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ABSTRACT 

Policy-makers, transportation researchers, and activists often assume that traffic 

congestion mitigation results in reduced vehicle emissions without proper justification or 

quantification of the benefits. If congestion mitigation is going to be tied to air quality 

goals, a better understanding of the impacts of traffic congestion on motor vehicle 

emissions is needed. This research addresses that need by investigating under which 

circumstances the commonly held assumption linking congestion mitigation to emissions 

reductions is valid.  

We develop and apply a mathematical framework to study the trade-offs between 

vehicle efficiency and travel demand that accompany travel speed changes. While the 

exact relationships among emissions, travel speed, and travel demand vary with location 

and pollutant, several consistent results arise. The potential for marginal emissions rate 

reductions through average travel speed adjustments is small for speeds between about 25 

and 70 mph. Emissions rate sensitivity to speed increases with the fraction of heavy-duty 

vehicles and for certain pollutants (gaseous hydrocarbons and particulate matter), and 

decreases with the fraction of advanced-drivetrain vehicles, such as electric and gas-

electric hybrid vehicles. 

But travel volume is also a key consideration for the total emissions impacts of 

congestion and congestion mitigation. While travel speed increases are generally 

expected to increase efficiency, they are also expected to increase vehicle travel volume 

as a result of induced demand. To explore efficiency and volume trade-offs we look at 
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emissions break-even conditions for average speed and travel demand elasticity. 

Depending on the pollutant and the vehicle fleet, total emissions are only expected to 

decrease with increasing travel speed for initial conditions of both low demand elasticity 

and low average speed. Thus, higher levels of congestion do not necessarily increase 

emissions, nor will congestion mitigation inevitably reduce emissions. This result 

includes projects that seek to increase vehicle throughput from existing roadway supply 

through better traffic management and operations. Congestion mitigation through reduced 

vehicle volumes, on the other hand, presents the opportunity for additive emissions 

benefits through efficiency improvements and total Vehicle Miles Traveled (VMT) 

reductions.  

Comparing capacity-based congestion mitigation strategies with alternative 

emissions reduction strategies we show that where emissions reductions are possible 

through speed increases, the emissions benefits are likely to be more easily and cost-

effectively attained by other strategies. A sketch analysis of vehicle-class segregated 

facilities shows that truck-only lane strategies consistently out-perform general-

purpose/mixed-flow lane strategies in terms of emissions reductions.  

An analysis of several congestion-related performance measures shows that for 

reflecting emissions impacts, VMT is an essential component of performance. Thus, 

alternative congestion metrics such as total/excess travel distance and travel time are 

preferable emissions performance indicators to speed or distance-normalized delay.  The 
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Travel Time Index, in particular, poorly reflects emissions changes on congested 

roadways. 

This thesis offers several original contributions to the body of knowledge 

regarding congestion and emissions. First, it describes a parsimonious conceptual 

framework for assessing the effect of congestion on emissions. Then from that 

framework, several simple and original equations are presented which can be used for 

sketch-level planning to estimate emissions impacts from congestion mitigation. Finally, 

application of the framework provides quantitative support for the decoupling of 

congestion and emissions mitigations.  
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NOTATION 

1 TRAFFIC VARIABLES 

• !   length of a section of roadway under consideration (distance) 
• "# average travel rate over a section of roadway for all vehicles 

(time/distance) 
• "$  average travel rate over a section of roadway in free-flow conditions 

(time/distance) 
• "% average travel rate over a section of roadway for vehicles of class j 

(time/distance) 
• �#  average travel speed over a section of roadway for all vehicles 

(distance/time) 
• �% average travel speed over a section of roadway for vehicles of class j 

(distance/time) 
• �$  average travel speed over a section of roadway in free-flow conditions 

(distance/time) 
•  total volume rate of vehicles traversing a section of roadway 

(vehicles/time) 
• % volume rate of vehicles of vehicle class j traversing a section of roadway 

(vehicles/time) 
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• � effective flow: volume rate of vehicles in passenger-car equivalent units 

traversing a section of roadway, per lane (passenger-cars/lane/time) 
• &  actual vehicles throughput at a location on a section of roadway 

(vehicles/time) 
• '()%  travel demand distance of vehicles of vehicle class j traversing a section 

of roadway (vehicles-miles/time) 
• * effective capacity: vehicle carrying capacity of the roadway in 

passenger-cars per lane (passenger-cars/lane/time)  
• + dimensionless parameter for the Bureau of Public Roads (BPR) volume-

travel time function  
• , dimensionless parameter for the BPR function 

2 FLEET VARIABLES 

• - vehicle class in the set of vehicle classes . 
• . set of mutually exclusive and exhaustive vehicle classes 
• / emissions source type used in emissions modeling 
• 0 set of all emissions source types modeled 
• 0% set of emissions source types contained in vehicle class -  
• �% fractional fleet composition (by distance traveled) of vehicle class - 
• �1 fractional fleet composition (by distance traveled) of emissions source 

type / 



xviii 

 

• 23�% passenger car equivalents for vehicle class - 
3 EMISSIONS VARIABLES 

• �1 spatial marginal emissions rate from emissions source type / 

(mass/vehicle-distance) 
• �% average spatial marginal emissions rate from vehicles of class j 

(mass/vehicle-distance) 
• �# average spatial marginal emissions rate from all vehicles (mass/vehicle-

distance) 
• �#� average temporal marginal emissions rate from all vehicles 

(mass/vehicle-time) 
• 45,% parameters from emissions rate equation for �%7�%8, for vehicle class - 
• 45 parameters from emissions rate equation for �#9�#:, for all vehicles  
• ; power parameter from emissions rate equations for �%7�%8 and �#9�#: 
• <=, <>, <?, @ parameters from emissions rate equation for �#9�: 
• � total emissions from all on-road vehicles (mass/time/road-distance) 
• �% total emissions from on-road vehicles of class j (mass/time/road-

distance) 
4444 ELASTICITIES     

• ���B�  elasticity of % to "% for vehicle class - 
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• ����� elasticity of % to �% for vehicle class - 
• ���C  aggregate elasticity of  to �# for all vehicles 
• �DEF���  elasticity of '()% to �% for vehicle class - 
• �����  elasticity of �% to �% for vehicle class - 
• �����  elasticity of �% to �% for vehicle class - 
• ���C   elasticity of � to �# for all on-road vehicles 
• �����  elasticity of �% to % for vehicle class - 
• ��C�  elasticity of �# to  for all on-road vehicles 
• �����  elasticity of �% to % for vehicle class - 
• ��#�  elasticity of �# to  for all on-road vehicles 
• �����   elasticity of �% to % for vehicle class - 
• ���  elasticity of � to  for all on-road vehicles 
• ��FFG  elasticity of � to ))H for all on-road vehicles 
• �����  elasticity of % to �% for vehicle class - which leads to emissions break-

even conditions 
• ���C  elasticity of  to �# for all vehicles which leads to emissions break-even 

conditions 
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1 INTRODUCTION  

Motorized transportation’s role in decreasing urban air quality and increasing 

atmospheric greenhouse gases through motor vehicle emissions is a global concern 

(Fenger, 1999; U.S. Environmental Protection Agency, 2009). Concurrently, roadway 

congestion impacts urban areas throughout the world with varying economic, social, and 

environmental costs (European Conference of Ministers of Transport (ECMT), 2007; 

HDR, 2009). But the full effects of traffic congestion on motor vehicle emissions are still 

not well quantified because of interactions and impacts on many scales, from vehicle 

maintenance to land use.  

Policy-makers, researchers, and activists often assume that congestion reductions 

inevitably lead to reduced vehicle emissions. In many cases, emissions reductions are 

cited as an implicit benefit of congestion mitigation without proper justification or 

quantification of the benefits. For example, the U.S. Federal Highway Administration’s 

Congestion Mitigation and Air Quality (CMAQ) Improvement Program suggests a clear 

co-beneficial relationship between the two. The CMAQ program has provided over $14 

billion in funding since 1991 for transportation projects to improve air quality and reduce 

congestion (Federal Highway Administration, 2010) – one third of it for traffic flow 

improvement projects (Grant et al., 2008; Transportation Research Board, 2002).  

If congestion mitigation is to be tied to air quality goals, we need better 

understanding of total congestion impacts on motor vehicle emissions. Toward that goal, 

this thesis presents a unique conceptual and mathematical framework for assessing the 
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effects of congestion on emissions (Chapter 4). This framework includes the influences 

of varying travel efficiency and travel volume in a parsimonious way. From this 

framework, results, equations, and insights are presented which can be used for sketch-

level planning to estimate emissions impacts of congestion mitigation (Chapter 5).  

Beyond aggregate full-fleet emissions, we investigate the impacts of advanced-

drivetrain vehicles (Chapter 6) and heavy-duty vehicles (Chapter 7) on the congestion-

emissions relationship. We then apply the sketch-planning approach to investigate 

conditions in which emissions co-benefits can broadly be expected from capacity-based 

congestion mitigation, including a comparison of alternative emissions reduction 

strategies (Chapter 8). Further analysis presented in this thesis includes the emissions 

impacts of vehicle class-segregated road facilities (Chapter 9) and the emissions 

implications of congestion performance measures (Chapter 10). The results in this thesis 

provide quantitative support for the decoupling of congestion and emissions mitigations. 

A literature review with background information and research objectives are presented 

next in Chapters 2 and 3, respectively.  
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2 LITERATURE REVIEW AND BACKGROUND 

The broad extent of congestion on urban roadway networks is well documented in 

the literature (ECMT, 2007; Schrank & Lomax, 2007). Not only are nearly all major 

metropolitan areas in the U.S. congested during peak periods, but congestion is 

increasing with population growth and urban densification. This growth in congestion is 

magnified in developing countries as the rate of automobile ownership and usage is 

increasing as well. Although there is no debate that congestion exists and is growing, the 

full impacts of congestion (and how best to address them) are not yet decided. In this 

chapter we describe the state of knowledge about the relationship between traffic 

congestion and motor vehicle emissions. 

2.1 General Costs of Congestion 

Various studies have attempted to quantify the impacts of congestion (Goodwin, 

2004; HDR, 2009; Kriger, C. Miller, Baker, & Joubert, 2007; Weisbrod, Vary, & Treyz, 

2001). The suggested impacts include direct effects such as excess travel time and 

indirect effects such as increased business operating costs and human exposure to 

pollution.  Across multi-dimensional studies, excess travel time is consistently the largest 

estimated social cost of congestion (HDR, 2009; Kriger et al., 2007; Schrank, Lomax, & 

Turner, 2010). But comprehensive attempts to quantify total congestion impacts suffer 

from challenges such as estimating the extent of higher-order, indirect effects (e.g. 

congestion impacts on land use) and quantifying intangibles (e.g. traveler stress levels). 
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Too often, congestion cost analyses do not even go as far as to estimate driver behavior 

responses to congestion (such as mode shift).  

2.1.1 Congestion Benchmarks 

Congestion studies are also inhibited by inconsistent definitions and thresholds of 

congestion. A ‘congestion-free’ scenario is typically used as a benchmark for estimating 

congestion effects, but the attributes of this hypothetical situation are not manifest. 

Probably the most common benchmarking approach is to simply compare congested 

speeds to free-flow or uncongested threshold speeds (Greenwood, Dunn, & Raine, 2007; 

HDR, 2009; Kriger et al., 2007; Schrank & Lomax, 2009). The hypothetical system 

change, then, is limitless roadway supply, with all existing travel demand serviced 

without impedance. The problem with this approach is that it ignores suppressed demand 

from exiting congestion – an effect described by Hymel, Small & Dender (2010). 

Ignoring this suppressed or latent travel demand distorts the costs of congestion and can 

potentially magnify the predicted benefits of congestion mitigation.  

The European Conference of Ministers of Transport (ECMT) criticizes a free-

flow speed benchmark as suggestive of unattainable and unaffordable policy outcomes 

(2007). Goodwin (2004) also provides a sound critique of the fixed-demand, free-flow 

comparison approach to congestion cost estimates. He points out that because of induced 

demand, free-flow conditions with existing traffic volumes are unrealistic: “a purely 

notional idea, not a conceivable description of a world we might choose to provide for.” 

Hence, congestion indicators and cost estimates need more clear and consistent 
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benchmarking to be comparable and realistic: benchmarks that fully represent an 

alternative situation to the congested roadway.  

2.1.2 Congestion Performance Measures 

As with cost estimates, congestion performance measures are also saddled with 

the distortions of fixed-demand/free-flow speed comparisons. Most congestion 

performance indicators measure mobility or its impedance (Cambridge Systematics, Inc. 

