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Independent center, independent electron approximation for dynamics
of molecules and clusters
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Department of Physics, Tulane University, New Orleans, Louisianna 70118-5698
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Department of Physics, Kansas State University, Manhattan, Kansas 66506

S. E. Corchs and R. D. Rivarola
Instituto de Fisica Rosario, CONICET - Universidad Nacional de Rosario, 2000 Rosario, Argentina

~Received 14 February 1996; accepted 16 April 1996!

A formalism is developed for evaluating probabilities and cross sections for multiple-electron
transitions in scattering of molecules and clusters by charged collision partners. First, the molecule
is divided into subclusters each made up of identical centers~atoms!. Within each subcluster
coherent scattering from identical centers may lead to observable phase terms and a geometrical
structure factor. Then, using a mean field approximation to describe the interactions between centers

we obtainAI;(k)ke
id I
k
AIk . Second, the independent electron approximation for each center may

be obtained by neglecting the correlation between electrons in each center. The probability
amplitude for each center is then a product of single electron transition probability amplitudes,
aIk
i , i.e.AIk') iaik

i . Finally, the independent subcluster approximation is introduced by neglecting
the interactions between different subclusters in the molecule or cluster. The total probability
amplitude then reduces to a simple product of amplitudes for each subcluster,A') IAI . Limitations
of this simple approximation are discussed. ©1996 American Institute of Physics.
@S0021-9606~96!00728-3#

I. INTRODUCTION

Understanding interactions of few and many electron
systems is central to detailed understanding of physical and
chemical properties of microscopic and macroscopic atomic
and molecular systems. Even on the scale of individual at-
oms, detailing the nature of both static and dynamic observ-
ables is limited by the difficulty of evaluating few and many
electron effects. In general, the larger the system the greater
the difficulty. While, in principle, properties of micro- and
macro-structures depend on atomic properties, in practice
understanding large atomic and molecular systems is limited
by the lack of methods that are simple enough to be used for
large systems of atoms and molecules. The purpose of this
paper is to define a dynamic independent particle model for
interactions of molecules and clusters with charged collision
partners. Our model describes multiple electron transitions.
We also address when and how well such a simple indepen-
dent particle model works.

The simple independent electron approximation is now
widely used to describe atomic collisions.1,2 Some reactions
of simple molecules with fast ions have also been
described.2–4 In this paper we introduce an independent par-
ticle model for molecules interacting with charged particles,
so that one may, under certain conditions, evaluate probabili-
ties, cross sections and reaction rates for systems of mol-
ecules in which more than one electron is active. Our method
yields a probability for multi-electron transition that is ex-
pressed as a simple product of independent single center,
single electron probabilities.

Classically the probability,P12, that two independent

events occur is the simple product of the individual probabil-
ity, P1 andP2 , for each event, i.e.P125 P1 • P2 . This simple
idea was used to describe the dynamics of individual atoms
interacting with heavy ions 25 years ago5,6 and a quantum
derivation of such a result was first given in 1977.7 A key
approximation required for such an independent electron ap-
proximation is to neglect the electron–electron correlation
which interconnects the independent electron probabilities,
P1 and P2 . This independent electron approximation for
atomic scattering has been generalized to systems with arbi-
trary numbers of electrons undergoing transitions, and has
been widely tested experimentally.2 It is usually valid for
atomic collisions in which electron correlation is weak and
the interaction is sufficiently fast that complex correlated
processes are unlikely.

For transitions of a single electron treating interactions
of molecules with charged particles in terms of independent
atomic electrons was discussed sometime ago by Landau and
Liftshitz,4 by Zare,8 and also by Tuan and Gerjuoy.9 How-
ever, understanding and analysis of interactions of molecules
and clusters often involves transitions of more than one elec-
tron. A more specific example of a case in which multiple
electron transitions may be significant is Coulomb
explosions10–15 in which a molecule or cluster is quickly
stripped of some of its electrons and breaks into mutually
repulsive fragments. So processes involving multielectron
transitions are clearly of interest. Nevertheless, until now
most theoretical descriptions of such molecular dynamics
have been limited to systems in which there is a single active
electron.3 In this paper we introduce a method to describe
collisions in which many electrons may undergo transitions.
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The basic idea of this paper is to set forth a method to
evaluate multiple electron transition probabilities and cross
sections in large molecules and clusters interacting with
charged particles using an independent electron approxima-
tion where whatever happens to one electron does not influ-
ence the other electrons. The electronic wave function for an
atom or center is written as a simple product of single or-
thogonal electron wave functions, each of which evolves in-
dependently. Atoms or centers with the same wave functions
may be grouped into subclusters. In these subclusters the
interactions between these atoms or centers are neglected.
However, the transition amplitude is taken to be a sum of
transition amplitudes for each atom or center with a transla-
tional phase. Finally the subcluster wave functions are mul-
tiplied together independently to form the electronic wave
function for the final molecule or cluster. While most mol-
ecules are not of this form, the methods we develop may be
applied to many molecules using sensible combinations of
one or all of the three primary approximations we develop in
this paper. The purpose of this paper is to determine under
what conditions such simple approximations are valid. Math-
ematically and physically it is sensible to begin with the
exact Hamiltonian for the full molecule or cluster and break
it down to the level of independent electrons in successive
approximations. That is how we proceed.

The limitations of our independent particle approach de-
pend on the validity of the approximations we employ,
namely largely neglecting electron correlation and exchange.
While use of these approximations simplifies the many body
problem both mathematically and conceptually, effects such
as chemical bonding that depend on correlation and ex-
change, which are often important in molecular dynamics,
will not be fully accounted for in our methods. On the other
hand, our approach may provide a conceptually simple and
analytically convenient method to understand the dynamics
of multi-atom, multi-electron systems.

II. THEORY

Consider a molecule or cluster denoted by
C1
N1C2

N2 . . .CI
NI . . .CN

NN where CI
NI is one of N different

subclusters. The subcluster of kindI is composed byNI

identical centersCI
k (1<k<NI). Each center has one or

more electrons. It is the activity of one or more of these
electrons in which we are interested. In our model both the
static and the dynamic properties of these electrons will be
defined within each center independently. Each center,CI

k ,
of the subclusterI has the same nuclear chargeZI and
nuclear massMI , and its center of mass is located a distance
RI
k from the center of mass of the molecule. Each individual

center,CI , carriesnI electrons. This molecule interacts with
a projectile of chargeZP and massM , moving at a velocity
v, as illustrated in Fig. 1.

