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Abstract

We formulate a theory that allows us to formulate a simple criterion
that ensures that two k-out-of-n systems A and A are not ordered. If
the systems fail the criterion, it does not follow they are ordered. Thus
the theory only serves to avoid some a priori useless comparisons: when
neither A nor A can be said to be better than the other. The power of
the theory lies in its wide potential applicability: the assumptions involve
very weak estimates on the asymptotic behavior (as t — 0 and as t — c0)

of the constituent survival probabilities. We include examples.

Key words: order statistics, stochastic orderings, k-out-of-n systems, hete-
rogeneous distributions.

1 Introduction

In reliability theory, a k-out-of-n system consists of n components of the same
kind with independent and identically distributed lifetimes. All n components
start working simultaneously, and the system works, if at least & components
function; i.e. the system as a whole fails if (n — k 4+ 1) components fail. This
kind of order statistics has found applications in many industrial processes and
other applied areas. For example, an aircraft with four engines will not crash
if at least three of them are functioning. The lifetime of a k-out-of-n system is
described by the (n—k+1)" order statistic of the random variables X1, ..., X,,.
In particular, the lifetime of a parallel system, which is a 1-out-of-n system, is
the same as the largest order statistic, and analogously, the lifetime of a series
system, which is a n-out-of-n system, is the same as the smallest order statistic.

*veerman@pdx.edu



If the random variables X1, ..., X,, are arranged in ascending order of mag-
nitude, then the k" smallest of X},’s is denoted by Xk.n. The ordered quantities

Xl:n < X2:n << Xn:nv (1)
are called order statistics (OS), and Xj., is the k' order statistic.
In this note we compare two k-out-of-n systems where the lifetimes X1, ..., X,
and Y7,...,Y, of their components have independent but not identical distri-

butions. The usual approach is to find conditions for which X, _pi1.n <gt
Yo—k+1m, for 1 < k < n. This leads to a wealth of information in numerous
interesting special cases. In particular, when Xy,..., X,, and Y;,...,Y,, are two
samples of independent exponential random variables with X and Y} having
hazard rates A\p and 6, respectively, for 1 < k < n, Pledger and Proschan
[1] were the first to compare stochastically the order statistics from these two
samples. Specifically, they showed that

(9la ceey an) Sm (>\17 ey /\n) = Yn—k+1:n Sst Xn—k+1:n-
More recently, Khaledi and Kochar [2] studied the case k = 1 and proved that
(617"'a07l) Sp (Alw--a)\n) = Yn:n Sst Xnn (2)

For the case in which one of the samples is independent and identically dis-
tributed, Bon and Paltanea [7] gave a necessary and sufficient condition on the
parameters for the inequality Y, —x+1.n <st Xn—kt+1m, 1 <k <n.

It is well known that the exponential distribution is a particular case of
different models such as the proportional random variables (PRV) model and
the proportional hazard rates (PHR) model (see Section 4 for the definition).
Pledger and Proschan [1] studied conditions under which the order statistics
from two samples X1,..., X, and Y7,...,Y,, in these models can be stochasti-
cally ordered. In particular, if the hazard rate, h(t), of F' is decreasing and F
is an absolutely continuous distribution, then

(915 ceey an) Sm ()‘la ey /\n) = Y;L—k+1:n Sst Xn—k+1:n7

for 1 <k <n. When k = 1, Khaledi et al. [5] proved that if ¢-r(¢) is decreasing
in ¢, where r(t) is the reversed hazard rate of F', then

(‘91’ R Hn) Sp (/\17 s >\n) = Yn:n <st Xn:n-

Khaledi and Kochar [4] further improved (2) from exponential random variables
to PHR model, that is,

(615 ) en) Sp ()\17 RS )\n) = )/n:n Sst Xn:n-

Navarro [12] studied the tail behavior of the hazard rate function (when
t — o0) of order statistics from PHR models. Note that the hazard rate ordering
implies the usual stochastic ordering.