& Texas Transportation Institute, 2005). Mobility is typically estimated as average travel 

speed or its inverse (distance-normalized travel time) – which neglects changes in travel 

distances and travel volume. This approach has the same problems described above for 

fixed-demand congestion cost estimates, which are unrealistic and misleading. Cortright 

(2010) criticizes the approach of the Texas Transportation Institute’s Urban Mobility 

Report (Schrank et al., 2010), which uses a normalized travel time metric for its primary 

congestion indicator. Cortright describes this as an unrealistic measure which neglects the 

roles of travel distances, land use, sprawl and accessibility.  

2.1.3 Recurring and Non-recurring congestion 

The transportation literature often distinguishes between recurring and non-

recurring congestion. Recurring congestion is essentially the expected, daily delay 

connected to peak travel demand. Nonrecurring congestion is unexpected or unusual 

congestion caused by incidents such as crashes, inclement weather, special events, debris, 

roadside distractions, and even announced construction closures (Dowling, Skabardonis, 

Carroll, & Wang, 2004; Kwon, Mauch, & Varaiya, 2006; Skabardonis, Varaiya, & Petty, 
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2003). The causal distribution of nonrecurring congestion is location-specific (Dowling et 

al., 2004), and the nonrecurring portional contribution to total congestion has been 

reported in ranges from 13-70% (Kwon et al., 2006; Skabardonis et al., 2003; 

Hallenbeck, Ishimaru, & Nee, 2003).  

To the author’s knowledge, no published studies have revealed an intrinsic 

difference in microscopic traffic flow characteristics between recurring and non- 

recurring congestion for the same roadway and delay characteristics (though non- 

recurring congestion is often caused by a sudden, temporary change in capacity). 

Differences in road users’ expectancy could lead to different trip-level behavior 

responses to recurring and non- recurring congestion (such as departure time choice and 

routing), since non- recurring congestion is harder to anticipate.  

Non- recurring congestion decreases travel time reliability – which is valued by 

travelers and so likely to influence their travel behavior (Brownstone & Small, 2005; 

Small, Winston, & Yan, 2005). Some travel time unreliability, though, is also associated 

with fluctuating/uncertain travel demand and roadway capacity (Tu, van Lint, & van 

Zuylen, 2007), such as would be encountered during peak period recurring congestion. 

Bigazzi and Figliozzi (2011) showed that the instability in traffic flows near roadway 

capacity increases time, fuel, and emissions costs for freeway travel, though high 

flow/capacity ratios can occur during recurring or non- recurring congestion. The 

differing cost implications for recurring and non- recurring congestion is an area needing 

research, particularly as it relates to emissions.  
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2.2 Emissions from Motor Vehicle Traffic 

One of the external costs cited by congestion studies is increased emissions of air 

pollutants from motor vehicles. This claim is explored more in the literature review 

below, and is the subject of this thesis. Motor vehicle emissions in general are a 

significant contributor to poor air quality in urban areas (Fenger, 1999), with large health 

effects (Health Effects Institute, 2010). According to data from the U.S. Environmental 

Protection Agency (EPA), “Highway Vehicles” was the single source category with the 

largest emissions of carbon monoxide (CO), nitrogen oxides (NOx), and volatile organic 

compounds (VOC) in the U.S. in 2002 (U.S. Environmental Protection Agency, n.d.). 

On-road vehicles also emit roughly one quarter of greenhouse gas emissions in the U.S. 

(U.S. Environmental Protection Agency, 2009).  

Vehicle emissions of local pollutants and greenhouse gases have different scales 

of impacts, temporally and spatially. Local pollutants such as CO, VOC, NOx, and 

particulate matter (PM) can be relatively short-lived and generally only impact the region 

or even street where they are emitted. Health research has suggested a 50 to 1,500 meter 

impact zone from highways and major roads for measured health impacts from local 

pollutants (Health Effects Institute, 2010). Greenhouse gas emissions such as carbon 

dioxide (CO2), on the other hand, have minimal local impact but are important in terms of 

cumulative global emissions, and over long time scales. This delineation is a 

generalization, as some pollutants have an immediate local impact and also contribute to 

climate change (sometimes after atmospheric transformation). Also, some pollutants 
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impact air quality primarily through formation of harmful secondary pollutants such as 

ozone and acid rain – which delays their temporal influence and broadens their spatial 

influence.  

The primary factors influencing on-road vehicle emissions are the quantity of 

vehicle travel (typically assessed as vehicle-miles traveled, or VMT), the vehicle engine 

loads (often characterized by operating modes or speed profiles), and the vehicle fleet 

characteristics (vehicle type, condition, emissions technology, etc.) (Kuhlwein & 

Friedrich, 2000, 2005; Pandian, Gokhale, & Ghoshal, 2009; Singh, Huber, & Braddock, 

2007). These factors, therefore, are of principal interest in examining congestion effects 

for possible emissions implications. Additionally, not all pollutants react the same way to 

changing vehicle/road conditions (Barth, Scora, & Younglove, 1999; Boulter, Barlow, 

McCrae, & Latham, 2009), so different pollutants should be considered separately. In 

general, more research is needed on the correlations of emissions rates of different 

pollutants under various traffic/fleet conditions – especially between greenhouse gases 

and local air pollutants – which would allow more generalization of congestion effects. 

2.3 Methods for Estimating Congestion Impacts on Emissions  

Before describing the body of research results relating congestion to emissions, it 

is worthwhile to look at how congestion-emissions relationships have been studied. 

Despite increasing research interest, the wide breadth of congestion effects continues to 

hinder comprehensive investigations of congestion impacts on emissions. It is nearly 

impossible to simultaneously trace/model all potential connecting pathways from 
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congestion to emissions, so studies are forced to draw effect boundaries fit to the 

resolution and scope of available data and models. Existing research thus typically 

measures the emissions effects of specific congestion characteristics through select 

influence paths.  

2.3.1 Empirical Emissions Quantification 

After establishing an uncongested benchmark scenario, emissions during 

congested and uncongested traffic conditions can be compared directly through emissions 

measurements. This turns out to be a difficult approach, though, because of necessarily 

limited sampling. Ropkins et al. (2009) provide a detailed description of the qualities of 

emissions monitoring techniques relating to factors captured and spatial coverage.  

Individual vehicle emissions can be measured on-road using probe vehicles 

(Barth, Scora, & Younglove, 2004; Holmen, Sentoff, Robinson, & Montane, 2010) or in 

a laboratory using realistic driving speed patterns for vehicles on a chassis dynamometer 

(Barth et al., 2000; Smit, Smokers, & Rabe, 2007). These methods measure true vehicle 

emissions and avoid some of the challenges of other approaches, but their relevance 

depends on the representativeness of the vehicles sampled and driving patterns applied. It 

is also a costly approach if broad samples of vehicles and traffic conditions are desired.  

In-situ measurement of roadway air quality can capture full, representative 

emissions or air quality effects, but experimental factors are difficult to control and 

emissions effects can only be quantified for existing roadway conditions (Ropkins et al., 

2009). Most often, roadside air quality measurements are gathered concurrently with 
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traffic data to establish empirical relationships between the two (Bigazzi, Van Lint, 

Klunder, Stelwagen, & Ligterink, 2010; H. Chen, Namdeo, & Bell, 2008; Kohler, 

Corsmeier, Vogt, & Vogel, 2005). A major challenge of using pollution concentration 

measurements to estimate on-road vehicle emissions is controlling for dispersion 

influences, which creates large uncertainties (Venkatram, 2004; Venkatram, Isakov, 

Thoma, & Baldauf, 2007). Additionally, in-situ measurements are generally quite limited 

in spatial extent and so subject to confounding factors related to the measurement 

location (Croxford & Penn, 1998).  

2.3.2 Emissions Modeling 

As an alternative to direct measurement of emissions or air quality, emissions 

modeling is more often employed because it allows full control over study factors and 

estimation of emissions in hypothetical scenarios (useful for mitigation planning). 

Additionally, modeling can estimate a wider range of vehicle/traffic conditions given 

limited resources. The broad typical approach to emissions modeling is to estimate an 

average emissions rate per vehicle-mile of travel (per VMT), and then combine the 

emissions rate with estimates of the volume of vehicle travel, VMT.  

The main drawbacks of emissions modeling are high uncertainty (Kuhlwein & 

Friedrich, 2000; Frey & Zheng, 2002; Joumard, Philippe, & Vidon, 1999), lack of 

standards (Adler, Grant, & Schroeer, 1998), difficulty in validating (Dowling, 2005), and 

challenges in modeling on multiple scales. The uncertainty in emissions models is 

context-dependent and not necessarily prohibitive (Frey & Zheng, 2002), though the 
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effects can be magnified if emissions are modeled in series with traffic and/or dispersion 

models – e.g. (J. Y. Park, Noland, & Polak, 2001). Because of limited calibration data, 

emissions models have known accuracy weaknesses related to heavy-duty vehicles and 

particulate emissions (Dowling, 2005) – though these are being addressed with newer 

models (Barth et al., 2004; U.S. Environmental Protection Agency, 2009a). 

2.3.2.1 Microscopic Emissions Modeling 

Microscopic modeling combines detailed traffic data with a microscopic 

emissions model to investigate the effects of changes in detailed traffic characteristics 

(Barth et al., 1999; Rakha, Van Aerde, Ahn, & Trani, 2000). This level of detail can be 

important because short, intense accelerations can produce emissions rates hundreds of 

times higher than ‘normal’ driving (Joumard et al., 1999). As an example of where this 

type of modeling is needed, small roadway changes such as continuous-access versus 

limited-access High-Occupancy Vehicle (HOV) lanes can significantly impact emissions 

because of increased weaving intensity (Boriboonsomsin & Barth, 2008).  

The significant data demands of microscopic emissions models are difficult to 

satisfy (Pandian et al., 2009). Most models require second-by-second vehicle speed data, 

which can be obtained from probe vehicles (Malcolm, Younglove, Barth, & Davis, 2003) 

or traffic micro-simulation (K. Chen & Yu, 2007; Hirschmann & Fellendorf, 2010). 

Driving data based on probe vehicles, like the empirical emissions estimation methods 

described above, limit the study to existing traffic conditions. Microscopic traffic 

simulation models can create various congestion scenarios, but they have not been well 
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validated for use in creating inputs to microscopic emissions models (Dowling, 2005; J. 

Y. Park et al., 2001) – primarily because of unrealistic accelerations (Hirschmann & 

Fellendorf, 2010) and speed fluctuations (Jackson & Aultman-Hall, 2010). Other 

challenging data requirements are detailed vehicle information, meteorology data, and 

fuel data. Finally, while microscopic modeling can replicate the effects of detailed 

congested traffic flow characteristics, larger network and behavioral effects are difficult 

to include because of limited spatial/temporal coverage (Dowling, 2005).  

2.3.2.2 Macroscopic Emissions Modeling 

Most macroscopic emissions models use average travel speed as the primary 

traffic input (Barlow & Boulter, 2009; Smit et al., 2007; U.S. Environmental Protection 

Agency, 2009a). As with microscopic emissions modeling, relevant vehicle activity can 

be collected on-road but is often modeled instead (see Ziesman & Rilett (2001) for a 

comparison). Average speed inputs allow macroscopic emissions models to be easily 

interfaced with travel demand models for regional emissions estimates (Anderson, 

Kanaroglou, E. Miller, & Buliung, 1996; Affum, Brown, & Chan, 2003; Roberts, 

Washington, & Leonard II, 1999). However, research has shown that travel demand 

model outputs require additional post-processing before use in macroscopic emissions 

modeling (Bai, Nie, & Niemeier, 2007).  

A typical method for using average speeds to estimate emissions is by assuming 

an archetypal driving pattern that matches an average speed (these are usually represented 

by 1 Hz vehicle speed time-series, also called drive cycles, speed profiles, or drive 
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schedules, depending on the application) (Lin & Niemeier, 2003a; U.S. Environmental 

Protection Agency, 2009a). For more accuracy, these drive cycles can be specific to the 

relevant vehicle type, roadway facility type, and even region of the country (Lin & 

Niemeier, 2003b). There are other methods of macroscopic emissions modeling (such as 

multilinear regression), but these still assume a representative pattern of driving at some 

point in the data collection or model development. 

Average-speed emissions models can capture typical characteristics of roadway 

congestion if the imbedded drive cycles are facility-specific and sufficiently 

representative (Smit, Brown, & Chan, 2008). Fortunately, the applicability of drive cycles 

for “real-world” driving conditions has received considerable attention by researchers 

(Ericsson, 2000; Joumard et al., 1999; Lin & Niemeier, 2003b, 2002; Nesamani & 

Subramanian, 2006). Since macroscopic emissions models are not applicable for “non-

standard” driving (Frey & Zheng, 2002) atypical traffic features or traffic management 

strategies must be modeled with caution.  