For clarity, we use the following development. We begin
with the Hamiltonian describing a particular subcluster of
identical centers~atoms!. The formally exact transition am-
plitude is derived. Then, successive stages of approximation
aimed at reducing the transition amplitude to a manageable

form are applied as follows. First, independent center ap-
proximation is applied to the subcluster in which correlation
among the centers is averaged out. The resulting transition
amplitude is given as a product of amplitudes for each of the
centers. Optional geometrical factors are also considered.
Second, independent electron approximation is used within
each center, reducing the transition amplitude on each center
to a product of amplitudes for single-electron transitions.
Then, an example is given to illustrate the concepts devel-
oped in the first two approximations. Finally, generalization
to the whole cluster is made by treating subclusters indepen-
dent of each other, yielding the total transition amplitude as a
product of individual subcluster amplitudes.

A. Exact formulation

The Hamiltonian of a subclusterI , using atomic units
(e25\5me51) and working in the laboratory system, is

H5K1V1H0,I . ~1!

Here

K52
¹2

2M
~2!

is the kinetic energy of the projectile in the center of mass of
the molecule, V the interaction of the projectile with the
subcluster given by

V5ZP(
k51

NI H ZI
uR2RI

ku
2(

i51

nI 1

uR2RI
k2r I

k,i u J , ~3!

FIG. 1. A cluster of atomic centers in a collision with a projectile of charge,
Zp , and velocity,v. In the target cluster there are four identical subcluster
C1 centers, two subclusterC2 centers and one subclusterC3 center.

1847McGuire et al.: Dynamics of molecules and clusters

J. Chem. Phys., Vol. 105, No. 5, 1 August 1996

Downloaded 15 Jan 2013 to 131.252.76.164. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



whereR is the position of the projectile with respect to the
center of mass of the molecule andr I

k,i is the coordinate of
the i th electron of the centerCI

k with respect to its nucleus,
as illustrated in Fig. 2.

Also, in Eq. ~1! H0,I is the Hamiltonian of the static
subcluster of type I given by,

H0,I5 (
k51

NI H 2

¹R
I
k

2

2MI
1(

i51

nI F2

¹ r
I
k,i
2

2
2

ZI
r I
k,i

1
1

2 (
l51

~ lÞ i !

nI 1

ur I
k,i2r I

k,l uG J
1 (

k51

NI

(
j51

~ jÞk!

NI H 1

2

ZI
2

uRI
k2RI

j u
1(

i51

nI F2
ZI

uRI
k2RI

j2r I
j ,i u

1
1

2(l51

nI 1

uRI
k1r I

k,i2RI
j2r I

j ,l uG J . ~4!

In order to develop a model with independent centers, we
regard the first line in Eq.~4! above as the sum of the Hamil-
tonians of each individual center that belongs to the subclus-
ter I. Line two contains the sum of the interactions between
these atomic centers:~i! nucleus–nucleus interaction be-
tween CI

k and CI
j , ~ii ! the interaction term between the

nucleus ofCI
k and the electrons ofCI

j , and ~iii ! electron–
electron interaction~or correlation! between electrons ofCI

k

and those ofCI
j .

The Schro¨dinger equation to solve is given by

~H2E!C i , f
1,250, ~5!

whereE is the total energy of the system andC i
1(C f

2) is
the exact solution of Eq.~7! with correct outgoing~incom-
ing! conditions corresponding to the entry~exit! channel.

In order to separate the projectile motion from the elec-
tronic motion we introduce eikonal phases to describe the
scattering between the projectile nucleus and each of the nu-
clei of the subcluster.16 In the entry channel we write

C i
15F )

k51

NI

expH i ZPZIv
ln@ki uR2RI

ku2k i•~R2RI
k!#J G

3exp$ ik i•R%expH i e iZ

v J c i
1 . ~6!

In the same way, for the exit channel we write

C f
25F )

k51

NI

expH 2 i
ZPZI
v f

ln@kf uR2RI
ku

2k f•~R2RI
k!#J Gexp$ ik f•R%expH i e fZ

v f
J c f

2 .

~7!

In Eqs.~6! and ~7! k i5Mv andk f5M fvf denote the initial
and final momenta of the projectile respectively. Also,Z is
the component ofR in the direction of the vectorv and we
have introduced the energiese i ande f that satisfy

E5
ki
2

2M
1e i5

kf
2

2M f
1e f . ~8!

Working within the eikonal approximation, we apply the op-
erator (H2E) onC i , f

1,2 given by~6! and~7! and the Schro¨-
dinger equation for the electronic motion is obtained

SHel2 i
]

]t Dc i , f
1,250, ~9!

where the Hamiltonian governing the evolution of the elec-
trons in the subcluster,Hel , is defined as

Hel5H0,I1V2 (
k51

NI ZPZI
uR2RI

ku
5H0,I1V8 ~10!

andc i , f
1,2 is the time dependent wave function with correct

outgoing and incoming conditions that describes the elec-
tronic motion. The Born-Oppenheimer approximation is used
and we regard theRI

k as fixed. Next it is assumed that the
projectile motion may be treated classically17 so that the pro-
jectile trajectoryR(t) is well defined. The simplest~but not
the only possible! trajectory isR(t)5b1vt, whereb is the
impact parameter of the projectile relative to the center of
mass of the molecule.

In Eq. ~10! the potentialV8 is the sum of the interactions
of the projectile with each of the target electrons given by

V85 (
k51

NI

(
i51

nI

VI
k,i5 (

k51

NI

(
i51

nI 2ZP
uR~ t !2RI

k2r I
k,i u

. ~11!

If we define

FIG. 2. Definition of coordinates used in the text. The center-of-mass of the
cluster is denoted ‘‘cm’’. The center shown above corresponds to the upper
left C1 center in Fig. 1. The index K~not shown! runs over different sub-
clusters~e.g.C1 andC2 in Fig. 1!. The index k runs over members of the
same subcluster~e.g. K runs from 1 to 4 in the subcluster containing 4
C1’s in Fig. 1!. The index i runs over the electrons in a given center~e.g. in
the above figure the index i runs from 1 to 4!.
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VI
k5(

i51

nI

VI
k,i ~12!

and

VI5 (
k51

NI

VI
k , ~13!

then

V8[VI . ~14!

