB (where VB is the bias voltage,
and α < 1 is a function of the NC dimensions and dielectric
susceptibility). This means that the voltage corresponding to
the onset of tunneling for a state with energy ES (this energy
is measured with respect to the Fermi level of the sample
and can be positive or negative) can be then calculated as
ES/(1 − α).54,55 Here, we roughly estimate α to be ∼0.2 (as
explained further in the supplementary material, Figs. S1 and
S2),46 which gives a real bandgap of 2.5 eV × 0.8 = 2 eV. This
value is consistent with that obtained from density functional
theory calculations,56 as illustrated by the LDOS spectrum
FH in Fig. 1(e),16 calculated (taking into account the finite
value of α) for a model hydrogen-passivated SiNC shown
in Fig. 1(d). (The diameter of this SiNC is ∼2.2 nm, which
matches that extracted from Fig. 1(b) after correcting for the tip
convolution effects, as explained in Ref. 44.) Our calculations
show that each one of the LDOS peaks is comprised of several
quantum-confined electronic states formed from Bloch states
associated with different electronic valleys in the Brillouin
zone of bulk silicon.16,17,44 Due to their close energy spacing,
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these states are not completely resolved in our LDOS spectra,
where electronic peaks are significantly broadened (typical
peak width of ∼200 mV) by coupling of tunneling electrons
to vibrational excitations.57

For each “pristine” SiNC, after recording LDOS spectra at
several representative locations, we attempted to induce ESD
by applying higher bias voltages (2.5–3 V) and quantified the
results at each step by detailed mapping of LDOS in order to
establish the presence of DBs. For the SiNC from Fig. 1(b),
application of higher bias voltages resulted in the formation
of new peaks H A2

n and EA2
n [curve A2 of Fig. 1(c)], and a

notable reduction in the apparent bandgap. Importantly, peaks
H A2

n and EA2
n are delocalized over the entire SiNC surface

(Fig. S3)46 suggesting that they do not correspond to localized
defects. This behaviour can be explained by reconstruction
of the SiNC surface induced by the hydrogen desorption.
Specifically, while a significant portion of Si surface atoms
in the as-synthesized SiNCs are passivated with dihydride
groups (Fig. S4),46 hydrogen desorption from neighbouring
SiH2 can lead to their dimerization analogous to the 2 × 1:H
reconstruction observed on the Si(100) surfaces [see Fig. 1(f)
for a model of a fully reconstructed monohydride-only SiNC
with the same Si core as in Fig. 1(d)]. The DBs at the
neighbouring Si atoms form π-electronic bonds producing
delocalized states with an electronic bandgap reduced by an
amount dependent on the extent of surface reconstruction,
as shown by curves PR and R in Fig. 1(e) for the partially
and fully reconstructed models of the SiNC. Indeed, curve
A2 of Fig. 1(c) likely corresponds to a partially reconstructed
SiNC because further ESD pulses on this SiNC resulted in
additional reduction of the bandgap [curve A3 of Fig. 1(c)],
with electronic peaks H A3

n and EA3
n delocalized across the

SiNC surface (Fig. 2).
With additional ESD pulses, however, spatially localized

midgap LDOS features, attributable to defects, appear
on the SiNC surface, with three representative examples
demonstrated by curves B, A4, and A5 in Fig. 1(c). Specifically,
curves B and A5 show pairs of midgap peaks (HB

D and
EB
D, as well as H A5

D and EA5
D , respectively), while curve A4

shows only one midgap peak EA4
D . Intriguingly, we found

that inter-conversion between the different defect types was
possible. In particular, defects B and A4 in Fig 1(c) could be
spontaneously converted to defects of type A5 under typical
tunneling conditions (bias voltage ∼2 V). For example, curve
A5 was recorded at the same location as A4 immediately

FIG. 2. Spatial mapping of LDOS for the SiNC from Fig. 1(b) after (partial)
dehydrogenation, but before DBs were generated. (a) Topography of the
SiNC. (b) LDOS as a function of the bias voltage and position x along the
path (solid line) shown in (a).

after a positive bias voltage of 2.4 V was applied. Further
transformation could be induced by applying voltages of
∼−1.5 V with the resulting LDOS spectrum corresponding to
curve A6, which is very similar to that of defect B measured
earlier at location B [Fig. 1(b), and curve B in Fig. 1(c)].
Finally, the local spectrum at location A was converted from
A6 to A7 [Fig. 1(c)] showing a shape qualitatively similar to
that of A5 (the origin of peak shifts in curve A7 versus A5 is
explained in the following).

The spectral characteristics of the observed midgap states,
as well as the possibility for their inter-conversion, can be
explained in the most straightforward manner by attributing
these midgap states to DB defects, as discussed further below.
Some of the described peaks, however, are produced by
different tunneling processes rather than distinctly different
electronic states, as can be seen from the dramatically different
spatial behaviours of these peaks. For example, for curve A7 in
Fig. 1(c), peak EA7

D shows substantial onset voltage variations
across the NC, while peak H A7

D and other unoccupied states
appear at nearly the same voltages in all locations, as illustrated
in Fig. 3(b). This is despite the fact that peaks EA7

D and H A7
D are

closely co-localized in the vicinity of location A [Fig. 1(b)],
as shown by LDOS maps of Figs. 3(b), 3(d), and 3(e) and
should therefore correspond to the same defect. The described
asymmetry in onset voltage variations is analogous to those
reported for the “bipolar” tunneling investigated previously
for a variety of molecular systems.54,55,58 Bipolar tunneling
is a consequence of the fact that in a biased tunnel junction
involving a NC, a finite voltage drop occurs across the NC
volume, which, in addition to the “direct” type of tunneling
described earlier [Fig. S1(a)]46 with the onset voltage of
ES/(1 − α), also leads to “reverse” tunneling [Fig. S1(b)]46

with the onset voltage of −ES/α (where ES and α were
defined previously).54,55 Voltage onsets for both “direct” and
“reverse” tunneling (at opposite bias polarities) vary with
tip position on the NC surface due to the sensitivity of α
to the geometry of the junction,54 as shown in Fig. S2.46