Although macroscopic modeling neglects unique, detailed traffic characteristics, it 

is better suited than microscopic models to measure the indirect, broader influences of 

congestion. Dowling (2005) suggests a hybrid modeling methodology to address the 

congestion-emissions question because of the infeasibility of microscopic modeling to 

capture demand effects and limitations of macroscopic modeling to detect more subtle 

operational benefits.  
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2.3.3 Congestion Benchmarks 

One final note on emissions estimation methodologies relates to the congestion 

thresholds and cost comparisons discussed above. Uncongested comparison conditions 

for emissions estimates can be characterized from real-world free-flow traffic or 

simulated as constant-speed steady-state traffic flow. Hypothetical constant-speed driving 

generates lower emissions rates than real-world driving around free-flow speeds, which 

has intrinsic variability (Barth & Boriboonsomsin, 2008; Barth et al., 1999; Jackson & 

Aultman-Hall, 2010). Hence, congestion indicators and cost estimates should use realistic 

transient free-flow speed profiles (not steady-state speeds) for comparisons. Ideally, 

congestion studies should further account for uncongested differences in the vehicle fleet, 

though this is rarely done. 

2.4 Impacts of Traffic Congestion on Vehicle Emissions  

When they are included in total congestion cost estimates, emissions are typically 

a very small portion of total costs (HDR, 2009; Kriger et al., 2007). These results, 

though, are subject to the uncertainty of applying an economic-equivalent value to an 

externality such as pollution emissions (see Hall, Brajer, & Lurmann (2008) for an 

example of the complexity in valuing air pollution). Furthermore, to the author’s 

knowledge no comprehensive congestion cost study has estimated costs with a 

benchmark other than the fixed-demand/free-flow speed approach – with all its 

limitations described above. In other words, the broad cost studies have all ignored the 

effects of variable demand on emissions.  
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The major published studies focusing on the congestion-emissions relationship 

are summarized individually in Appendix A. The general consensus is that the total 

emissions effects of congestion are either not well understood or highly variable. A recent 

analysis for the U.S. Department of Transportation (HDR, 2009) asserts that the total 

impact of congestion on emissions can be beneficial or detrimental, depending on the 

context. But these studies vary greatly in terms of the breadth and detail of analysis for 

different effects pathways from congestion to emissions. A summary of the relevant 

literature on different congestion effects on emissions is shown in Table 1. These effects 

are discussed in more detail in the following sections. 

2.4.1 Direct Effects of Congestion 

The most salient direct impact of congestion is an increase in travel times 

(decrease in average travel speed), which increases average emissions rates per mile of 

travel when speeds are low (Barth & Boriboonsomsin, 2008; Barth et al., 1999). This 

emissions rate increase is due both to increased engine loads from higher acceleration 

intensity and frequency during unsteady traffic and to longer operating time per unit 

distance at slower travel speeds (Barth & Boriboonsomsin, 2008; Greenwood et al., 

2007). However, studies have also shown that moderate travel speed reductions from 

excessively high speeds can reduce emissions rates per mile of travel (Barth & 

Boriboonsomsin, 2008; Barth et al., 1999; Dijkema et al., 2008; Farzaneh, Schneider, & 

Zietsman, 2010; S. Park et al., 2010). In other words, the direct effects of congestion on 

emissions rates vary across congestion levels.  
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Table 1: Summary of Roadway Congestion Effects on Vehicle Emissions 

Congestion Effect Impacts on Motor Vehicle Emissions 
Decreased average 
travel speeds 

• Increases emissions rates at very low speeds  
(Barth & Boriboonsomsin, 2008; Barth et al., 1999)  

• Decreases emissions rates for moderate speed reductions on 
freeways 
(Barth & Boriboonsomsin, 2008; Barth et al., 1999; Dijkema et 
al., 2008; Farzaneh, Schneider, & Zietsman, 2010; S. Park et al., 
2010) 

Increased speed 
variability 
(accelerations) 

• Increases emissions rates with acceleration intensity and 
frequency; impact varies with travel speed and facility  
(Barth & Boriboonsomsin, 2008; Barth et al., 1999; Greenwood 
et al., 2007) 

Suppressed travel 
demand  
(or induced demand 
with less congestion) 

• Less VMT decreases total emissions, but changes depend on the 
road network and other factors; much research still needed 
(Dowling, 2005; Noland & Quddus, 2006; Stathopoulos & 
Noland, 2003) 

Travel time 
unreliability 

• No studies found on direct emissions effects (related to driving 
behavior or traffic characteristics of non-recurring congestion) 

• Indirectly, could suppress travel demand (Goodwin, 2004) and 
so reduce VMT and emissions as above  

• No studies found on other indirect effects on emissions (related 
to routing, departure time, etc.) 

Trip rerouting • Mixed effects possible (Nagurney, 2000); more research needed 

Departure time shifts • No studies found 

Mode shift to transit • Increases bus emissions, but smaller than savings from reduced 
driving (Beevers & Carslaw, 2005) ; more research needed 

Increased vehicle wear • No studies found on potential increased emissions rates with 
increased vehicle wear 

Increased vehicle 
operating costs 

• No studies found on potential indirect emissions effects through 
decreased travel demand 

Freight operating cost 
increases and potential 
supply chain or freight 
operations responses 

• Emissions impacts vary with route (Figliozzi, 2011) 

• Congestion mitigation can increase freight VMT (Weisbrod et 
al., 2001) and so increase emissions 

• No studies found on potential emissions effects through 
changing fleet mix, freight mode shift, or delivery time shifts 
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2.4.2 Indirect Effects of Congestion 

Longer travel times due to consistent congestion suppress vehicle travel demand 

(Hymel et al., 2010). This the inverse of the induced demand caused by traffic flow (and 

travel time) improvements (DeCorla-Souza & Cohen, 1999; Douglass Lee, Klein, & 

Camus, 1999; Noland & Cowart, 2000; Noland & Lem, 2002). Using microscopic traffic 

simulation, research has shown that induced demand can increase total vehicle emissions 

at a bottleneck location after a traffic flow improvement (Noland & Quddus, 2006; 

Stathopoulos & Noland, 2003). If this is true, then suppressed travel demand has the 

potential to offset higher emissions rates per vehicle-mile and so reduce total emissions in 

congestion.  

Travel behavior changes in response to congestion vary with the road network and 

other factors, and more detailed research is needed in this area. For example, vehicle 

travel demand can change by way of the frequency, distance, scheduling, travel mode, or 

routing of trips (Cervero, 2002; DeCorla-Souza & Cohen, 1999). Different demand 

responses will have differing impacts on the total volume of emissions – in addition to 

the spatial-temporal allocation of emissions.  

In addition to demand-suppressing long travel times, congestion causes travel 

time unreliability, another common indicator of poor performance for a roadway (ECMT, 

2007; Schrank & Lomax, 2007). The demand-suppressing effects of the disutility of 

unreliable travel times are not as well studied or quantified as for average travel times. 

Goodwin (2004) presumes they could exceed average travel speed effects on demand. 
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Indeed, as an implication of support for this notion, Small, Winston, & Yan  (2005) 

estimate the value of reliability at about 50% to 100% of the value of travel time, while 

Brownstone & Small (2005) estimate it at 95%-140%.  

The emissions impacts of other facets of unreliability besides demand suppression 

(e.g. direct effects related to traffic characteristics during non-recurring congestion or 

other indirect effects related to routing, departure time, etc.) have not been quantified, to 

the best of the author’s knowledge. More generally, the emissions differences between 

recurring and non-recurring congestion is in an area needing research – particularly 

because they are targeted with different types of mitigation strategies.  

2.5 Travel Demand Elasticity 

Given the importance of changing travel volumes for emissions effects, we here 

describe travel demand responses in more detail. Travel demand responses to changing 

congestion levels are typically assessed using travel demand elasticity to travel time, 

which is the percent change in travel volume (typically measured as vehicle-miles of 

travel (VMT)) with each percent change in travel time (see Litman (2011) for a 

discussion). Demand elasticity to travel time has a negative value because of the 

decreased attractiveness of longer-duration trips. Demand elasticity values vary with the 

roadway network, time range of interest, value of travel time in relation to other costs, 

trip length and purpose, and other local characteristics such as the amount of vacant land 

(DeCorla-Souza & Cohen, 1999).  
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The literature generally agrees on a range of -0.2 to -1.0 for likely vehicle travel 

demand elasticities to travel time (DeCorla-Souza & Cohen, 1999; Goodwin, 1996; Jong 

& Gunn, 2001; Douglass Lee et al., 1999; Noland, 2001; Noland & Cowart, 2000). 

Larger absolute values for demand elasticity (more negative) are more applicable for 

longer time scales and situations with more travel options (in terms of modes, routes, 

destinations, etc.). Demand elasticity of VMT reflects net changes, and so ideally 

includes the aggregate affects of rerouting and changes in the number of trips. Perfectly 

inelastic (fixed) demand has an elasticity of 0, and perfectly elastic demand (which 

implies a fixed travel time) would have an elasticity approaching negative infinity.  

Demand elasticity to generalized costs is higher than demand elasticity to travel 

time alone, varying with the value of travel time in the context of total transportation 

costs. For example, Graham and Glaister (2004)  point out that demand elasticity to travel 

time for personal travel is increasing because the value of time is an increasingly large 

portion of generalized driving costs (65% by 2000).  

For freight the demand elasticity to generalized cost has been empirically 

estimated as a full order of magnitude greater than the freight demand elasticity to travel 

time alone (HLB Decision Economics Inc., 2008). This is logical since the other cost 

components for freight transport are proportionally higher than for personal travel. For 

freight vehicles, complex relationships exist between travel time and travel demand 

because time costs must be viewed in the context of supply chains, labor, and market 
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costs. This complexity is discussed thoroughly by Weisbrod in NCHRP Report 463 

(2001).  

Demand elasticity to average travel speed can be simply estimated as the negative 

of demand elasticity to travel time. Table 2 presents a summary of travel demand 

elasticities to travel speed that have been reported in the literature (signs converted when 

originally reported as demand elasticity to travel time). This is by no means a 

comprehensive list, though it incorporates several meta-reviews of induced demand 

studies. For passenger-only and passenger-dominated general road travel (predominantly 

personal auto trips), elasticities of VMT demand to travel speed have been most 

commonly reported from 0.2 to 1.0 (DeCorla-Souza & Cohen, 1999; Goodwin, 1996; 

Jong & Gunn, 2001; Barr, 2000; Cohen, 1995; Williams & Moore, 1990). Lower 

elasticities are more often found over shorter time scales, as many behavior modifications 

require time to realize.  

Table 2. Elasticity of Travel Demand (Distance) to Travel Speed* from the 
Literature 

Source Elasticity Values Context 
(Jong & Gunn, 2001) 0.2 -0.7 Passenger Travel 
(Barr, 2000) 0.3 -0.4 Passenger Travel 
(DeCorla-Souza & Cohen, 1999) 0.4 -1.0 General  
(Cohen, 1995) 0.6 -1.8 General  
(Williams & Moore, 1990) 0.3 -1.5 General  
(Goodwin, 1996) 0.5 -1.0 General  
(Oum, 1989) 0.9 -1.0 Freight 
(Abdelwahab, 1998) 1.0 Freight 
(HLB Decision Economics Inc., 2008) 0.01-0.02 Freight 

* Signs have been reversed on values originally reported as elasticity to travel time 
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Road/truck freight elasticities have been reported from 0.0 to 1.0 (HLB Decision 

Economics Inc., 2008; Oum, 1989; Abdelwahab, 1998). The freight elasticities, however, 

are based on much fewer studies, as fewer data are available and the situation is more 

complex. While demand elasticity is generally highly uncertain (as are most behavioral 

responses), this is particularly true for freight transport. Graham & Glaister (2004) point 

out that freight travel demand in general is under-studied and not as well understood as 

passenger travel, and that while freight travel demand has traditionally been assumed to 

be inelastic, that is likely not the case.  

The unique behavioral responses of freight vehicles is an important consideration 

for emissions because freight is moved by heavy-duty vehicles, which have higher 

emissions rates than light-duty vehicles – largely because of high gross vehicle weights 

(Brodrick et al., 2004). Heavy duty vehicles are also predominantly diesel-fueled, and 

diesel fuel has different emissions characteristics from gasoline (Scora, Boriboonsomsin, 

& Barth, 2010), which powers most of the U.S. light-duty fleet (U.S. Environmental 

Protection Agency, 2009b). 