It is now advantageous to work in the intermediate represen-
tation where one may take advantage of the fact that the
eigenfunctions ofH0,I are known~or nearly known!. In the
intermediate representation the evolution operatorU(t,t0) is
governed by

i
dU~ t,t0!

dt
5V8~ t !U~ t,t0!, ~15!

where

V8~ t !5eiH0,I tV8e2 iH0,I t. ~16!

HereV8(t) is not a sum of single electron~or single center!
operators becauseH0,I in Eq. ~4! is not a sum of single elec-
tron ~or single center! terms due to the correlation interac-
tions between the electrons~or centers!. Equation~9! may be
formally solved using the time ordering operator,T, namely

U~ t,t0!5T expF2 i E
t0

t

V8~ t !dtG . ~17!

The probability amplitude for transition of electrons in the
asymptotic initial statef i to the asymptotic final statef f of
the molecule or cluster is found by projecting the full elec-
tronic wave function of Eq.~9! satisfying initial boundary
conditions,c i

1 , onto the asymptotic electronic wave func-
tion f f , namely,

2,18

A5^f f uc i
1&5^f f uU~1`,2`!uf i&. ~18!

The probabilityP(b) for a transition fromf i to f f is given
by the absolute square ofA, and the corresponding cross
section is found by a two dimensional integration over the
impact parameter,b, namely,

s5E P~b!db5E uAu2db. ~19!

This result holds for an arbitrary number of centers and an
arbitrary number of electrons. It is formally exact. Succes-
sive approximations to Eqs.~17! and ~18! are developed in
the the next subsections.

B. The independent center approximation

In this subsection we decouple the centers within each
subcluster. Also we include the optional possibility of ex-
pressing the probability amplitude,AI , for each subcluster as
a sum of products of the probability amplitudes,AI

k , for
electronic transitions on each constituent center,CI

k . In this
sum phases due to the translation between the centers are
retained.

In order to obtain the independent center approximation
we introduce an average potential,V (r I

k,i), so that the
HamiltonianH0,I given by Eq.~4! is approximated by

H0,I> (
k51

NI H 2

¹R
I
k

2

2MI
1(

i51

nI F2

¹ r
I
k,i
2

2
1V ~r I

k,i !

1
1

2 (
l51

~ lÞ i !

nI 1

ur I
k,i2r I

k,l uG J [(
k51

NI

hI ,k , ~20!

where the term( iV (r I
k,i) results from the following ap-

proximation

(
i51

nI

V ~r I
k,i !>(

i51

nI H 2
ZI
r I
k,i 1K (

j51
~ jÞk!

NI F2
ZI

uRI
j2RI

k2r I
k,i u

1
1

2(l51

nI 1

uRI
j1r I

j ,i2RI
k2r I

k,l uG L J , ~21!

where ^ & denotes averaging of the interactions between
centers by mean field approximation. Let us note that it is not
necessary to include the nucleus–nucleus interaction be-
tweenCI

k andCI
j in ( iV (r I

k,i) if the nuclei of the centers are
regarded as frozen during the collision.

Then, thehI ,k terms defined in Eq.~20! are indeed single
center operators satisfying@hI ,k ,H0,I #50. Recalling that
VI5(VI

k from Eq. ~13! we have using Eq.~16! that

V8~ t !5FeiH0,I t(
k51

NI

VI
kVIe

2 iH0,I tG[(
k51

NI

VI
k~ t !, ~22!

whereVI
k(t) now operates on a single center.

Using Eq.~17! for the evolution operator, one now has,

U~ t,t0![UI~ t,t0!5T expF2 i(
k51

NI E
t0

t

VI
k~ t !dtG

5)
k51

NI

UI
k~ t,t0!, ~23!

where

UI
k~ t,t0!5TexpF2 i E

t0

t

VI
k~ t !dtG . ~24!

Now the centers evolve independently. Then, the initial wave
function of the subclusterI , f I ,i , can be written as a product
of wave functionswki(RI

k) of hIk ~the subindexki indicates
the initial state of centerCI

k)

f I i5)
k51

NI

wki~RI
k!. ~25!

Assuming that the final state of each one of the centers of the
subclusterI is known, the final wave functionf I f reads

f I f5)
k51

NI

wk f~RI
k!, ~26!
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wherek f indicates the final state of centerCI
k . From Eqs.

~18!, ~23!, ~25!, and~26! we have that

AI5K )
k51

NI

wk f~RI
k!U)

k51

NI

UI
k~ t,t0!U)

k51

NI

wki~RI
k!L

[)
k51

NI

AIk~RI
k!, ~27!

where

AIk~RI
k!5^wk f~RI

k!uUI
k~ t,t0!uwki~RI

k!&. ~28!

At this point we have simply expressed the subcluster prob-
ability amplitude as a simple product of probability ampli-
tudes for each of the constituent centers.

Let us now assume that the transition from statewki to
statewk f can be distinguished while we ignore in which of
theNI identical centers it has occurred. The probability am-
plitudeAI in the subclusterI is then evaluated as

AI5
1

NI !
(
P

P)
k51

NI

AIk~RI
k!, ~29!

where the operator(PP indicates the sum over all the pos-
sible permutations between the transitionski→k f and the
centersCI

k of the subcluster in which they occurred. For
example, ifNI52 then Eq.~29! reads

AI5
1

2
$AI1~RI

1!AI2~RI
2!1AI1~RI

2!AI2~RI
1!%. ~30!