Nevertheless, because α is typically small [α ≈ 0.2 for peaks
EA7
D and H A7

D ], expression ES/(1 − α) varies significantly less
than ES/α, which explains the differences in the onset voltage
variations for peaks EA7

D and H A7
D in Fig. 3(b). In addition,

the spectral lineshapes of the two types of bipolar peaks are
affected by the asymmetry in the tip-NC and NC-substrate
tunneling rates (the former is lower than the latter), which
tends to produce notably more intense and sharper peaks at the
onset of conduction for the “reverse” tunneling process.54,59

This is indeed observed for peak EA7
D , which, together with

its spatial voltage onset variations, suggests that this peak
corresponds to the “reverse” tunneling process, while peak
H A7

D corresponds to “direct” tunneling. The effect of “bipolar”
tunneling on the dI/dV curves is illustrated by curve SDB−

in Fig. 1(e) [obtained from curve DB− by assuming α ≈ 0.2,
and a finite rate for tunneling between SiNC and substrate],
where peaks ESD−

D and HSD−
D correspond to the “reverse”

and “direct” tunneling processes, respectively, analogously to
peaks EA7

D and H A7
D (we note that the overtone structures of

peaks EA7
D and H A7

D were not included in the modelling).
Analysis similar to that presented above for peaks EA7

D

and H A7
D , when applied to the rest of the spectra in Fig. 1(c),
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FIG. 3. Spatial mapping of LDOS for the SiNC from Fig. 1(b) after DBs were
generated. ((a) and (c)) STM topographic images of the SiNC. (b) LDOS as
a function of the bias voltage and position x along the path (solid line) shown
in (a) and (c). ((d) and (e)) 2-D LDOS maps for voltages corresponding to
HD, ED LDOS peaks marked in (b). Mapping area corresponds to the dotted
squares in (a) and (c). Dashed lines are topographic contours from (c).

suggests that peaks EB
D, EA4

D , H A5
D , EA6

D , and H A7
D are all

produced by “direct” tunneling, while peaks HB
D, H A4

D , EA5
D ,

H A6
D , and EA7

D should correspond to “reverse” tunneling. This
assignment results in a clear distinction between the curves B,
A4, and A6 versus the curves A5 and A7: while only unoccupied
midgap states are distinguishable in curves B, A4, and A6, in
curves A5 and A7, only occupied midgap states are clearly
observable. This assignment offers an explanation for the inter-
conversion between the different types of spectra in Fig. 1(c).
For example, the transitions from spectrum A4 to spectrum
A5 and spectrum A6 to spectrum A7 were induced with
positive voltages (this corresponds to electrons being added
to the SiNC), and resulted in disappearance of unoccupied
midgap states EA4

D and EA6
D , as well as appearance of occupied

midgap states H A5
D and H A7

D . Similar spectral transformations
in individual atoms60 and molecules61 have been attributed to
electron trapping. This suggests that individual electrons are
likely being trapped in states EA4

D and EA6
D , which results in

appearance of trap states H A5
D and H A7

D . On the other hand,
transition from A5 to A6 occurred when negative voltage
was applied, and the corresponding spectral changes may be
attributed to extraction of an electron from state H A5

D , which
is thereby converted to state EA6

D , similarly to the de-trapping
process described for molecules.61

The local charging of SiNC described above is consistent
with the presence of DBs, which have been shown to exist in
different charge states on silicon surfaces,36,38,62 and is also
consistent with the expectation that desorption of hydrogen
atoms should lead to the creation of DBs. In addition, DBs
appear deep in the silicon electronic bandgap, similarly to the
states appearing near zero bias in Fig. 1(c). This similarity is
illustrated by the theoretically calculated LDOS for DBs in
different charge states on the surfaces of model SiNCs [curves
DB,0 DB+, and DB− in Fig. 1(e)]. For example, curve A4
only shows an unoccupied midgap state, consistent with curve
DB+, while curve A5 only shows an occupied state, consistent
with curve DB−. Assignment of spectra B, A6, and A7 is
less certain because the “reverse” tunneling LDOS features

seen in these curves may be obscuring “direct” tunneling
features that would be expected for the neutral DB (curve
DB0). The similarity of spectra A5 and A7, however, suggests
that A7 may also be associated with DB−. Curves B and A6
are relatively similar and, given their distinct spectral shapes,
may be attributed to a neutral state, even though they may
also be variants of A4 (DB+ state) corresponding to slightly
different local surface structures. We note that similar spectral
features attributable to charged and neutral DBs were found
in other studied SiNCs (Fig. S5).46

In conclusion, our work shows that when sufficiently high-
energy electrons are injected into SiNCs, dramatic changes
in the SiNC electronic structures are observed: gradual
shrinking of the SiNC electronic bandgap occurs initially
and is eventually followed by the appearance of localized
states deep in the electronic bandgap. We find that these
midgap states can exist in different inter-convertible charge
configurations. These observations are consistent with the
hypothesis that high-energy electron injection can lead to
dehydrogenation of the SiNC surfaces, resulting in surface
reconstruction driven by conversion of surface dihydride
species to monohydride groups, and creation of dangling
bonds in different charge states. These findings provide a
direct visualization of possible scenarios for defect generation
in SiNC-based optical and opto-electronic applications, where
photo-generated charge carriers with sufficient energies could
induce creation of surface defects.
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