The uncertainty of demand responses makes prediction of congestion and 

congestion mitigation effects on total emissions especially difficult to predict. A more in-

depth analysis of demand elasticity to speed or travel time is beyond the scope of this 

thesis, but there are many quality published papers that do exactly that. Meta-reviews of 

demand elasticity that might interest the reader include: Goodwin, Dargay, & Hanly, 

2004; Goodwin, 1992; Graham & Glaister, 2004; and Oum, II, & Yong, 1992. 
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2.6 Congestion Mitigation and Emissions 

Assuming isotropic conditions, congestion mitigation will have the opposite 

effects of congestion. Thus the engine operating inefficiencies of congested, low-speed 

vehicle travel have prompted suggestions for congestion mitigation targeting emissions 

reductions. Unfortunately, assessment of congestion mitigation strategies suffers the 

same limitations as estimates of congestion impacts and costs described above.  

2.6.1 Capacity-Based Strategies 

Capacity-based strategies (CBS) for reducing emissions ease congestion by 

increasing a roadway’s vehicle throughput and so increase vehicle operating efficiency. 

CBS can increase capacity by increasing physical lane-miles or by increasing existing 

roadway efficiency and utilization through traffic flow improvements. The desired 

emissions benefit of congestion mitigation through CBS is reduced marginal emissions 

rates at higher traffic speeds. This approach presents the potential for induced demand.  

A report by Dowling (2005) used travel demand modeling to estimate air quality 

effects of traffic flow improvements but yielded very large uncertainties (Noland & 

Quddus, 2006). The conclusion of the report was that more research is needed “to better 

understand the conditions under which traffic-flow improvements contribute to an overall 

net increase or decrease in vehicle emissions.” Other, more focused research on a limited 

spatial scale has shown that induced demand from traffic flow improvements make 

emissions rate reductions through CBS unlikely to reduce total emissions (Noland & 

Quddus, 2006; Stathopoulos & Noland, 2003).  
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2.6.2 Non-Capacity-Based Strategies 

As an alternative to CBS for emissions reductions, non-capacity based strategies 

(NCBS) aim to reduce emissions without increasing roadway capacity – by increasing 

vehicle efficiency at a given travel speed or by reducing the total amount of travel. As an 

example, Barth and Boriboonsomsin (2009) show that more efficient driving behavior on 

freeways can reduce greenhouse gas emissions by 10%-20% without a significant change 

in travel time, with more benefits at higher levels of congestion. NCBS also can directly 

target emissions through cleaner vehicles and fuels. Demand-side NCBS that reduce net 

travel volumes by methods such as road pricing can reduce emissions and also ease 

congestion (Beevers & Carslaw, 2005).  

Admittedly, the CBS/NCBS division does not cleanly categorize all possible 

approaches to emissions mitigation. For example, “road diets” or roadway capacity 

reductions are capacity-based strategies that increase (or at least maintain) congestion 

levels, but still with the potential for emissions reductions through suppressed travel 

demand. The most commonly suggested NCBS include some style of “eco-driving” 

(Barkenbus, 2010; Barth & Boriboonsomsin, 2009), high-occupancy vehicle lanes 

(Boriboonsomsin & Barth, 2007; Krimmer & Venigalla, 2006), congestion pricing or 

road pricing (Beevers & Carslaw, 2005; Johansson, 1997; Smyth & Christodoulou, 

2010), and speed-smoothing/steadying traffic management techniques such as variable 

speed limits and intelligent speed adaptation (Barth & Boriboonsomsin, 2008; Mahmod 

et al., 2010; Wu et al., 2010). 
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2.7 Literature Summary 

While a great deal of work has been done in the field of motor vehicle emissions 

estimation, our understanding of the full congestion impacts on emissions is still limited. 

Generally, congestion decreases vehicle efficiency but also suppresses travel demand – 

and the balance of these is not easily quantified. Too many estimates of congestion costs 

and impacts consider efficiency changes but simply neglect variable demand effects. 

Furthermore, those studies which do consider variable demand are typically highly 

context-specific, with unknown applicability to other situations. Thus, assumptions of 

congestion and emissions co-mitigation require more inspection. The objectives of this 

thesis are motivated by observation of these gaps in the state of knowledge, as described 

in the next chapter. 
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3 OBJECTIVES 

This research aims to alleviate some of the uncertainty about the relationship 

between congestion and emissions and the potential for congestion mitigation as an 

emissions reduction strategy. As illustrated in Figure 1, capacity-based congestion 

mitigation which increases travel speed can influence total emissions both through 

emissions rate reductions (due to increase vehicle operating efficiency) and increased 

travel volumes (due to travel behavior changes). The opposite can be said for increasing 

congestion: decreased travel speeds tend to increase emissions through increased 

emissions rates but simultaneously decrease emissions through lower travel volumes. 

Understanding the balance of these two effects pathways is the purview of this research. 

 

Figure 1. Congestion-Emissions Influence Paths 

The specific objectives of this thesis are enumerated as follows:  

1. Present a conceptual framework for assessing the impacts of congestion on 

emissions with  minimal location specificity 

2. Develop generalized relationships between travel speed and vehicle emissions 

– taking into consideration variable travel demand  
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3. Describe situations in which capacity-based traffic congestion mitigation is 

likely to reduce motor vehicle emissions – with particular attention to the role 

of different vehicle classes  

4. Compare capacity-based congestion mitigation with other emissions reduction 

strategies 

5. Assess congestion performance measures and their applicability for 

emissions-related impacts  

This research will address several gaps in the literature and shortcomings of the 

current body of knowledge by: 

1. Using a variable travel demand approach (and not simple free-flow speed 

comparisons) to estimate congestion impacts on emissions 

2. Developing generalized relationships between congestion and emissions that 

are comprehensible, expedient, and broadly applicable – and include 

emissions sensitivity to both travel speed and volume 

3. Providing simple sketch-planning tools that can be applied anywhere with 

some simple assumptions and estimation of parameters  

The effects pathways in Figure 1 are the motivation for the framework of the 

methodology, as described in the next chapter.
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4 METHODOLOGY 

The macroscopic modeling in this study is designed to advance our understanding 

of the relationships between traffic congestion and vehicle emissions. We begin with a 

broad description of the conceptual framework of the modeling, and then continue with 

detailed descriptions of individual components. A summary list of the variables used in 

this analysis is provided in the prefatory pages of this thesis under “NOTATION”, as a 

consolidated reference for the reader. The variables are all described in the following text 

of Chapter 4. 

4.1 Conceptual Framework 

There are many direct and indirect influence paths from congestion to emissions. 

A primary challenge of this research is to include as many effect pathways as possible, 

aiming for a comprehensive and yet still broadly applicable approach. Our approach to 

accomplishing this is suggested by the diagram in Figure 1. This diagram illustrates two 

aggregate effect pathways, each representing multiple effects. Congestion level is 

indicated by average travel speed. Then on the top pathway, myriad vehicle operating 

conditions (speeds, accelerations, idling) with varying congestion level are quantified in 

the changing average emissions rates (per vehicle-mile). On the bottom pathway, many 

diverse traveler behavioral responses are represented by net changes in travel demand 

volume.  

If our primary interest is the changes in total emissions with changes in 

congestion level, then we do not need to model absolute vehicle volumes or emissions 

rates, but individual and join changes with changes in travel speed. We will revisit this 
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framework at the end of the Methodology chapter, after introducing key variables and 

relationships. In the following sections we describe processes for traffic and emissions 

modeling and develop the equations that relate changes in total emissions to changes in 

speed.   

4.2 Macroscopic Traffic Modeling 

4.2.1 Rate of Travel 

Travel demand modelers use demand volume-travel speed relationships to 

estimate the average speed over a road section (with respect to the traveler) based on 

demand flow, road capacity, and other parameters. This analysis employs the well-known 

Bureau of Public Roads (BPR) model for this purpose (Bureau of Public Roads, 1964). 

The BPR volume-travel time function calculates the average travel rate, "#, in time per 

unit distance, as a function of the effective demand volume, �, in passenger-cars per lane 

per unit time, as 

"# � "$ I1 J + K� *� LMN (1) 

where "$ is the free-flow travel rate, * is the roadway capacity in passenger-

cars/lane/time, and + and , are dimensionless parameters. The average travel speed, �#, in 

distance per unit time, is then simply the inverse of average travel rate, �# � 1 "#� . We use 

α=0.15 and β=7 from Hansen et al. (2005), calibrated for the Portland region. This model 

and these parameter values are used illustratively, while recognizing that the selection of 
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a volume-speed relationship can have a significant impact on total emissions calculations 

(Bai et al., 2007). 

4.2.2 Vehicle Classes and Effective Flows 

The effective vehicle flow rate for the BPR function, �, is the volume of vehicles 

traversing a section of roadway, converted to passenger-car equivalent (PCE) units. The 

PCE value for each passing vehicle is the amount of roadway capacity that the vehicle 

occupies, referenced to the capacity occupied by a typical passenger car. This is used to 

adjust for the larger spatial requirements for larger and heavier vehicles in traffic. Typical 

PCE values for trucks range from 1.5 for level terrain to 4.5 for mountainous terrain 

(Transportation Research Board, 2000). There are more complex ways to account for the 

differing performance of trucks in congestion (see Yun, White, Lamb, & Y. Wu (2005) 

for an example), but the PCE method is considered sufficient for the macroscopic 

analysis performed here.  

Let �% be the fractional fleet composition (by travel volume) of each vehicle class 

- in the set of vehicle classes .. Further, let 23�% be the PCE value for all vehicles of 

class - and % be the volume flow rate (in number of vehicles per unit time) of vehicle of 

class -. If  is the total volume flow rate of all vehicles (in number of vehicles per unit 

time – not adjusted for PCE), then % � �% · . Furthermore, if the vehicle classes - in . 
are mutually exclusive and exhaustive, then ∑ �%%QR � 1 and so ∑ %%QR � . Finally, the 

effective flow rate � can be calculated from these variables as 

 � � ∑ 723�% · %8SQT �  · ∑ 723�% · �%8SQT  . (2) 
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4.2.3 Level of Service Indicators 

As a qualitative congestion reference in this thesis, we use the level-of-service 

(LOS) indicators for basic freeway sections described in the Highway Capacity Manual 

(HCM) (Transportation Research Board, 2000). In the HCM, freeway LOS A through F 

are based on traffic density thresholds where LOS F is the most congested. We employ 

average travel speeds for each freeway LOS following Barth et al. (1999), who calculated 

average travel speeds from EPA driving schedules. 

4.3 Emissions Rates 

4.3.1 Emissions Rate Modeling 

Average vehicle emissions rates are estimated using the MO tor Vehicle 

Emissions Simulator (MOVES) 2010, the latest average-speed emissions model from the 

U.S. Environmental Protection Agency (EPA) (2009a). Emissions rates (in grams per 

vehicle-mile) are modeled using estimated on-road vehicles in the Portland, Oregon 

metropolitan region for the year 2010. More information on the modeled vehicles is in 

the next section. The modeled pollutants are CO2e (greenhouse gases in carbon dioxide 

equivalent units), CO (carbon monoxide), NOx (nitrogen oxides), PM2.5 (particulate 

matter smaller than 2.5 microns), and HC (hydrocarbons). Where available, county-

specific inputs are used (meteorology, vehicle inspection and maintenance program, fuel 

formulation), and national averages are used for other model inputs (vehicle age 

distributions). The MOVES model outputs emissions rates in 16 average-speed bins for 

17 emissions Source Types (combinations of vehicle class and fuel type) for 4 different 

seasons and 24 hours of the day on urban freeway (restricted) and urban arterial 



31 

 

(unrestricted) facilities. The average speed bins are in 5 mph increments, up to 75 mph. 

The modeled emissions are running exhaust and evaporative emissions; refueling, 

brake/tire wear, and start emissions are not included. Particulate resuspension is not 

modeled by MOVES. 

The average-speed emissions modeling approach estimates emissions for average 

travel speeds using facility-specific driving patterns (speed profiles). These driving 

patterns (also called “drive cycles” or “drive schedules”) are composed of measured, 

archetypal combinations of acceleration, deceleration, cruise, and idle behavior at various 

average travel speeds on specific facilities, collected on-road in various U.S. cities (see 

MOVES documentation for details). Drive patterns effectively represent typical 

congested conditions for emissions modeling, as long as they are representative of real-

world driving (Smit et al., 2008). They generally do not represent unique microscopic 

traffic characteristics and so cannot be used to model individual features in congestion 

(e.g. weaving sections), but they are appropriate for a macroscopic analysis such as 

performed here. For robustness, comparison analysis is also done using emissions rates 

published by Boulter et al. (2009) and Barth & Boriboonsomsin (2008). 