The strategy in this note is to give less precise information but in a much
more general setting. Given the two k-out-of-n systems, we look at the asymp-
totic behavior (as ¢ — 0 and as t — o0) of the survival functions associated
with the order statistics of Xi,...,X,, and Y1,...,Y,. If these are sufficiently
different we know that X, _x41., and Y, _x41., are not stochastically ordered,
for 1 < k < n. The advantage is that this kind of comparison can be done in
enormous generality as we show below.

The rest of this paper proceeds as follows. In Section 2, we briefly outline
some stochastic orders and majorization. Section 3 then describes the asymp-
totic behavior of the survival functions associated with Xy.,,, for 1 < k <n. In
Section 4 we present applications of our main results to different common types
of distributions. In the last section we look at the special case of the exponential
distribution.

2 Definitions

In this section, we present a brief review of some notions of stochastic orders and
majorization. See Shaked and Shantikhumar [9] for an overview of the different
notions of ordering, and Marshall and Olkin [8] and Bon and Paltanea [6] for
more details on majorization order and p-larger order, respectively.

Definition 1. Let X and Y be univariate random variables with cumulative
distribution functions (c.d.f.’s) F and G, survival functions F (=1—F) and
G (=1— G) X is said to be smaller than'Y in the usual stochastic order, denoted
by X <Y, if F(t) < G(t) for all t.

We shall also be using the concept of majorization in our discussion. Let
{x(l),x(g), . ,x(n)} denote the increasing arrangement of the components of
the vector @ = (x1,x2,...,2,).

Definition 2. The vector x is said to be majorized by the vector y, denoted by
x <"y, if
J J n n
Zx(i) > Zy(i), forj=1,...,n—1 and Zx(i) = Zy(,—).
i=1 i=1

i=1 i=1

Definition 3. The vector x is said to be p-smaller than the vector y, denoted
by x <Py, if

i j
[Tz = ITvw. fori=1....n
i=1 i=1

It is known that @ <™ y = a <P y. The converse is, however, not true (c.f.
Khaledi and Kochar [3]).



3 Asymptotic theory

In this section, we establish results on the asymptotic behavior of the survival
functions associated with the order statistics from a sample of independent but
not identically distributed positive random variables such that their survival
functions are contained in the class F),, defined as following. But first we need
to define a g-sub-exponential function.

Definition 4. Let g be a positive number. A q-sub-exponential function z(t) in
t is a function that satisfies:
Ve>0 lim z(t)e " =0 and liminfz(¢) > 1
t—o00 t—00
Definition 5. For p,q > 0, we say F (or F = 1 — F) is in Fp, if there are
positive constants a and w and a positive q-sub-exponential function z(t) such
that B
F(t)=1—at?(1 4 ¢(t)), with }in(l) o(t) =0,
—

and B
F(t) = z(t)e ",

The constants o and w are called the (initial and final) asymptotic constants.

Note that this is the only requirement on the distribution F'. In particular
continuity is not required.

The point of this somewhat detailed description of the asymptotic behavior
is that it is satisfied very generally by many common distributions. Examples
are the generalized Gamma and the exponentiated Weibull distributions. We
will look at these and other examples in the next section.

Definition 6. For 0 < m < n, let Z,, denote the collection of all indicator
functions I : {1,2,....,n} — {0,1} such that card(I=*(1)) = m. (Z,, consists of
Wlm)' such functions.)

Let us denote by Py 1 (t) the probability that ezactly k components of system
A (resp., A) remain functional after time ¢. Then, it is easily to check that

Pa)=> | II E® ] FEo|. (3)

1€z, \ieI—1(0) i€l-1(1)

where Fj(t) and F;(t) are the distribution and the survival function, respectively,
of X; which is the lifetime of the i component, for i =1, ..., n.

Proposition 1. Let Xi,..., X, be independent random variables with X; hav-
ing survival function Fy € Fpq, with the asymptotic constants oy and w;, for
i=1,...,n. Then

_ 4(n=k)p . ; ; _
Pag(t) =t Yo I i) Atp(®), with limpt) =0,
I€Ty ieI~1(0)



(with the convention that Hielq(o) a; =14 I710)=0) and

Pyy = u(t)ef(zi’e:l ‘“"(1‘))”7

where u(t) is q-sub-exponential and wiy S we) < - < Wy 18 the increasing
arrangement of the numbers wy,wa, -+ ,wy (with the convention that Z?:l s =

0).