Let us now consider the single center probability ampli-
tude,AIk(RI

k) corresponding to the transitionwki→wk f . The
amplitudeAIk , evaluated atRI

k and as a function of the im-
pact parameterb, is related to another amplitude evaluated at
some other point,R0 , in space by a phase due to translation
in time,2,19–21namely

AIk~RI
k!5e2 id I

k
AIk~R0!, ~31!

where

d I
k5Qz

k~RIz
k 2R0z!, ~32!

with Qz
k thez component ofQ, the momentum transferred to

the projectile in the transitionwki→wk f . Thez axis is taken
parallel to the velocity of the incoming projectile at large
distances. Also, (RIz

k 2R0z) is the z component of
(RI

k2R0). Here we choose theR0 as the center of mass of
the molecule and setR050. For a given center,CI

k , the
impact parameter inAIk(0) is the impact parameter of the
projectile relative to the nucleus ofCI

k , i.e. bI
k5b2RI'

k

whereRI'
k 5RI

k2RIz
k . For heavy projectiles withM@me ,

one has,Qz
k>Qmin

k whereQmin
k is the minimum momentum

transferred to the projectile. If an excitation process takes
place in centerCI

k we have thatQmin
k 5DEk/2v whereDEk is

the energy gain of the electrons in the transitionwki→wk f

and in the electron capture caseQmin
k 5v/22 DEk/v, as given

by McDowell and Coleman.22

From Eqs.~29! and ~31! we obtain

AI5
1

NI !
(
P

P)
k
exp$2 iQmin

k RIz
k %AIk~bI

k!. ~33!

Equation~33! is the main equation of this subsection. The
phase terms lead to the geometrical structure factor as dis-
cussed in Sec. III. C.

C. The independent electron approximation

In this subsection we shall remove the interaction be-
tween electrons on each independent center and
obtain the independent center independent electron
approximation.2,3,7,18

As we did in subsection B we introduce an effective
potential so that the single center HamiltonianhI ,k given by
Eq. ~20! is approximated by

hI ,k>(
l51

nI F2

¹ r
I
k,l
2

2
1Vef~r I

k,l !G[(
l51

nI

hI ,k
l , ~34!

where the term( lVef(r I
k,l) gives a mean field approximation

to the non-local electron-electron interactions, namely,

(
l51

nI

Vef~r I
k,l !>(

l51

nI H V ~r I
k,l !1

1

2 K (
i51

~ iÞ l !

nI 1

ur I
k,l2r I

k,i u L J .
~35!

In Eq. ~34! the kinetic energy of the nucleus center has been
neglected. This is valid in high velocity collisions for heavy
projectiles where the collision is sufficiently fast so that the
centers are effectively frozen in place during the collision.

From Eqs.~12! and~17!, and using the fact thathI ,k
l are

single electron Hamiltonian terms, the evolution operator
given by Eq.~24! reads

UI
k~ t,t0!5)

l51

nI

UI
k,l~ t,t0!, ~36!

where

UI
k,l~ t,t0!5T expF2 i E

t0

t

VI
k,l~ t !dtG . ~37!

Now the Hamiltonian of centerCI
k given by Eq.~34! is a sum

of independent terms for each electron. Then, the electronic
wave function for this centerwk is a product of wave func-
tionsfk

l for each electron,l. As a consequence, the probabil-
ity amplitudeAIk is a product of single electron probability
amplitudesaIk

l , namely

AIk5)
l51

nI

^fk f
l uUI

k,l~ t,t0!ufki
l &[)

l51

nI

aIk
l . ~38!

The effects of the exchange symmetry of electrons have not
been taken into account in Eq.~38!. In atomic collisions,
these effects have been considered by Reading and Ford.23

At high collision velocities these exchange effects are often
small and then may be neglected. It is often the case in large
many electron systems that there are ‘‘passive’’ electrons
which are not relevant to the processes under study. If these
‘‘passive’’ electrons are decoupled from the ‘‘active’’ elec-
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trons under consideration, then the total probability for all
possible final states of the decoupled passive electrons sums
to unity and their presence may be neglected.24

Finally, the independent center, independent electron ap-
proximation is obtained from Eqs.~29! and ~38!

AI>
1

NI !
(
P

P)
k51

NI

exp$2 iQmin
k RIz

k %)
l51

nI

aIk
l ~bI

k!. ~39!

As a consequence of the approximations made in obtaining
Eq. ~39!, this expression is only valid for electronic transi-
tions from the inner shells of each one of the centers of the
target~see discussion Sec. III!.

D. An illustrative example

The two successive approximations derived from the
preceding two sections for a given subcluster are applicable
to a class of homonuclear molecules such as H2, N2 , C60,
etc. In this subsection we give an example illustrating a few
concepts developed so far.

We calculate electron capture from H2 by protons. Here
the independent electron approximation becomes exact since
there is only one electron on each center~H atom!. The cross
section for a space-fixed orientation of the molecular axis
may then be expressed3 as a product of the atomic cross
section for capture from the H atom and the geometrical
structure factor@see Eq.~39! and Sec. III C#. The capture
cross section from atomic hydrogen is calculated by a first
order method known as the Oppenheimer–Brinkman–
Kramers approximation.22 This approximation has been
used16 for studying electron capture as a function of the di-
rection of the internuclear molecular axis, and agreement
with experiments detecting Coulomb fragments was found.
We note that it may also be calculated by other methods of

any desired sophistication, since our formulation only asserts
the concept of independent particle model and does not pre-
clude in any way how the transition amplitudes can be ob-
tained~they may even be taken from experimental data if so
desired!.

Shown in Fig. 3 is the cross section differential in pro-
jectile scattering angle for capture into states of principal
quantum numbersn51 to 4. The molecular orientation is at
450 with respect to the beam axis.~Note that information on
the scattering angle may be obtained either indirectly from
the impact parameter dependence of the transition amplitude
or directly from the wave picture, see Sec. III C.! Interfer-
ence patterns in the form of sharp dips can be seen in the
scattering angle. They are due to the geometrical structure
factor describing scattering phases from identical centers.
More complicated structures are expected for subclusters of
more than two centers, where our method may be used for
qualitative analysis.

E. Large systems

To complete the theoretical formulation, in this subsec-
tion we shall develop the independent subcluster approxima-
tion where the wavefunction of the electrons in each of the
different subclusters evolves independently from the others.

The total Hamiltonian for the static molecule consists of
the sum of the individual subclustersH0,I ~4! and their inter-
actions between each otherWI ,K @see Eq.~A1! in the Appen-
dix# as given by,

H05(
I51

N

H0,I1(
I51

N

(
K51

~KÞI !

N

WI ,K . ~40!