4.3.2 Vehicle Fleet Composition 

For this analysis the MOVES emissions Source Types are combined into 

composite vehicle fleets based on the estimated distribution of 2010 Portland freeway 

vehicle miles traveled (VMT) by Source Type. First the percentage of freeway travel in 6 

Highway Performance Monitoring System (HPMS) vehicle type classes is estimated 

using length-based classifications from 14 inductive dual-loop detector stations on 
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Portland metropolitan freeways for 2009 (Oregon Department of Transportation, 2010). 

National-level 2010 freeway VMT and vehicle population estimates from the EPA (U.S. 

Environmental Protection Agency, 2010) are used for additional detail where length-

based classifications cannot discriminate MOVES emissions Source Types (between 

passenger cars and passenger trucks for example).  

The method to estimate fleet composition is summarized in following steps:  

1) Estimate fraction of daily freeway VMT in each of 6 HPMS vehicle classes (10: 

motorcycles, 20: passenger cars, 30: other two-axle, four-tire single unit vehicles, 40: 

buses, 50: single-unit trucks, and 60: combination trucks) 

a) Collect length-based vehicle classification data for 2009 from 14 inductive dual-

loop detector stations on Portland area freeways (Oregon Department of 

Transportation, 2010) 

b) Average across stations for fraction of daily VMT in each of the 13 Federal 

Highway Administration (FHWA) vehicle classes 

c) Combine the 13 FHWA vehicle class fractions into five HPMS vehicle classes 

(10: motorcycles, 20/30: all two-axle, four-tire single unit vehicles, 40: buses, 50: 

single-unit trucks, and 60: combination trucks); HPMS vehicle classes 20 and 30 

are combined because length-based discrimination is unreliable – based both on 

observation of inconsistent data among stations and on HPMS documentation 

(Federal Highway Administration, 2001) 

d) Use EPA estimates of 2010 freeway VMT fractions to separate HPMS vehicle 

classes 20 and 30  
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i) EPA documentation provides national-level guidance for 1999 total VMT by 

HPMS vehicle class, with growth factors to estimate 2010 total VMT by 

HPMS vehicle class (U.S. Environmental Protection Agency, 2010) 

ii)  The same document provides estimates of the fraction of total VMT on urban 

restricted (freeway) facilities for each HPMS vehicle class (U.S. 

Environmental Protection Agency, 2010) 

iii)  The resulting EPA estimates of 2010 freeway VMT fractions agree well with 

the combined 2009 Portland-area vehicle class distribution of freeway daily 

VMT 

2) Separate each HPMS vehicle class into MOVES emissions Source Types 

a) Use EPA estimates of 2010 vehicle populations by MOVES Source Type to 

apportion fractional VMT to MOVES Source Types within each HPMS vehicle 

class 

b) The same EPA document used above also provides national-level guidance for 

1999 vehicle populations by MOVES Source Type, with growth factors to 

estimate 2010 populations (U.S. Environmental Protection Agency, 2010) 

c) An example of different MOVES Source Types within an HPMS vehicle class is 

the separation of Passenger Trucks from Light Commercial trucks in HPMS 

vehicle class 30 

3) Estimate gasoline/diesel fuel splits for MOVES Source Types 

a) Again, in the same document as used above the EPA provides national-level 

guidance for estimation of diesel fractions for each vehicle class (U.S. 

Environmental Protection Agency, 2010) 
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b) Assumed diesel fractions from EPA documentation are 0.4% for Passenger Cars, 

1% for Passenger Trucks, 6% for Light Commercial Trucks, 70% for Single Unit 

Trucks, and 100% for Combination (trailer) Trucks 

c) Assume buses are 100% diesel  

d) Assume all non-diesel vehicles use gasoline fuel 

 

The resulting fleet composition from following these steps is shown in Table 3. 

Details on each of the MOVES emissions Source Types can be found in the MOVES 

documentation (U.S. Environmental Protection Agency, 2009a). After estimation of the 

full fleet composition, the emissions Source Types are also combined into light duty (LD) 

and heavy duty (HD) vehicle fleets. The LD vehicle fleet includes MOVES Source Type 

ID’s below 40 (motorcycles, passenger cars, passenger trucks, and single-unit two-axle 

light commercial trucks under 19,500 lbs Gross Vehicle Weight Rating (GVWR)). The 

HD vehicle fleet includes MOVES Source Type ID’s above 40 (buses, combination 

trucks, and other heavy trucks over 19,500 lbs GVWR). Using this partition, the full fleet 

is composed of 8.9% HD vehicles. 

As stated above, for each vehicle-fuel combination the MOVES model outputs 

emissions rate estimates in 16 average-speed bins for 4 different seasons and 24 hours of 

the day on freeway and arterial facilities. For each of the LD, HD, and Full vehicle fleets, 

composite emissions rates for each pollutant-speed-season-hour-facility combination are 

calculated using weighted averages. The weights are based on the percentages of fleet 

composition shown in the fourth column of Table 3.  
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Table 3. MOVES Source Type Distribution 

MOVES Source Type Vehicle Type Fuel % of Fleet  

11 Motorcycle Gas 0.43 

Li
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21 Passenger Car Gas 52.83 

21 Passenger Car Diesel 0.21 

31 Passenger Truck Gas 27.92 

31 Passenger Truck Diesel 0.28 

32 Light Commercial Truck Gas 8.86 

32 Light Commercial Truck Diesel 0.57 

41 Intercity Bus Diesel 0.04 

H
e

a
v
y
 D

u
ty

  

V
e

h
ic
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42 Transit Bus Diesel 0.03 

43 School Bus Diesel 0.29 

51 Refuse Truck  Diesel 0.07 

52 Single Unit Short Haul Truck Gas 1.00 

52 Single Unit Short Haul Truck Diesel 2.34 

53 Single Unit Long Haul Truck Gas 0.06 

53 Single Unit Long Haul Truck Diesel 0.14 

61 Combination Short Haul Truck Diesel 2.84 

62 Combination Long Haul Truck Diesel 2.11 

 

Let �1 be the fractional fleet composition (by VMT) of each Source Type / in the 

set of Source Types 0, and let �1 be the spatial marginal emissions rates (in mass per 

vehicle-distance) for each Source Type /. Further, let - be a composite vehicle class 

composed of a subset of Source Types in 0, 0% U 0 (such as all LD vehicles). Then the 

composite average emissions rate, �%, for vehicle class - can be calculated as 

�% � ∑ V �W·�W∑ �WWQX� Y1QZ� � ∑ 9�W·�W:WQX���    (3) 

since ∑ �11QZ� � �%. Average emissions rates from the full vehicle fleet, �#, can be seen as 

a special case of �% where 0% [ 0 and ∑ �11QZ� � 1. Alternatively, if . is a set of mutually 

exclusive and exhaustive vehicle classes -, then 0 [ \ 0%%QR  and 
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�# � ∑ 9�1 · �1:1QZ � ∑ ]∑ 9�1 · �1:1QZ� ^%QR � ∑ 7�% · �%8%QR  .  (4) 

4.3.3 Marginal Emissions Rates as a Function of Speed 

To generate emissions rate versus average speed curves, emissions rates are fitted 

to a function of average speed for each pollutant-season-hour-facility combination. The 

discrete average-speed-bin emissions rates are least-squares fitted to an exponentiated 

polynomial of speed following previous emissions research (Barth & Boriboonsomsin, 

2008; Sugawara & Niemeier, 2002). The functional form for vehicle class-average spatial 

marginal emissions rates, �%, as a function of vehicle class-average speed, �%, for each 

vehicle class - is 

�%7�%8 � �_`7∑ 45,% · �%5a5b= 8 ,  (5) 

where 45,% are fitted parameters, �% is in grams per vehicle-mile, and �% is in miles per 

hour (mph). We use ; � 4, again following previous research (Barth & Boriboonsomsin, 

2008; Sugawara & Niemeier, 2002). We can similarly calculate the special case of full-

fleet average emissions rates as 

�#9�#: � �_`7∑ 45 · �# 5a5b= 8 .  (6) 

Full-fleet average temporal marginal emissions rates, �#�, (in grams per vehicle-

hour of travel) are simply the product of �# and �#. Thus from Equation 6, �#� can be 

modeled as a function of average travel speed �# using  

�#�9�#: � �# · �# � �_`7∑ 45 · �# cd>a5b= 8 .  (7) 

In the same way, temporal marginal emissions rates for each vehicle class can be 

modeled using45,% and �%. 
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4.3.4 Marginal Emissions Rates as a Function of Volume 

Using a travel volume-speed relationship, marginal emissions rates per vehicle-

mile can also be estimated as a function of the travel demand volume, , or the effective 

travel demand volume, �. A volume-speed model (such as the BPR function described 

above) relates � to average speed �# – which allows a transformation of �#9�#: to �#9�: �
�#7�#9�:8. Using the fitted parameters 45 from Equation 6 and the BPR model shown in 

Equation 1 along with the relationship �# � 1 "#� , we can calculate 

�#9�: � exp7∑ 45 · �#9�:5a5b= 8 � exp h∑ 45"$�5 I1 J + K� *� LMN�5a5b= i . (8) 

A similar approach was used by Sugawara & Niemeier (2002) to estimate marginal 

emissions costs on a network link for an emissions-minimizing network assignment 

algorithm. If the vehicle class-average speed is the same as the average travel speed for 

all vehicles, �% � �#, then we can similarly estimate �% from � by substituting 45,% for 45 
in Equation 8.  

We also propose a simpler formulation of �#9�: which approximates the form of 

the BPR function (Equation 1), using four fitted parameters: <=, <>, <?, @, and capacity *:  

�#9�: � <= J <> K� *� L J <? K� *� Lj
. (9) 

The fitted parameters <=, <>, <?, and @ are estimated by minimizing the square error of 

�#9�: with respect to emissions rates from Equation 8, using � as the independent 
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variable. Both Equations 8 and 9 can easily be transformed to calculate �#9: instead of 

�#9�: using estimates of 23�% and �% with Equation 2.  

4.4 Total Corridor Emissions 

Total emissions, �% (in mass per time, per length of roadway), from all on-road 

vehicles of class - passing through a corridor are simply the product of the spatial 

marginal emissions rate, �%, and the traffic volume flow rate %. Cumulative total corridor 

emissions, �, from on-road vehicles of all vehicle classes - in the set of mutually 

exclusive and exhaustive vehicle classes ., per unit length of road per unit of time, are 

then 

� � ∑ �%SQT � ∑ 7% · �%8SQT �  · ∑ 7�% · �%8SQT �  · �# . (10) 

4.5 Travel Demand Elasticity 

The concept of travel demand elasticity is discussed, analyzed, and assessed 

thoroughly in the literature, as described in Section 2.5. We use demand elasticity here as 

the most established way of accounting for broad behavioral responses without 

introducing numerous other parameters to this analysis (such as network characteristics, 

trip characteristics, and other non-time cost components).  

First we define the elasticity of travel demand volume % (in number of vehicles 

per unit time) to travel rate "% (in time per unit distance) for vehicles of class - as ���B� , 

which can be calculated  

���B� � B��� · n��nB�  . (11) 
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This is the point elasticity at 7"% , %8. The linear or mid-point arc elasticity between two 

travel rate/demand volume conditions 9"%>, %>: and 9"%?, %?: is calculated as 

���B� � ]B�odB�p^ ?⁄]��od��p^ ?⁄ · ]��o���p^]B�o�B�p^ � ]B�odB�p^]��o���p^]��od��p^]B�o�B�p^  (12) 

(see Litman, 2011). Using point elasticity, the elasticity of travel demand volume % to 

changes in average travel speed �% for vehicles of class -, represented as �����, is then 

����� � ���� · r��r�� � ���� · r��rB� · rB�r�� � s���B�  (13) 

since �% � 1 "%�  and 
rB�r�� � s�%�?.  

Travel demand elasticity in the literature generally addresses net changes in total 

travel distance (i.e. VMT) with changes in average travel rates or average travel speeds. 

The changes in VMT are the result of a combination of changing number of vehicle trips 

and changing vehicle trip distances, through various pathways (Cervero, 2002). The 

changes are net changes because travel speed changes can have offsetting effects. For 

example, with a travel speed reduction some vehicle trips could be eliminated because of 

the increased time costs (reducing VMT), while other vehicle trips could be elongated 

because of rerouting (increasing VMT).  