Proof. First we consider small ¢. Definition 5 implies that Fj(t) = 1 + €(t)
where the ¢;(t) tend to zero for small ¢. Both products in (3) are finite. So we
obtain that:

Parp)=Y | JI at’C+et) ] [+e)]

I€Zy, \ieI~1(0) i€l—-1(1)
LA S [CEHO | I
IE€Ty, ieI—-1(0)

where the ps(t) tend to zero for small ¢. In the last expression set g; equal to
[licr-1(0) - Then note that (the g;’s are positive)

S a(l+pr) = (lefn) <1+ %ﬁ;’) :

I€eZy,

The first conclusion follows with p(t) = Zq—;’;’.
Now we consider ¢ large. This time we set F;(t) = 1+ n;(¢) in (3) where the

7;(t) tend to zero for large t. Via the same reasoning as before we get:

Pax(t) = Z H (I +mi(t)) H zi(t) e™wit’

I€Z, \ielI~1(0) iel—1(1)
= Z (I +7rr(t)) e~ (Cicriywi) t? H zi(t) ]
I€T,, iel=1(1)

where the r;(t) tend to zero for large ¢. In the last expression set s; equal to
> wi and ur(t) to [, 2i(t). Then of course

Par(t) =Y (1+r(t) urt) e *"".
IE€T,
As an anonymous referee noted, if z is g-sub-exponential and tlim ¢(t) = 0, then
— 00

so is z(1 4 ¢).
By Definition 4 the behavior for large ¢ is entirely determined by the expo-
nentials. Because of the way the engines are indexed, one of the leading terms



among those is sg = Zle w;i. Suppose for the moment it is the only leading
term. Writing out the terms and separating sy we get:

. 449 t > o q
Par(t) = uo(t) et [ 1+ro(t +§:W( e Tt (1 g (8))
= ug(t)

The term in parentheses times ug is easily seen to be a g-sub-exponential func-
tion. Now set that function equal to u(t) and then the second statement follows.
If there are various s;’s that are minimal this proof can easily be adapted. [

Definition 7. The sign function is defined as follows:

1 ifx<0
sign(z) =< 0 if z=0
1 if ©>0

Throughout this article, we suppose without loss of generality that the w;’s
(@;’s) are in increasing order.

Theorem 1. Suppose Xi,..., X, are independent random variables with X;
having survival function F; € Fpq and asymptotic coefficients o; and w;, i =
1,...,n,andletYy,...,Y, bg another set of independent random variables with
Y; having survival function G; € Fpy and asymptotic constants &; and @;, © =
1,...,n. Then there is an € > 0 so that

sign Z H a; — H Q; , Vi<e
sign (Pa(t) — P (1)) = LN

sign (Z(—wi + L:JZ)> , Vit > 1/e

assuming that both of the right hand side expressions are non-zero.

Proof. By Proposition 1, we have

Pag()=Pp) =t Y I i) @vpm) | TT @ | @+50)

I€T}, icI—1(0) iel=1(0)

where p and p tend to zero as t — 0. Thus for ¢ small enough, sign (PA k(t) — P; k(t))

is the same as the sign of the right hand side of the last equation (unless that
is equal to zero).
Similarly Proposition 1 implies that

Pai(t) = Py (1) = u(t)e” (B )" —g(p)e (Zima@)er

= u(t)e (Zim @)t <1 _ % e (Th —w1+wl)t‘7>



Thus if the sign of Zle —w; + w; is not equal to zero, it determines the sign of
Py i(t) — P (t) for ¢ large. |

Proposition 2. Let Xi,..., X, be independent random variables with X; hav-
ing survival function F; € Fpq, fori=1,...,n. Then, the survival function of
the (n — k + 1)*" order statistic is