Details of the derivation closely mirror those in subsec-
tions B and C and can be found in the Appendix. The main

FIG. 3. Electron capture cross sections differential in projectile scattering angle by 500 keV protons on H2 . Capture into ground staten51 and the first three
excited statesn5224 are included. The molecular orientation is space fixed at 45° with respect to the beam direction in the collision plane~0° azimuthal
angle!. The dips reflect interference patterns arising from scattering centers as described by the geometrical structure factor.
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result is that the total transition amplitude,A, for the mol-
ecule is again reduced to a product of transition amplitudes,
AI , for each subcluster whenWI ,K is averaged or neglected

A[)
I51

N

AI . ~41!

The above result is stronger~i.e. has fewer approximations!
than the results presented in subsections B and C. If at this
point theAI can be evaluated, then Eq.~41! can be used to
find the final transition probabilities and cross sections for
the molecule or cluster, and the further reduction to indi-
vidual centers~as illustrated in Fig. 1! is not needed.

If, on the other hand, the independent center, indepen-
dent electron approximations are successively carried
through, the total transition amplitude for the molecule may
be similarly obtained from Eqs.~29!, ~39!, and~41!

A>)
I51

N
1

NI !
(
P

P)
k51

NI

exp$2 iQmin
k RIz

k %)
l51

nI

aIk
l ~bI

k!. ~42!

Equations~33!, ~39!, and ~42! are the central results of this
paper.

III. DISCUSSION

A. Many body effects

The many body problem is difficult due to the coupling
between the constituent particles in a system of particles. It is
this coupling~or correlation! which we have eliminated by
averaging or simply neglecting it. In our independent center
independent electron approximation a molecule or cluster is
treated as a collection of independent centers composed of
independent electrons. However, molecules are often more
than a collection of independent atoms and atoms more than
a collection of independent electrons. The advantage of an
approximation such as ours is that it is sufficiently simple
that it may be applied to collisions in which many constitu-
ent particles undergo transitions~e.g. multiple excitation,
ionization and transfer of electrons, constituent centers, etc.!.
Moreover, agreement of our results with experimental obser-
vations can often be significantly improved by sensible ap-
plication of a mean field approximation to various correla-
tion interactions and combination with other compatible
methods such as use of simple shake effects.2 A model simi-
lar to ours, but confined to single electron transitions, is dis-
cussed in the well known text of Landau and Liftshitz.4

Nonetheless, we wish to emphasize that such simple models
are not in general expected to be accurate for molecules or
clusters in which interactions between the various centers are
significant. In particular chemical bonding and electron cor-
relation, which are often important, are neglected or at best
approximated in our development. Thus, we expect applica-
tion of this simple model to give only qualitative results in
cases where interactions between the centers are not rela-
tively weak.

Our independent subcluster approximation is expected to
be valid when interactions between the subclusters are small.
In particular, if the subclusters are well separated so that

bonding energy between subclusters is smaller than the bind-
ing energies of the electrons to each center, then this inde-
pendent subcluster approximation may yield qualitatively ac-
curate results. For example, this independent subcluster
approximation may be applied to tightly bound electrons in
each subcluster of a diffuse molecule or cluster, where the
distancer i of the electron from the atomic nucleus is small
compared to the distanceuRI2RKu between subclusters. If
the bonds can be well approximated by an overlap of single
electronic wave functions from each subcluster, then these
effects may be represented by mean field potentials to obtain
suitable electronic wavefunctions.

Different subclusters~e.g. theC1 andC2 subclusters in
Fig. 1! are regarded as distinguishable atomic centers. This
means that, for example, in H2O the 2H and the O are con-
sidered separately. An electron is either associated with H2

or O. In our approximation such an electron is not shared
between different subclusters. However, if two or more cen-
ters are the same~e.g. two H’s in an H2 subcluster!, then one
does not distinguish with which atomic center an electron is
associated. In the case where two or more identical centers
are in different subclusters~e.g. CH3—OH has an H in both
CH3 and OH! we have neglected the symmetry terms in the
identical centers~e.g. H! that are within different subclusters.
This is sensible if the subclusters are not too tightly packed.
We point out, however, that there are many molecules that
do not fit our description easily. DNA, for example, has
many identical atoms which are not sensibly grouped to-
gether due to their geometry. And in C8H18 it might not be
sensible to consider C8 and H18 as subclusters of identical
atoms because of their geometry. On the other hand it is
often obvious how to apply the approximations we use on a
case by case basis.

Let us consider a specific example of unexpected success
of the independent subcluster approximation. If a molecule
or cluster has a subunit, e.g. (C1

2C2
2)3, which has strong

bonds and which occurs repeatedly, then the wave function
for this subunit is not expected to be well represented by a
product of single center wave functions. In addition, signifi-
cant interference between the repeated subunits is likely if
the subunits are not well separated. Based on this example
one would not expect the independent center approximation
to work particularly well for collisions of bare ions with the
molecule H2 or collisions of H2

1 with atoms. Nevertheless,
there is some evidence11 that total cross sections for colli-
sions of ions with H2 can be determined to within a factor of
two with this simple model~with modified binding energies!,
and the interference patterns for a two electron transition,
namely transfer-excitation, may also be determined within a
factor of two. Proposed experimental studies14,15 of colli-
sions of H2

1 ions with atoms will further test the usefulness
of this simple approximation.

The independent electron approximation within each
center is valid if the electron–electron correlation is rela-
tively weak within each center. This approximation generally
is not well justified for the outer atomic shells with many
strongly correlated electrons, although use of mean field po-
tential or a screened nuclear charge may yield much better
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results than calculations or estimates done without any con-
sideration of the electron–electron interactions. The indepen-
dent electron approximation does give good agreement for
single and multiple electron transitions of inner-shell elec-
trons with the condition that the binding energy be increased
with the degree of ionization if the electrons are not quickly
removed. We also note that the independent electron ap-
proximation may in some cases apply to electrons localized
between individual atoms. The effects of electron exchange
terms due to the Pauli principle often seem to be small espe-
cially for high velocity collisions. The reason for this is not
well understood. Predictions of specific cases that exhibit
strong exchange effects have been made,23 but these systems
have not yet been observed experimentally. More detailed
discussions of the independent electron approximation in
atomic collisions is given elsewhere.2,18,23

B. The frozen approximation

Another approximation that we have used is to neglect
the internal motion of the centers. That is, vibrations and
rotations of the molecule are neglected following Eq.~21!. If
the time of the collision is shorter than the time of rotation
and vibration, then this approximation may be justified, and
the centers may be regarded as frozen during the collision.
This is a key assumption in the impulse approximation for
many particle systems discussed in detail by Goldberger and
Watson.25 While inclusion of vibration and rotation may be
possible, in this paper we assume that the collision velocity
is large compared to the velocities of the atomic centers and
the electrons within the molecule or cluster. In some cases it
may be appropriate to average over the rotational~and vibra-
tional! motion of the cluster or molecule.