If ! is the length of a corridor under study, then the total travel demand distance 

on the corridor for vehicle class - (in vehicle-miles traveled per unit of analysis time) is  

'()% � % · ! . (14) 

The demand elasticity as assessed in the literature is best represented as �DEF��� , the 

elasticity of '()% to average travel speed on the corridor, �%. If we assume that all 
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changes in travel demand resulting from travel speed changes on the corridor are 

represented as changes in volume, %, on the fixed-length corridor, then  

�DEF��� � ��DEF� · rDEF�r�� � ����·� · r7��·�8r�� � ����
r��r�� � �����. (15) 

This allows us to use estimates of �DEF���  from the literature to approximate �����. 
The effect of the assumption that ����� � �DEF���  is that all net travel demand (VMT) 

change related to the facility of interest is realized on the facility itself. The advantage of 

this approach is that it avoids specification of the characteristics of the trip outside the 

corridor, the broader roadway network, and the travel behavior responses. The 

disadvantage is that some of the net travel demand (VMT) change is actually occurring 

on other facilities. Using ����� � �DEF���  accurately represents the net change in the quantity 

of VMT, but it neglects the changing characteristics of VMT (the distribution by facility 

type, speed, etc.). But note that the utilization of demand elasticity itself involves a 

potential redistribution of VMT, since it only represents net changes in VMT. For 

estimating emissions effects, the assumption that ����� � �DEF���  will be most accurate 

when the emissions rates on the facility of interest are similar to those on other affected 

facilities. 

The general assessment of �DEF���  from the literature is in the range of 0.2 to 1.0, 

as described in Section 2.5. This value, however, can vary with vehicle class, depending 

on the trip purposes (take the goods movement dominance of HD vehicle demand, for 

example). Beyond the average-speed effects on demand represented by �DEF��� , traffic 
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instability and unreliability also increase the costs of travel (Bigazzi & Figliozzi, 2011), 

and thus can influence the travel demand volume. We assume no travel unreliability 

effects on travel demand for this analysis. Thus the results here will be conservative, as 

incorporating unreliability relationships would likely increase the demand elasticity to 

traffic speed/congestion level changes (Goodwin, 2004).  

4.6 Emissions Gradients and Elasticities 

The gradients of total and marginal emissions rates can be calculated using the 

derivates of �% and �%. 

4.6.1 Emissions Changes with Travel Speed 

In this section we formulate equations which represent how emissions rates and 

total emissions, �% and �%, vary with changes in �%. This considers both % and �% to be 

functions of �% – i.e. variable demand volume and emissions rates with changing average 

speed. With marginal emissions rates, �%, defined as in Equation 5, the emissions rate 

gradient for each vehicle class - with respect to changes in �% is  

n��n�� � �% · ∑ 7t45,%�%c�>8a5b>  . (16) 

Expressed as the elasticity, �����, for vehicle class - of emissions rates, �%, to speed, �%, this 

becomes 

����� � ���� · n��n�� � ∑ 7t45,%�%c8a5b>  . (17) 

Using Equations 10, 13 and 17, we can then calculate the gradient in total 

emissions, �%, from each vehicle class due to a change in class-average speed, �%, as 
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n��n�� � n��n�� · �% J % · n��n�� � ���� ]����� J �����^ . (18) 

Expressed as a total emissions elasticity to speed for each vehicle class we have simply  

����� � ���� · n��n�� � ����� J �����  . (19) 

Combining Equations 17 and 19,  

����� � ����� J ∑ 7t45,%�%c8a5b>  , (20) 

and we see that the elasticity of total emissions to traffic speed changes for each vehicle 

class is dependent only on travel demand volume elasticity �����, traffic speed �%, and fitted 

emissions rate parameters 45,%. 

Let us define the average travel speed for all vehicles, �#, as the volume-weighted 

average of each vehicle class’s average travel speed, �%,  

�# � ∑ 7�% · �%8SQT  . (21) 

For the gradient of total emissions to average speed changes for all vehicles we have 

n�n�C � ∑ un��n�C vSQT � ∑ wn��n�� · n��n�C xSQT � ∑ w���� · ����� · n��n�C xSQT  . (22) 

Expressed as the elasticity of total emissions to average speed for all vehicles,  

���C � �C� · n�n�C � �C�# · ∑ w������ · ����� · n��n�C xSQT  . (23) 

If we assume that the absolute speed change is the same for all vehicle classes, 

n��n�C � 1 y j Q J, then for total emissions gradient and elasticity to average speed for all 

vehicles we have 
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n�n�C � ∑ wn��n��xSQT � ∑ w���� · �����xSQT  (24) 

and 

���C � �C�# · ∑ w������ · �����xSQT  . (25) 

Alternatively, if we assume that the proportional (percentage) speed change is the same 

for all vehicle classes, 
r��r�C � ���C  y j Q J, then we have  

n�n�C � ��C · ∑ u�% · �% · �����vSQT   (26) 

and 

���C � >�# · ∑ u�% · �% · �����vSQT  . (27) 

Therefore, in addition to the demand elasticity, traffic speed, and emissions fit parameters 

for each class needed to calculate, ����� (see Equation 20), elasticity of total emissions 

simply requires estimates of the fraction fleet composition, �%. 

Finally, for the average emissions rate from all vehicles, �#, if we assume that the 

fleet mix is unaffected by average speed changes, 
n��n�C � 0  y j Q J, and assume the same 

average-speed-change proportionality as above, 
r��r�C � ���C  y j Q J, then 

n�#n�C � ∑ ]n��n�C �% J �% n��n�C ^SQT � ∑ |n��n�� · n��n�C · �%}SQT � >�C · ∑ ]�% · �% · �����^SQT  . (28) 

For the elasticity of average emissions rate, �#, to average speed, �#, for all vehicles (using 

the same assumptions),  

��#�C � �C�# · n�#n�C � >�# · ∑ ]�% · �% · �����^SQT  . (29) 
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4.6.2 Emissions Changes with Travel Volume 

In this section we formulate equations which represent how emissions rates and 

total emissions, �% and �%, vary with changes in %. Here we consider �% to be a function 

of % through �%7%8 – by using a volume-speed relationship such as the BPR function. 

We first define the elasticity of travel speed, �%, to changes in volume, %, for vehicle 

class - as 

����� � ����
n��n�� , (30) 

and for all on-road vehicles as 

��C� � ��C n�Cn� . (31) 

We can then calculate the elasticity of emissions rates, �%, to travel volume, %, for each 

vehicle class as 

����� � ���� · n��n�� � ���� · n��n�� · n��n�� � ����� · �����  , (32) 

and for all on-road vehicles as 

��#� � ��# · n�#n� � ��# · n�#n�C · n�Cn� � ��#�C · ��C� . (33) 

The elasticity of total emissions �% to changes in travel volume % for each vehicle class 

is calculated 

����� � ���� · n��n�� � ���� |�% J % n��n��} � 1 J ����� � 1 J ����� · �����  , (34) 

and for all on-road vehicles 

��� � �� · r�r� � 1 J ��#� � 1 J ��#�C · ��C� . (35) 
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Since ����� and ��#�C  can be calculated as described in the previous section, the 

remaining task is calculation of ����� and ��C�. If we apply the BPR function, then for the 

general case inclusive of all on road vehicles, by differentiating Equation 1 we get 

nB#n� � B~�M� · n��n� · ]��� ^M�>
 , (36) 

which allows us to compute 

��C� � ��C · n�CnB# · nB#n� � s ��CB~�M� · n��n� · ]��� ^M�> � ��M�����V] ���^�d�Y ∑ 7����·��8�Q�  . (37) 

It should be noted that these equations assume a certain, fixed relationship between � (or 

) and �# (or "#) – namely, the BPR function. Importantly, the roadway capacity * is a 

fixed parameter. For this reason using the volume-speed equations will only help us 

estimate the impacts of varying demand volumes on emissions when all other operational 

and roadway capacity factors are unchanged.  

4.7 Demand Elasticity for Break-Even Emissions Conditions 

Given the high uncertainty of true demand elasticity to travel speed, �����, it can be 

informative to simply calculate a demand elasticity which represents break-even 

conditions from an emissions perspective, here denoted γ���� . Then we can compare γ����  to 

a likely range of ����� in order to predict the net emissions effects of a change in traffic 

speed, �%. This is similar to the approach used by Noland & Quddus (2006) to predict the 

total emissions effects of a traffic flow change using microsimulation.  
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4.7.1 Break-Even Demand Elasticity by Vehicle Class  

From Equation 18 total emissions will remain constant with travel speed changes 

for each vehicle class, 
r��r�� � 0, when ����� � s�����. That is in addition to the trivial cases 

in which the traffic flow volume or the emissions rate from that vehicle class is 

zero, % � 0 or �% � 0. Therefore, from Equation 17 break-even demand elasticity, γ���� , 

for vehicle class - is calculated  

γ���� � s����� � s ∑ 7t45,%�%c8a5b>  . (38) 

For formulations of the emissions versus speed relationship, �%7�%8, other than Equation 

5, γ����  can more generally be calculated from γ���� � s ���� · n��n�� . 
From Equations 19 and 38 follows that  

����� � ����� s γ����  . (39) 

Thus, the elasticity of class-total emissions to traffic speed changes is the difference 

between the vehicle class’s true demand elasticity to travel speed, �����, and its break-even 

demand elasticity to travel speed, γ���� . When true demand elasticity exceeds break-even 

demand elasticity ]����� � �����^, ����� is positive and traffic speed increases will increase 

total emissions from vehicle class - (due to the dominance of induced demand). When 

true demand elasticity is less than break-even demand elasticity ]����� � �����^, ����� is 

negative and total emissions from vehicle class - will decrease from traffic speed 

increases (due to the dominance of increased efficiency). 
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Since γ����  in Equation 38 is only a function of �%, not %, neither γ����  nor ����� rely 

on a specific volume-speed relationship such as the BPR function. They can simply be 

calculated from the existing average speed �%, the fitted emissions rate parameters 45,%, 

and the true demand elasticity to speed �����. The same independence of γ����  and ����� from 

% applies to other formulations of �%7�%8, as long as it is a function only of �%. 

4.7.2 Graphical Method of Determining Break-Even Demand Elasticity 

As a graphical alternative, we can use the slope of the total emissions contour 

lines (“iso-emissions” lines) on the �% versus % plane to estimate break-even emissions 

elasticity for a vehicle class -, γ���� . The total emissions contour slope can be calculated as 

the orthogonal vector to the total emissions gradient at any point. For total emissions 

�%7% , �%8 as a function of vehicle flow % and traffic speed �%, the total emissions 

gradient is ��%7% , �%8 � |�% , % r��r��}. Note that this deviates from the gradients of �%7%8 

and �%7�%8 shown in the previous sections since it disregards the relationship between % 

and �%.  

The slope of the total emissions contour lines on the %-�% plane is the orthogonal 

vector to the gradient vector, |s% r��r�� , �%}. Thus the iso-emissions lines follow the slope 

n��n�� � �����
r��r��, which is the relationship between % and �% which represents emissions 

break-even conditions. Expressed as an elasticity, the iso-emissions slope is the break-

even demand elasticity γ���� � ����
r��r�� � �����

r��r�� � s�����, which is the same as Equation 38.  
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4.7.3 Break-Even Demand Elasticity for a Mixed Fleet 

For mixed fleets of multiple vehicle classes, total emissions are unaffected by 

travel speed changes when 
r��r�� � 0 for all vehicle classes, i.e. ����� � γ����   y- Q .. But not 

every class’s total emissions need to be insensitive to speed changes in order to have a net 

zero change in total emissions with average travel speed changes. Some vehicle classes 

can increase class-total emissions while others decrease class-total emissions, off-setting 

each other.  

We can see the potential for tradeoffs using Equation 27. If the travel speed 

change is proportionally equivalent for all vehicle classes, 
r��r�C � ���C  y - Q ., then an 

emissions break-even condition exists when   

���C � 0 � ∑ u�% · �% · �����v%QR  .  (40) 

For this to be true in cases other than ����� � 0  y - Q ., some vehicle classes must have 

positive ����� and others negative (since �% and �% will always be positive). More generally, 

for conditions when the speed changes vary by vehicle class as ∆�%, total emissions are 

unaffected by speed changes when  

���C � 0 � ∑ w������ · ����� · ∆�%xSQT  .  (41) 

Here we see that trade-offs can come from positive and negative values of ����� and/or 

from speed changes in different directions (positive and negative values of ∆�%). 
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4.8 Other Data Used in the Analysis 

In addition to the data required for emissions and traffic modeling described 

above, in this research we make use of real-world traffic data from the PORTAL data 

archive at Portland State University (http:\\portal2.its.pdx.edu). This traffic data archive 

extends back to 2004 with 20-second aggregated vehicle count, average speed, and 

detector occupancy data from hundreds of inductive dual-loop detectors on the Portland, 

Oregon metropolitan freeway system.  