Fpsrn(t) = 1=t 1N T 0 | (14 0(t)) , with lim o(t) =0,

I€T)_1 ieI~1(0)

and

Fririn(t) = u(t) e Zizi i’
where u(t) is q-sub-exponential. (The same conventions as in Proposition 1
apply.)
Proof. First we consider small t. The first part of Proposition 1 immediately
imply:

k—1 k—1
Fpopprn() =1=> Payt) =1=>_ [t 7 S I i ] 0+ (1)
=0 =0 I€T;ie1-1(0)

Notice that

Zt(n Hp Z H a; | = tnktp Z H a; | (L+&())

=0 IeZ; ic1=1(0) I€T)_1icI—1(0)

where the limit of ¢ tends to zero as ¢ — 0. Substituting this expression into
that of Fn,kﬂm(t) and and collecting all these small terms into a single term
o proves the first part.

For large ¢, we use the second part of Proposition 1. We obtain:

it
Fropyim(t ZPAl(t Zul Lz wit?

The leading term is now the one with | = k. Then the second statement
follows. O

Theorem 2. Under the same assumptions as those in Theorem 1, then there
is an € > 0 so that sign (F7L_k+1:n(t) — Gn_k+1:n(t)> =

sign Z — H a; + H Q; , Vt<e

Tely 1€1-1(0) 1€1-1(0)
k
sign (Z(wZ + GJ,)) , Vit > 1/e
i=1

assuming that both of the right hand side expressions are non-zero.



Proof. This follows immediately from Proposition 2. 1

Before we continue we need to define three indices:

Iy = sign Z — H a; + H Qy ) (4)

I€T,_y i€I-1(0) i€I-1(0)
k
I, = sign (Z(—wi + dzz)> , (5)
i=1
Io=1I - I. (6)

With the aid of the above Theorem, we establish the following result.

Corollary 1.

IO =-1 = X7L—k+1:n zst Yn—k+1:n .

Ioo =-1 = ank+1:n zst Ynkarl:n .

IQ =-1 = ank:+1:n fst Yn7k+1:n and Xn7k+1:n zst Ynkarl:n .
Proof. The proof is straightforward. From Theorem 2, it is easily seen that the
sign of Iy (resp. Iso) gives the sign of Fi_gi1:0(t) — Gnok+1.n(t) as ¢ tends
to zero (resp., tends to co). In particular if Ig = —1 that difference must

change sign, i.e., X;,_g+41.n, and Y, g1, are not ordered according to the usual
stochastic order. If any of the signs equal zero there is no conclusion. 1

The contrapositive of the above Corollary gives a necessary condition for a
stochastic ordering, namely: if X, _p11.n > Y, ki1, then Ig = 1. The same
holds for the other statements.

4 Examples

In order to illustrate the performance of our main results established in Section
3, we present here some interesting examples.

4.1 Generalized Gamma Distributions

A random variable X is said to have a generalized gamma distribution, denoted
by X ~ GG(a,p,q), if it admits the following survival function:

_ arlip [ 4
Fapq(t) = =l emast g
»P7Q( ) P(p/q) /t s € S,

where the parameters p, ¢, and a are henceforth understood to be positive. This
distribution includes, as special cases, exponential (p = ¢ = 1), Weibull (p = ¢)




and gamma (¢ = 1) distributions. We have the following asymptotic estimates:

t
14
/ sl e ™ ds = — (1+e1(t)), where lim; o €1(¢t) =0,
0 q

o0
/ s e ds =t et (14 ea(t)),  where limy oo e2(t) =0.
t
From this one can easily deduce the following observation (cited without proof):

aP/a ¢p
S Tl/g+1)
aP/a—1 p—q p—at?
L'(p/q)

Then, the generalized gamma distributions satisfy the Definition 5 with

(1+¢(t)), where lim;,o ¢(t) =0,
Fa%q(t) =

ab/a
0= —,
I(p/q+1)
w= a, (7)
0 aP/a—1 p—q
2(t) = —————
I'(p/q)
Suppose that the random variables X --- , X, all have generalized gamma

distributions with parameters a;, p;, and ¢;. Then Theorem 2 says that if
all p;’s are equal and all ¢;’s are equal (namely to p and ¢ resp.) then the
asymptotic behavior of F, , ,(t) can be calculated from the a;. In particular
(see also Corollary 1) if we have another set of random variables Y7 - - -, Y}, also
with generalized gamma distributions F}, , 4(¢), then the asymptotic behavior of
those systems can be compared. Those results give conditions on the a; and b;
for which those system are not stochastically ordered. Specifically, if k = 1, it
is easy to check, from (4), (5) and (7), that