C. The geometrical structure factor

The physical nature of the phase terms in Eq.~31! may
be more easily understood by transforming from the impact
parameter representation to the wave picture. The probability
amplitude,A(b), is generally related to the transition matrix,
T(Q), by the relationship, A(b)5 1

v *eiQ'•bT(Q)dQ' ,
whereQ' is the component of the momentum transfer,Q,
perpendicular to the asymptotic velocity of the incoming par-
ticle. Following this transformation, the amplitudeAI of Eq.
~33! is given by

TI5TI~0!S (
k

NI

e2 iQ•RI
kD , ~43!

whereTI(0) is the transition amplitude for a single center,
CI , located atR050. The cross section,ds, differential in
Q, is proportional to the square ofT, so that

dsNI
5ds I u(

k51

NI

e2 iQ•RI
k
u2[ds IGNI

, ~44!

whereGNI
is a geometrical structure factor containing inter-

ference between theNI identical centers andds I is the dif-
ferential cross section for scattering from a single center,
CI . Here, GNI

5NI1(k51
NI ( j.kcos(dI8

j2dI8
k), where

d I8
k5Q•RI

k . At this point Eq.~44! is equivalent to Eq.~19!
using Eqs.~31!–~33! because the integral ofuT(Q')u2 over
Q' gives the same total cross section as the integral of
uA(b)u2 overb. If the transverse momentum transfer,Q' , is
neglected~e.g.Q'!Qz), thend I8

k5d I
k given by Eq.~32! and

the approximations that follow. The factorGNI
is the same as

the well known geometrical structure factor26,27obtained for
classical scattering of waves fromNI identical centers. Such
a structure factor has also been used to analyze neutron scat-
tering from heavy nuclei,28 where the cases of ideal lattices,
crystals with thermal disorder and liquids are considered. It
is easily shown that asRI

k→0, GNI
→NI

2 ; and asRI
k→`,

GNI
→NI . The first limit is fully coherent and the latter is

fully incoherent.
There are a few additional points concerning these

phases we wish to note. First, addition of phases is consistent
with the addition of energies. In the case of independent
multiple transitions on a single center the probability ampli-
tude is a product of independent amplitudes@e.g. Eq.~38!# so
that the total phase is the sum of the individual phases. Each
phase is linear in the transition energy as discussed after Eq.
~32!. The total transition energy is the sum of the individual
transition energies. So the total phase for multiple transitions
must be the sum of the individual transition phases in the
independent particle approximation. Second, if the mass,
MI

k , of each of the centers is the same, then
(kd I

k5Qz(k(RIz
k 2R0z)50 since (kMI

k(RI
k2R0)50 be-

causeR0 is the center of mass. If some of the masses differ
~e.g. due to different isotopes!, then(kd I

k sums to a overall
non-zero constant phase. Third, our phases occur because our
symmetrization gives a superposition of single electron
atomic wave functions. Any superposition may lead to phase
contributions. Finally we note that in most cases where mul-
tiple transitions occur it is easier to approximately evaluate
A(B) than T(Q) using our method becauseT(Q) is not a
simple product of simpler terms.

The effect of the interferences due to the identical nature
of the centers are observable as illustrated in Fig. 3.12,11,14

Such observations may be useful in testing the limits of ap-
plicability of our approximations.

D. Long range interactions

The interaction that causes the transitions of the target
electrons,V8, was taken in Eqs.~10! and ~11! to be the
Coulomb interaction between the projectile and the target
electrons, namely2 ZP /uR(t)2RI

k2r I
k,i u . All of the interac-

tions of the projectile with each of the nuclei are, in prin-
ciple, included in the phase terms of the full wave functions
in Eqs.~6! and ~7!. An alternative17 that is equivalent in an
exact calculation is to use2ZP /uR(t)2RI

k 2 r I
k,i u1 ZP /

uR(t)2RI
ku , which pairs off the projectile–electron interac-

tion with a projectile–proton interaction in the target
nucleus. That is, the interaction that produces the electronic
transitions may be taken to be a short range interaction. This
eliminates the Coulomb tail which can lead to mathematical
and numerical difficulties. If there are more protons than
electrons in the target~i.e. ZI.nI), then the extra Coulomb
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terms may be included in the determination of the trajectory
R(t). In this latter approach if the target is neutral there are
no Coulomb phases at large distances and the trajectory,
R~t!, is determined by the short ranged static potential of the
total target charge density. In general the target electron mo-
tion decouples from the projectile motion to order
(mevorbit /MPv).

17

E. Simple binomial distributions

It is often the case that there are transitions with identical
~or nearly so! probabilities. This may occur because the
probabilities are nearly the same for physical reasons~e.g.
electrons in the same atomic shell!. Or one may wish to
neglect the symmetrization of the quantum wave function
and treat the system as a collection ofN identical classical
particles. Then a binomial coefficient may be used2,6,7 to
count the number of equivalent ways in which a transition
occurs. That is, e.g. there is a factor of (n

N) giving the number
of different ways in which n transitions occur inN equiva-
lent centers. Also, simple sum rules may be used to remove
from active consideration electrons one may wish to
bypass.2,24

F. Further simplifications

Two practical points may be worth noting. First,
Ben-Itzhak29 has shown that under certain conditions first
order perturbation theory may be correctly used to evaluate
the single electron amplitudes,aIk

l , even when the system
interacts strongly with a highly charged projectile. This
means that the evaluation of many electron transitions may
be simplified. Second, as a relatively crude approximation,
simple shake terms, which lead to some additional final state
transitions, may be introduced by using different non-
orthogonal basis sets for the asymptotic initial and final state
single electron static wave functions.2 This may be useful for
cases where final state rearrangement of the electrons causes
some of the multiple transitions in a reaction.