4.9 Summary of Methodology 

As stated previously, the conceptual diagram in Figure 1 shaped the methodology 

of this research. Now that we have developed the necessary equations, we can revisit the 

conceptual framework and flush it out with notation and the core equation. Figure 2 

shows the key pieces of the modeling framework expressed as elasticities (illustrated 

assuming a uniform vehicle fleet). The last equation in the figure, ���C � ���C J ��#�C , is the 

central equation of this research; it expresses the total emissions elasticity to speed as the 

joint effects of both pathways (vehicle efficiency through ��#�C and behavioral responses 

through ���C).  
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Figure 2. Conceptual Modeling Framework as Elasticities 

Emissions rate elasticity, ��#�C , can be analytically determined from emissions rate 

modeling (Equation 17). There is uncertainty associated with the emissions modeling, but 

emissions rates can be estimated for aggregate average driving conditions. Demand 

elasticity, ���C , has more uncertainty because it depends on forecasting driver behavior 

changes. This driver behavior uncertainty motivates the estimation of break-even demand 

elasticity, γ��C , which can also be calculated from the emissions rate modeling results (see 

Equation 38). Then a likely range of ���C can be compared with γ��C  to assess the expected 

emissions effects of a travel speed change. This relatively simple approach allows 

estimation of the total emissions impacts of congestion or congestion mitigation, 

requiring only the emissions-speed curve fit parameters and an expected range for 

demand elasticity. In the next chapter we will see the results of this estimate using 

different emissions models. 
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5 FULL FLEET TOTAL EMISSIONS 

We first present the emissions results as they relate to the full vehicle fleet. In this 

chapter we treat the entire vehicle fleet as a unified class, where 0% [ 0. The following 

sections show emissions rates per vehicle-mile as a function of speed on freeways and 

arterials, emissions rates per vehicle-hour, emissions rates as a function of volume, total 

emissions, and emissions elasticities. These results are for undefined roadways of each 

facility type. 

5.1 Spatial Emissions Rates (per Vehicle-Mile) 

The composite full-fleet average emissions rates, �#, are calculated as a special 

case of Equation 3 where 0% [ 0 and ∑ �11QZ� � 1. Then the parameters 45 are fitted from 

Equation 6 for �#9�#: by minimizing square error, using ; � 4. The data points for the 

curve fit are the modeled emissions rates at each of 16 average speed bins (in 5 mph 

increments). The fitted parameters 45 for the MOVES-based Emissions-Speed Curves 

(ESC) are shown in Table 4 for the full on-road fleet, for PM peak periods on freeways in 

April, 2010. These use �# in mph and �# in grams per vehicle-mile. 

Table 4. Full-Fleet MOVES Emissions-Speed Curve Fit Parameters for Freeways 

Freeways CO2e CO PM2.5 NOx HC 4= 8.191 2.885 -1.223 1.897 0.3352 4> -0.1826 -0.1788 -0.1769 -0.1656 -0.2040 4? 0.006339 0.006629 0.006640 0.005830 0.006643 4� -9.690E-05 -1.092E-04 -1.127E-04 -8.928E-05 -1.012E-04 4� 5.357E-07 6.518E-07 6.724E-07 4.936E-07 5.674E-07 
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Plots of full-fleet freeway marginal emissions, �#, versus average travel speed, �#, 
are shown in Figure 3 for CO2e, CO, PM2.5, NOx, and HC. In addition to the ESC 

generated by MOVES for a 2010 Portland on-road fleet, comparison curves are plotted 

based on research by Boulter et al. (2009) and Barth & Boriboonsomsin (2008). The 

Boulter curves are for European vehicles on unspecified facilities, with an approximately 

equivalent mix of vehicle types as the Portland 2010 modeled fleet, shown in Table 3. 

The Boulter curves are only drawn over their valid speed range. The Barth curve is for 

CO2 emissions (plotted with CO2e from MOVES), for a LD vehicle fleet from Southern 

California in 2005. As a qualitative reference, average speeds for different freeway level-

of-service (LOS) indicators are included, as described in Section 4.2.3. Note that all three 

models estimate slightly different CO2 emissions: MOVES estimates CO2e (all 

greenhouse gases in CO2-equivalent units), Barth estimates direct emissions of CO2, and 

Boulter estimates ultimate CO2 (using the assumption that all the carbon content of the 

fuel eventually ends up as atmospheric CO2). Since CO2 dominates greenhouse gas 

emissions (U.S. Environmental Protection Agency, 2009), these emissions types should 

be comparable.  
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Figure 3. Full-Fleet Freeway Emissions Rates versus Average Speed (�C vs. ��),  

with Freeway LOS 

The model sources for the curves in Figure 3 are based on different vehicles, 

emissions test data, and assumptions, and so it is not surprising that they do not agree on 

absolute emissions rates. For example, European vehicles (in the Boulter model) have 

generally more stringent PM controls than U.S. vehicles. The key to observe in these 

figures is that �# does not have a monotonic relation with �#, and there are potential 
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emissions rate reductions from moderating speeds from both directions. There is also a 

relatively flat area in the middle of the curve – where sensitivity of �# to �# is slight.  

 

Figure 4. Full-Fleet Freeway Emissions Rate Gradients versus Average Speed, with 

Freeway LOS  

The sensitivity of  �# to �# is perhaps more easily seen in Figure 4, which shows the 

ESC gradients versus average travel speed for the same pollutants and models. These are 

calculated using Equation 16 for 
r�#r�C, then converting from mass rate changes to 
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percentage rate changes for each 1 mph increase in �#. The minimum emissions rate is 

when the gradient curve crosses the speed (horizontal) axis. 

The gradients in Figure 4 have low absolute values from 25-70 mph – meaning 

speed changes over this range have a small effect on marginal emissions. Increasing 

speeds above LOS E provides small emissions benefits, and above LOS A can have an 

emissions-intensifying impact. While the ESC and ESC gradients differ by pollutant, 

vehicle type, and emissions model, the emissions gradients are consistently small at 

moderate speeds. As such, few emissions efficiency gains are to be found outside of 

heavily congested (or extremely high speed) freeway sections. The general agreement 

among models suggests that these findings apply to other developed countries as well. 

The 25-70 mph speed range with low emissions sensitivity is wide enough to 

encompass most freeway travel. As an example, Figure 5 shows the distribution of 

freeway VMT in 5-mph speed bins using real-world traffic data from freeways in 

Portland, Oregon. This figure is based on one month (July 2010) of 5-minute aggregated 

inductive dual-loop detector data on 15 miles of the I-5 freeway in Portland, Oregon 

(northbound from milepost 290 to milepost 305). These bounds include roughly 44 

million VMT. The data were mined from the PORTAL data archive 

(http:\\portal2.its.pdx.edu). The 25-70 mph speed range includes 96% of all freeway 

travel, and 81% of workday peak-hour travel (5pm – 6pm). Admittedly, urban areas with 

more heavy congestion or higher free-flow speeds would have higher percentages of 

VMT outside of the 25-70 mph range (e.g. see Barth & Borboonsomsin (2008)).  
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Figure 5. Distribution of VMT using 5-minute average speeds from dual-loop 

detectors on I-5 northbound in Portland, Oregon 

5.1.1 Arterial versus Freeway Emissions Rates 

The fitted parameters for the MOVES emissions-speed curves (by Equation 6) are 

shown in Table 5 for the full on-road fleet on arterials for PM peak periods in April, 

2010. Figure 6 shows the ESC and ESC gradients that result from the arterial parameters 

in Table 5. The Boulter ESC and ESC gradients are included in Figure 6 as well, since 

they are not facility-specific. Although the emissions rates are similar to Figure 3, the 

lower speed range (expected for arterials) shows decreasing MOVES-modeled emissions 

rates with increasing speed (negative gradients) over the full speed range.  
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Table 5. Full-Fleet MOVES Emissions-Speed Curve Fit Parameters for Arterials 

Arterials CO2e CO PM2.5 NOx HC 4= 8.161 2.772 -1.277 1.852 0.2974 4> -0.1735 -0.1378 -0.1618 -0.1554 -0.1960 4? 0.005899 0.004602 0.005876 0.005390 0.006389 4� -8.937E-05 -7.356E-05 -9.883E-05 -8.239E-05 -9.841E-05 4� 4.929E-07 4.435E-07 5.896E-07 4.572E-07 5.576E-07 

 

Figure 7 compares the freeway and arterial full-fleet ESC gradients from the 

MOVES model using the fitted parameters, 45, shown in Table 4 and Table 5. The 

differences in the curves arise because of differing driving patterns on each facility: 

different combinations of vehicle operating modes can result in the same average travel 

speed. All other factors are the same between the curves (fleet composition, vehicles, 

weather, fuel, etc.). The shapes are quite similar, although the arterial emissions rates are 

slightly more sensitive to speed. This means that the potential for emissions rate 

reductions by increasing average speeds is greater on arterials than on freeways. This is 

particularly true considering the speed range differences; a moderately congested arterial 

has a lower average speed than a moderately congested freeway. 
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Figure 6. ESC and ESC Gradients for Arterial Emissions 
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Figure 7. Comparison of freeway and arterial emissions-speed gradients 
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schedules mined from the MOVES drive schedule library (used for average-speed 
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schedule representing LOS F conditions on a freeway facility for LD vehicles, with an 

average speed of 21 mph (MOVES drive schedule ID 1021). The bottom histogram 

shows a drive schedule with a slightly higher average speed, 25 mph, for LOS C 

conditions on an arterial facility for LD vehicles (MOVES drive schedule ID 1030). 

Although the overall average speeds are similar, the freeway drive schedule contains 

more low-speed driving in the 5-25 mph range, while the arterial drive schedule contains 

more idling and mid-speed driving (around 25-40 mph). Additionally, the two drive 

schedules have different distributions of second-by-second accelerations, with more 

heavy accelerations and decelerations for the arterial drive schedule. These second-by-

second speed and acceleration differences between facility-specific drive schedules with 

similar average speeds result in different emissions rate estimates for a given average 

speed because they generate different engine loading estimates during emissions 

modeling. 
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Figure 8. Comparison of Speed and Acceleration Distributions for Freeway and 

Arterial Drive Schedules with Similar Average Speeds 

By various models and for various pollutants, the consistent pattern appears of 

stagnant emissions rates per vehicle-mile over a wide range of moderate speeds. At the 

more extreme speeds (below 25 and above 70 mph) travel efficiency degrades rapidly. A 

comparison of ESC for different seasons and hours shows no notable difference. This is 

expected, as we have modeled running exhaust emissions and seasonal/hourly variations 

in emissions rates are due to meteorological differences which mostly affect evaporative 

emissions. A final note on the sensitivity of the ESC and ESC gradients is that they are 

based on archetypal driving patterns and average-speed emissions modeling. Drive 

schedules representing different driver, roadway, or vehicle characteristics will produce 

different ESC (see Section 2.3.2.2). Changes in microscopic traffic characteristics over 

time (behavioral, technological, or operational) will also affect the shapes of the ESC.  
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5.2 Temporal Emissions Rates (per vehicle-hour) 

The ESC in Section 5.1 describe the relationships between average travel speed �# 
and average emissions rates normalized to travel distance, �#. In this section we look at the 

relationship between average travel speed �# and full-fleet average emissions rates 

normalized to travel time, �#�, as calculated from Equation 7. We use the same fitted 

parameters 45 as in Section 5.1, shown in Table 4. With �# in mph, �#� is then in grams per 

vehicle-hour. 

Temporal marginal emissions rates versus average speed curves describe how the 

average travel speed affects a single vehicle’s emissions rate per hour of operation. For 

assessing long-term total emissions characteristics, temporal rate curves would be 

indicative of the total emissions-speed relationship if travel demand were fully elastic 

with travel time – i.e. total travel time were fixed. This scenario has been suggested by 

Metz (2008), who claims that in the long run average travelers adjust their travel behavior 

by modifying their access choices while maintaining a fairly constant travel time budget. 

Such an approach differs greatly from the application of spatial emissions rates (as found 

in Section 5.1) for total emissions-speed relationships, which implies fixed travel 

distance insensitive to travel time constraints (i.e. inelastic demand).  

An illustrative comparison of marginal freeway fleet CO2e emissions rates (both �# 
and �#� versus �#) is shown in Figure 9 for Portland 2010 in grams per vehicle-minute and 

grams per vehicle-mile. These curves meet at 60mph where the travel rate is 1 minute per 

mile. At low speeds the curves display diverging behavior. Per unit distance, the spatial 

emissions rates �# increase at lower speeds because of inefficient driving and longer 
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operating time. Per unit time, the temporal emissions rates �#� decrease at lower speeds 

because of lower engine loads.  