Iy = sign (— Hai + Hb’> and I =sign(—ai +b1).
i=1 i=1

Therefore, if a1 > by and [[;_, a; < [\, b; or a1 < by and [[;—, a; > [[i—, bs,
then from Corollary 1 we have that X,., L5 Y and Xy Zst Yo - When
k =n, we get

Iy = sign <—iaf/q —l—ibf/q) and I, = sign (—iai +ibi> )
=1 i=1 i=1 i1

It is immediate that, if @ = (1,1,5), b = (1,2,3), p = 2 and ¢ = 10, then
Iy = —1 and I, = +1. Hence X,,.,, and Y,,., are not ordered according with
the usual stochastic ordering.



4.2 PRV and PHR models

As we pointed out in the introduction, the exponential distribution is a special
case of the PRV and the PHR models. Here, we give their definitions formally.

Definition 8. Let F' be a survival function of some non-negative random vari-
able X. Then the independent random wvariables X ..., X, follow the propor-
tional random variables (PRV) model if there exists A1 > 0,..., A\, > 0 such
that,

Fi(t) = F(Agt),
fork=1,...,n.

Definition 9. Let F be a survival function of some non-negative random vari-
able X. Then, the independent random variables X ..., X, follow the propor-
tional hazard rates (PHR) model (or scale model) if there exists Ay > 0,..., Ay >
0 such that,

fork=1,...,n.
The following lemma is simple and hence the proof is omitted.

Lemma 1. Let X1,..., X, be a sequence of independent random variables that
follow the PRV or the PHR model with a base-line distribution F(t). If F' € Fp,,
then Fj, € Fpq.

Let Xq,..., X, and Y7,...,Y,, be sets of random variables whose distribution
functions are given by F'(A;t) and F'(0;t) where F' is an arbitrary members of
Fpq- From Definition 5, we have that a; = @A (& = af? ) and w; = wA?
(W; = wh]), then, if k =1, we get

Iy = sign (— H)‘i + H01> , and I =sign(—A; +61).
i=1 i=1

Therefore, if 61 > Ay and []}_, 0; < [y Xi or 61 < Ay and [, 0; > [, N,
then from Corollary 1 we have that X,,.,, and Y,,., are not ordered according to
the usual stochastic ordering. Note that, in this case, for the PHR model the
indices Iy and I, are the same.

When X ..., X, follow a PHR model with F},(t) = (F(t)))\k and Y7 ...,Y,

follow another PHR model with G (t) = (G_’(t))gk7 Navarro [12] proved that,
if Ay 4+ -+ Ay < 0y + - + Oy and limsup, . hr(t)/ha(t) < 1, then
Xn—k+1n Za—hr Yn—k+1:n- Recall that a univariate random variable X is said
to be less or equal than another univariate random variables Y asymptotically
in the hazard rate order (denoted by X <,_p, Y) if there exists a > 0 such that
the corresponding hazard rate functions satisfy hx(t) > hy (t) for (almost) all
t > a. Clearly, X <, p, Y implies F(t) < G(t) when t — oco. From Lemma 1
and Theorem 2, we get that Fj, g1 1. (t) > Gp_gi1.:m(t) when t tends to oo if
w Ele Ay < w Ele 0iy- Note that our conditions are weaker than those in
Navarro [12].