G. Non-localized projectiles

In this paper we emphasize the interaction of a molecule
or cluster with a heavy charged point particle. In many cases
of physical and chemical interest, the projectile may carry
electrons.2,30–32 In these cases rigorous application of our
methods is more difficult because the classical trajectory of
the incoming projectile, introduced above Eq.~11!, is not
well defined since the wavelength of the projectile electrons
may be comparable to the size of the interaction region. Also
application of the independent electron approximation is dif-
ficult, especially for neutral, or nearly neutral projectiles, be-
cause often it is not sensible to neglect the interaction be-
tween the electrons on the target with the electrons on the
projectile since this interaction leads to screening of the
nuclear charge,Zp , of the projectile by thenp projectile
electrons which may be significant.2,31 This problem has
been solved2,31,32 in first order perturbation theory in the
wave picture. In this first order approximation one may sim-

ply replace the square of the projectile nuclear charge,Zp
2 ,

by the square of an effective charge,Zp
eff 2(Q), which de-

pends on the momentum transfer,Q, of the projectile. For
small Q which corresponds to collisions at distances large
compared to the distance of the projectile electrons from
their nucleus,Zp

eff 2→(Zp2nP)
2, so that the projectile acts as

a point particle of charge (Zp2np). For largeQ where the
projectile electrons are well separated from the projectile
nucleus,Zp

eff 2→Zp
21np , which corresponds to independent

scattering by the various charged particles on the projectile.
Both limits are physically sensible. In particular, for one
electron projectile ions in their ground state,
Zp
eff 25Zp

21122Zp /(11Q2/2Zp)
2. Extension to many

electron projectiles has also been considered.2 While this re-
sult is rigorously valid only within the limitations of first
order perturbation theory in the wave picture, a relatively
simple model containing the same physically sensible limits
is easily obtained by making a classical transformation from
the momentum transfer,Q, to the impact parameter,b, and
using Zp

eff(b) in place of the corresponding bare charge,
Zp , in the probability amplitude of Eq.~19! and the approxi-
mations that follow. It should be noted, however, that the
correct scattering probability may not exceed unity, and that
a rigorous first order amplitude33–35 is given by a convolu-
tion over a virtual impact parameter,b8, of the probability
amplitude for a point charge,A(b8), overZP

eff(b82b).
Extension of our methods to projectiles that themselves

have multiple centers may also be possible. In limiting cases
where the projectile centers are well separated or very com-
pact, it is valid to neglect interactions between centers on the
target and interactions between centers on the projectile and
to include interactions between centers of the target and the
projectile. Symmetry between like centers on the projectile
and target may also be included.

IV. SUMMARY

We have considered a molecule or cluster with
NC5( I

NNI centers,CI @Sec. II A#. This molecule or cluster
is denoted byC1

N1C2
N2 . . .CI

NI . . .CN
NN , whereCI

NI denotes a
subcluster ofNI identical centers,CI . The key approxima-
tions are as follows.

~1! The independent subcluster approximation@Sec. II E#:
The interaction between different subclusters is ne-
glected so thatA') I

NAI .
~2! Coherent scattering from identical centers within sub-

clusters@Sec. II B#: Scattering of the wave fronts of the
projectile from multiple identical independent centers is
included within each subcluster so that

AI5 (1/NI !) (PP)k51
NI eid I

k
AIk(bI

k), where (PP is the
permutation operator. Thed I

k phase terms are related to
the usual geometrical structure factor.

~3! The independent electron approximation@Sec. II C#: The
correlation between electrons within each center is ne-
glected so thatAIk') i51

nI aIk
i , andd I

k'( i
nId I

ki .

Our independent center independent electron approximation
~ICEA!, in the absence of the coherence terms in step 2
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above, corresponds to a simple generalization of the static
Hartree product wave function to a dynamic probability am-
plitude using a single basis set,$f%. The more complete
time-dependent Hartree–Fock~TDHF! approximation is a
dynamic generalization of the static Hartree–Fock approxi-
mation that fully includes the effects of electron symmetry.
TDHF is evaluated variationally for each time during the
scattering event, so that$f% changes continuously with time.
While TDHF is a less approximate uncorrelated limit of
multi-particle scattering than our ICEA, TDHF is more dif-
ficult to implement than our simpler ICEA.

V. CONCLUSION

A method has been developed for evaluating probabili-
ties and cross sections for multiple-electron transitions in the
interaction of molecules or clusters with various charged
partners. The probability amplitude, as well as the transition
probability, is expressed as a product of independent center
probabilities including phase terms for identical centers.
Each of the probability amplitudes for the atomic centers
may then be expressed as a product of amplitudes for each of
the independent electrons. In this independent center inde-
pendent electron approximation we neglect correlation and
some exchange effects which are important in many molecu-
lar systems. On the other hand large systems may be de-
scribed simply.
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APPENDIX: GENERALIZATION TO LARGE SYSTEMS

This Appendix contains details on independent subclus-
ter approximation presented in Sec. II E. The Hamiltonian
for the static molecule as expressed in Eqs.~4! and ~40!
includes interactions between subclusters,WI ,K , given by

WI ,K5
1

2(k51

NI

(
j51

NK H ZIZK
uRI

k2RK
j u

2(
i51

nK ZI
uRI

k2RK
j 2rK

j ,i u

2(
i51

nI ZK
uRI

k1r I
k,i2RK

j u

1(
l51

nK 1

uRI
k1r I

k,i2RK
j 2rK

j ,l u J ~ IÞK !. ~A1!

The four terms in Eq.~A1! describe, in their respective order,
the nuclear–nuclear~first term!, nuclear–electron~second
and third!, and electron–electron~fourth! interactions be-
tween subclustersI andK. Accordingly, the interaction of
the whole molecule with the projectile will also be replaced

by the sum of interactions with individual subclusters Eq.
~14!

V85(
I51

N

VI . ~A2!

Each subcluster will evolve independently if the interac-
tion between themWI ,K is replaced by a mean field approxi-
mation, or simply neglected. In the latter case we have

H0>(
I51

N

H0,I . ~A3!

With this approximation, we have using Eq.~16! that

V8~ t !5eiH0tV8e2 iH0t5(
I51

N

@eiH0,I tVIe
2 iH0,I t#

[(
I51

N

VI~ t !, ~A4!

whereVI(t) now operates on a single subcluster.
As was done in Secs. II B and C Eqs.~23! and~36!, one

may factor the evolution operator for the molecule as

U~ t,t0!5T expF2 i(
I51

N E
t0

t

VI~ t !dtG
5)

I51

N

T expF2 i E
t0

t

VI~ t !dtG
[)

I51

N

UI~ t,t0!. ~A5!