10



5 The Exponential Distribution

The exponential distribution is a special case of each of the examples given

in the last section. If Xy,...,X, (Y1,...,Y,) are heterogeneous exponential
random variables with hazard rates (A1,...,A,) and (61,...,0,) respectively,
then a; = w; = A\ (& = @; = 6;), for i = 1,...,n. The indices [y and I
become

Iy = sign Z - H Ai + H 0; |, (8)

I€Zy i€I=1(0) i€I=1(0)
k
Lo =sign ) (=X +6;). (9)
=1

5.1 Results

Theorem 2 yields an easy condition (Iy - Ino = —1) that guarantees that the
order statistics X, —g+1.n and Y, _r41., are not stochastically ordered. In the
case in which one of the samples is independent and identically distributed we
have:

I(] = sign — Z H )\1 + <n _Z+ 1)97L—k+1 ’ (10)

IE€T,_1ieI-1(0)
k
I = sign ( Z N + k:9> . (11)
=1

Recall that Theorem 2 only implies that if Iy = 1 then G, 1.0 (t) < Fppi1:n(t)
holds for small enough time t. However we have the following;:

Theorem 3 (Bon and Paltanea [7]). Let Xi,...,X, be a sequence of inde-
pendent exponential random variables with respective hazard rates A1, ..., \n,
and let Y1,...,Y, another sequence of independent exponential random vari-
ables with the common parameter 8 > 0. Then, for any k,

IO =1 = Ynfkjtl:n Sst Xn7k+1:n B

Remark 1. As Bon and Paltanea [7] observed, the sign of Iy equals the sign of
O —mp_ . ({Aitiey, where

1
n—k+1

e (i) = (nzﬂ)l > II ~ :

1€ _1i€1-1(0)

also known as the n — k + 1%t symmetric mean of the \;. These quantities
were studied by McLaurin and satisfy the inequality that mfi)l < mz(»n). Note

11



that m§”) is the usual arithmetic average (see [10]). As a further curiosity
we observe that Theorem 2 and Theorem 3 together imply that if Iy = 1 then
I = 1. This implies that for all (ordered sets of n) positive reals \;:

i () 2 mi” ().
The last quantity is the arithmetic mean of the first k of the \;’s.
The next result improves on a result by Navarro and Lai (see Figure 1, [11])

Proposition 3. Let X1 and X2 be two independent exponential random vari-
ables with respective hazard rates A1 and Ao, and let Y1 and Ys be another two
independent exponential random variables with respective hazard rates 01 and
0,,. Then (see Figure 1),

i) (A1, A2) <P (01,02) = Yoo <o Xon

i) (01,02) <P (A1, A2) = Xa:2 <g Yoo

ZZZ) Neither ()\1,)\2) <P (‘91,92) nor (91,92) <P ()\1,)\2) = Y2;2 and X2;2 are
not stochastically ordered.

Proof. Statements (7) and (4¢) follow from Khaledi and Kochar [2]. If neither
(7) nor (7i) holds, then 6; > A\ and 6162 < A1 \g, or 61 < Ay and 6163 > A )\s.
In both cases, Ig = Iy - I equals —1, and so by Corollary 1 Xa.5 and Y5 are
not stochastically ordered. Hence, the required result follows. -

Remark: In the case that ; = 0,, using Theorem 3 implies statement (7).

Figure 1: (color online)Stochastic ordering according to Proposition 3. In the
first figure 01 < 02 and in the second 01 = 0. The regions are labeled as in the
statement of Proposition 3

5.2 Counterexamples

Proposition 3 says that if K = 1 and n = 2 then Iy = 1 implies that X, _y41.n
and Y, _k41.n, are stochastically ordered. Equation 2 says that if k =1 andn > 1

12



then A <P ¢ implies that X,,.,, >4 Y. Thus the question arises (especially in
view of Theorem 3) whether partial converses are also true. In particular, for
k=1and n > 1 is it true that
i: If X,,., and Y}, do not admit a stochastic ordering, is I = —17
ii: Does X ., >t Yy imply that A <P 07
Both questions can be answered in the negative as the following 1-out-of-3
examples clearly show. Let

A1 € {0.73,0.732,0.74, 0.80, 0,90} 0, =1
)\2 =2 and 92 =1
Az =2 03 =4

One easily verifies that for each of the 5 values of A and for § we have that
A ﬁp 0 and Ig = 1. Nevertheless as Figure 2 indicates both X,,., > Yy.n and
Xs.3 and Ys.3 do not admit a stochastic ordering occur.
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