By neglecting theWI ,K terms in the full Hamiltonian that
interconnect the subclusters, the evolution operator,
U(t,t0), has become a product of single subcluster evolution
operatorsUI(t,t0).

Within the present approximation, the initial~final! as-
ymptotic electronic wave function of the cluster,f i(f f), is
written as a product of single subcluster wave functions,
f I i (f I f ), i.e.

f i , f5)
I51

N

f I i , f . ~A6!

Then, from Eqs.~A5! and~A6! using the orthogonality of the
f I ’s and single cluster nature of theUI operators, one has for
the final result used in Sec. II E, Eq.~41! that

A5K )
I51

N

f I fU)
I51

N

UI~ t,t0!U)
I51

N

f I i L [)
I51

N

AI ~A7!

and

AI5^f I f uUI~ t,t0!uf I i &. ~A8!

HereAI is the probability amplitude for a particular transi-
tion in the subcluster of type I. Eq.~A7! is obtained for
ionization and electron capture processes in the case that we
can identify in which subcluster the transition occurs.

1855McGuire et al.: Dynamics of molecules and clusters

J. Chem. Phys., Vol. 105, No. 5, 1 August 1996

Downloaded 15 Jan 2013 to 131.252.76.164. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1N. Stolterfoht, Phys. Scr.42, 192 ~1990!; T46, 22 ~1993!.
2J. H. McGuire, Adv. Atom. Mol. Opt. Phys.29, 217 ~1991!.
3Y. D. Wang, Ph.D. thesis, Tulane University, 1992.
4L. D. Landau and E. M. Liftshitz,Quantum Mechanics~Addison-Wesley,
Reading, MA, 1958!,

5M. Gryzinski, Phys. Rev.138, A349 ~1965!.
6J. M. Hansteen and O. P. Mosebeek, Phys. Rev. Lett.29, 1961~1972!; J.
M. Hansteen, A. M. Johansen, and L. Kocbach, At. Data Nucl. Data
Tables15, 305 ~1975!.

7J. H. McGuire and O. L. Weaver, Phys. Rev. A14, 41 ~1977!.
8R. N. Zare, J. Chem. Phys.47, 204 ~1967!.
9T. F. Tuan and E. Gerjuoy, Phys. Rev.117, 756 ~1960!.
10A. Belkacem, E. P. Kanter, R. E. Mitchell, Z. Vager, and B. J. Zabransky,
Phys. Rev. Lett.63, 2555~1989!.

11S. Cheng, C. L. Cocke, V. Frohne, E. Y. Kamber, and S. L. Varghese,
Nucl. Instrum. Methods56/57, 78 ~1991!; S. Chenget al. ~in preparation!.

12A. K. Edwards, R. A. Wood, M. A. Magnan and R. A. Ezell, Phys. Rev.
A 46, 6970~1992!.

13K. Wohrer, G. Sampoll, R. L. Watson, M. Chabot, O. Heber, and V.
Horvat, Phys. Rev. A46, 3929~1992!, and references therein.

14I. Ben-Itzhaket al. ~private communication!.
15H. O. Lutz ~private communication!.
16S. E. Corchs, R. D. Rivarola, and J. H. McGuire, Phys. Rev. A47, 3937

~1993!.
17J. H. McGuire and O. L. Weaver, Phys. Rev. A34, 2473~1986!.
18J. H. McGuire, Phys. Rev. A36, 1114~1987!.
19A. Messiah,Quantum Mechanics~Wiley, New York, 1965!, Chap. XIX,
Sec. 24.

20Y. D. Wang, J. H. McGuire, and R. D. Rivarola, Phys. Rev. A40, 3673
~1989!.

21R. Shingal and C. D. Lin, Phys. Rev. A40, 1302~1989!.
22M. R. C. McDowell and J. P. Coleman,Introduction to the Theory of
Ion-Atom Collisions~North-Holland, Amsterdam, 1970!, Chaps. 7 and 8.

23J. F. Reading and A. L. Ford, Phys. Rev. A21, 124 ~1980!.
24J. H. McGuire and J. R. Macdonald, Phys. Rev. A11, 146 ~1975!.
25M. L. Goldberger and K. M. Watson,Collision Theory~Wiley, New York,
1964!, Chap. 11.

26B. Sanger, Z. Phys. D9, 79 ~1988!.
27Charles Kittel,Introduction to Solid State Physics, 2nd ed.~Wiley, New
York, 1956!, p. 54.

28G. Placzek, B. R. A. Nijbor, and L. Van Hove, Phys. Rev.82, 392~1951!.
29I. Ben-Itzhak, T. J. Gray, J. C. Legg, and J. H. McGuire, Phys. Rev. A37,
3685 ~1988!.

30T. J. M. Zouros, D. H. Lee, J. M. Sanders, and P. Richard, Nucl. Instru.
Meth. B 79, 166 ~1993!.

31E. C. Montenegro, S. Melo Wilson, W. E. Meyerhof, and A. G. de Pinho,
Phys. Rev. Lett.69, 3033~1992!.

32E. C. Montenegro, W. E. Meyerhof, and J. H. McGuire, Adv. Atom. Mol.
Opt. Phys.34, 249 ~1994!.

33J. H. McGuire and E. C. Montenegro,Abstracts of Contributed Papers of
the XVIII International Conference on the Physics of Electronic and
Atomic Collisions, edited by T. Andersen, B. Fastrup, F. Folkmann, and
H. Knudsen~Aarhus, Denmark, 1993!, p. 656.

34S. Ricz, B. Sulik, and N. Stolterfoht, Phys. Rev. A47, 1930~1993!.
35J. Wang, J. H. McGuire, and E. C. Montenegro, Phys. Rev. A51, 504

~1995!.

1856 McGuire et al.: Dynamics of molecules and clusters

J. Chem. Phys., Vol. 105, No. 5, 1 August 1996

Downloaded 15 Jan 2013 to 131.252.76.164. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions


	Independent center, independent electron approximation for dynamics of molecules and clusters
	Let us know how access to this document benefits you.
	Citation Details
	Authors

	tmp.1373568845.pdf.djK39