 

Figure 9. Fleet CO2e emissions rates per mile and per minute, with freeway LOS 

From a long-term perspective, the low-speed slope of total emissions as a function 

of average speed depends on the relative stability of travel distance and travel time. If 

total travel distance is fixed (perfectly inelastic), total emissions increase with lower 

speeds similarly to spatial emissions rates. If adjusting for shorter travel distances to 

maintain travel time (perfectly elastic demand), total emissions decrease at lower speeds 

similarly to temporal emissions rates. The long-term reality of total emissions is 

somewhere in between the perfectly inelastic and elastic demand projections. If we 

assume that in the long-run travelers are not fixed to an absolute travel distance or time, 

but make trade-offs depending on the utility of each, then the most representative shape is 

somewhere in between these curves. As such, the long-term emissions inefficiencies of 
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low travel speeds are not as great as they appear to be from the spatial emissions rate 

curves in Section 5.1.  

5.3 Emissions Rates as a Function of Volume 

For spatial marginal emissions rates as a function of traffic volume, �#9�:, we 

estimated the parameters in Equation 9 using values of �# from Equation 8 with the 

MOVES-modeled parameters above for 45, "$ � 1 mile/minute (60mph free-flow 

speed), * � 2,200 pcphpl (passenger cars per hour, per lane), + � 0.15 and , � 7. 

Minimizing the sum of square error with non-negative parameters using � as the 

independent variable from 0 to 3,630 pcphpl, we generate the parameter estimates shown 

in Table 6. This range for � was selected because it generates travel speed estimates 

from 10 to 60 mph using the BPR function. Results for CO2e (MOVES) and CO2 (Barth) 

are illustrated in Figure 10. 

Table 6. Fitted Emissions Parameters from Equation 9 

Parameter CO2e  

-MOVES 

CO2  

-Barth 

CO  

-MOVES 

PM2.5 

 -MOVES 

NOx  

-MOVES 

HC  

-MOVES <= 423 327 2.37 0.0248 1.05 0.0761 <> 27.0 0.000 0.168 0.0105 0.0465 0.0163 <? 3.55 1.67 0.0176 0.000331 0.00398 0.00153 @ 9.98 10.1 10.0 9.97 10.0 10.0 

R2 
0.995 0.990 0.993 0.968 0.994 0.995 

 

The fit for all pollutants is good, with R2 values above 0.96. The parameter m is 

about 10 for all pollutants, reflecting a similar shape to the emissions rate versus demand 

volume curve. Comparing the MOVES and Barth models for CO2e and CO2, 

respectively, the proposed formulation works for both despite the different fleet 
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compositions and emissions model data. The difference in magnitude is to be expected, 

as the MOVES model includes heavy vehicles while the Barth model does not.  

Looking at Figure 10, the �#9�: formulation in Equation 9 smoothes out the 

MOVES curve around � � 2,500 pcphpl. Since the fitted parameters are non-negative 

(to create a concave form for Equation 9), the decrease in emissions rates around 

� � 2,500 pcphpl in the Barth model is not captured by this formulation. From Table 6, 

though, only the Barth CO2 model is constrained by non-negativity. The decrease in 

emissions rate occurs because the assumed free-flow speed is above the optimal speed in 

the Barth Model. The non-decreasing emissions rate formulation will not reflect this 

initial efficiency gain for high free-flow (or low optimal) speeds. Still, these results show 

that Equation 9 is a good approximation of �#9�: for certain free-flow speed and 

emissions-minimizing speed conditions (particularly when the later exceeds the former). 

These curves can be used for traffic modeling which requires simplified and integrated 

emissions and volume estimation, such as emissions-minimizing traffic flow optimization 

(e.g. Bigazzi & Figliozzi (2011), Sugawara and Niemeier (2002)).  
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Figure 10. CO2 Emissions Fits for MOVES (Black) and Barth (Grey) Models by 

Equation 9 

5.4 Total Emissions 

Relationships between total emissions and traffic speed can assist with 

macroscopic mitigation strategy development and assessment, targeting both vehicle 

emissions and congestion. While the figures in Section 5.1 demonstrate emissions rate 

benefits of increasing congested vehicle speeds, the impacts of varying travel distances 

illustrated by Figure 9 show that congestion mitigation strategies must also assess traffic 

volume when estimating total emissions effects of speed improvements. Increasing 

congested travel speeds will often reduce the average vehicle’s spatial marginal 

emissions rate, but it will also induce more travel.  
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5.4.1 Total Emissions and Demand Volume 

The total on-road emissions, �, from a given demand volume of vehicles, , is 

calculated using Equation 10 and the average emissions rates, �#, from Section 5.1. Figure 

11 shows CO2e total emissions, �, as shading on the �# versus � plane (assuming no PCE 

adjustment, � � ). The curve on Figure 11 is the theoretical relationship between 

demand volume and average speed from the BPR Equation (1). The ESC shown in 

Section 5.1 can be seen as vertical slices of the shading contours, magnified by flow rate 

(since � �  · �#). 

 

Figure 11. Total Emissions ( ) as Shading on the Speed (��) versus Effective Demand 

Volume (¡�) Plane, with BPR Curve 
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increases �# (see Figure 3). The speed impact on total emissions is particularly 

pronounced at low speeds (�# � 25 mph,  � 3,000 pcphpl) where �# increases rapidly 

with decreasing �#.  
5.4.2 Total Emissions and Vehicle Throughput 

Using demand flow  to calculate total emissions � accounts for vehicles queued 

or delayed upstream during congestion. But during heavy congestion when � � *, actual 

vehicle throughput on the section of interest will be less than  on a limited temporal 

scale (May, 1989). In this case some of the emissions on the road section of interest will 

be displaced upstream or delayed until the next time period, though the total emissions 

will be the same. For a demand volume , let us define the actual vehicle throughput at a 

specific location for a specific time period as &, in the same units as . 

We can illustrate the displaced emissions effect using total emissions estimates 

(based on � � & · �#) with observed traffic data. Figure 12 presents total emissions (�) 

contours in kg per hour per lane-mile of roadway as lines and shadings on the traffic 

speed (�# in mph) versus vehicle throughput (& in vphpl – vehicles per hour, per lane) 

plane. The contour lines are iso-emissions lines. In addition, Figure 12 shows 5-minute 

aggregated traffic states from all 24 hours of January 21, 2010 on I-5 northbound in 

Portland, Oregon (as circles). These traffic data were collected from 15 inductive dual-

loop detector stations on the freeway (between mileposts 290 and 305) and mined from 

the PORTAL transportation data archive at Portland State University 

(http:\\portal.its.pdx.edu). The 5-minute aggregation was selected because it has been 

shown elsewhere to best approximate average freeway travel speeds (Bigazzi, Siri, & 
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Bertini, 2010; Wang & Liu, 2005) and it is short enough that � � * for some time 

periods on this busy freeway. The observed speeds are used to estimate �# from the 

MOVES-modeled parameters above.  

 

Figure 12. Total Emissions ( ) as Shading and Contours on the Vehicle Speed (��) 

versus Vehicle Throughput (¡¢) Plane, with Observed Traffic States 

From Figure 12 we see that no observed 5-minute interval saw & � 2,300 vphpl. 

Congested time intervals with average speeds from 20 to 45 mph had throughput mostly 

in the range 1,000 £ & £ 2,000 vphpl. Heavier congestion with �# � 20 mph had 
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decreasing & down to under 500 vphpl. The measured traffic states display a great deal of 

variance – partly because they were measured at several locations on the corridor.  

As expected from Figure 4, for a wide range of average speeds from 25 to 70 mph 

the effect of �# on � is negligible, and � for different time intervals varies mostly with &. 

This is observed through the vertical orientation of the contour lines. Uncongested time 

intervals from 50 to 70 mph have a particularly wide range of & (and �). For heavy 

congestion (�# � 20 mph), the decreasing & with lower �# offsets increasing �#, resulting in 

similar � during heavy congestion as during more moderate congestion or high-volume 

uncongested conditions.  

Figure 12 presents a different picture of congestion effects on � than Figure 11, 

where � and �# have monotonic relationships with . This is because & fails to account for 

displaced vehicle emissions during congestion. The increasing � expected at low �# from 

Figure 11 is real, but it is displaced to another time interval or an upstream section of 

roadway in Figure 12. The importance of this difference is one of scope of concern. For 

global pollutants like greenhouse gases the location of emissions is unimportant and  is 

most representative. For short-lived local pollutants and analyses of limited spatial and 

temporal scope, & may be more relevant, depending on the time scale. However, an 

analysis of congestion-emissions relationships should be cautious in using & to estimate 

total emissions since displaced emissions due to congestion are not included. Since  is a 

more comprehensive measure, for the remainder of this analysis we will consider only  

in calculating �. 
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5.4.3 Total Emissions Sensitivity to Speed and Volume 

Figure 13 shows the elasticity of emissions rates to speed ��#�C , computed by 

Equation 17. Referring to Figure 11 and Figure 12, ��#�C  is the vertical gradient in �9, �#: – 

the total emissions on the traffic speed-flow plane – expressed as elasticity (the percent 

change in total emissions � with each percent change speed �# at a fixed flow ). The 

horizontal gradient of �9�#, :, expressed as an elasticity (the percent change in total 

emissions � with each percent change in flow  at a fixed speed �#), is 1. Thus absolute 

values of ��#�C  less the 1 in Figure 13, ¤��#�C¤ � 1, reflect less sensitivity to speed than to flow.  

Here, ¤��#�C¤ � 1 for nearly all traffic states for all five pollutants considered. 

Notable exceptions are the high sensitivity of CO to high travel speeds (above about 65 

mph), the high sensitivity of PM2.5 to traffic speeds in the 50-60 mph range, and the 

sensitivity of HC to very low travel speeds (below about 15 mph).  

 

Figure 13. Elasticity of Emissions Rates to Speed, ¥�C��, by MOVES Model 
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5.5 Total Emissions Elasticity to Speed – Including Variable Traffic Volume 

In Section 5.4 we looked at how average speed affects total emissions from a 

given volume or flow of vehicles. This section describes the impacts of average travel 

speed on total emissions including variable travel demand volumes with travel speed. We 

define the elasticity of travel demand volume to average travel speed for the full fleet as 

���C . The elasticity of total emissions to changes in speed, ���C , is described by the equations 

of Section 4.6. By looking at how changing speeds impact the traffic volume and total 

emissions, we are essentially assessing the emissions impacts of capacity-based 

congestion mitigation, described in Section 2.6.1.  

The elasticity of total CO2e emissions to changes in speed, ���C , calculated by 

Equation 27, is shown in Figure 14for a MOVES-modeled composite freeway fleet with 

varying average speed, �#, and demand elasticity to speed, ���C . Total CO2e emissions 

increase most with speed changes at very high speeds (because the marginal emissions 

rates, �#, increase quickly) and at high demand elasticity to speed (because of traffic 

volume, , increases). The total emissions elasticity ���C  is negative at very low demand 

elasticities with moderate speeds (because of minimal volume increases) or at moderate 

elasticities with very low speeds (because of large emissions rate reductions). The zero-

valued contour line in Figure 14 shows the break-even conditions from an emissions 

perspective described in Section 4.7. Combinations of �# and ���C above this break-even 

line will increase total emissions with a speed increase while combinations below this 

line will decrease total emissions with a speed increase. 
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Figure 14. Elasticity of Total CO2e Emissions to Changes in Speed, ¥ �� , as Shadings 

and Contours on the ¦¡�� versus �� Plane 

Figure 15 repeats Figure 14 for the other four pollutants modeled. The 

relationships are generally similar for CO and NOx as compared to CO2e, although CO 

has higher positive ���C for speeds above 60 mph. PM2.5 and HC both have generally lower 

���C  than CO2e. This is particularly true for PM2.5 at speeds between 40 and 60 mph. This 

difference indicates that, compared to CO2e, total emissions of PM2.5 and HC are more 

likely to decrease with speed increases or increase with speed decreases. 
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Figure 15. (Part I) Elasticity of Total Emissions to Speed, ¥ �� , for CO and NOx, as 

Shadings and Contours on the ¦¡�� versus �� Plane 
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Figure 15. (Part II) Elasticity of Total Emissions to Speed, ¥ �� , for PM2.5 and HC, as 

Shadings and Contours on the ¦¡�� versus �� Plane 

5.6 Emissions Break-Even Demand Elasticity to Speed 

We continue the inspection of emissions break-even conditions by illustrating the 

graphical approach described in Section 4.7.2. Figure 16 shows total CO2e emissions 

contour shadings (� in kg/hr/lane-mi) on the average travel speed (�# in mph) versus 
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horizontal orange arrow on Figure 16. The most likely long-term outcome is some 

induced demand and some travel time savings, ending up on the lower curve somewhere 

between these two extremes.  

To estimate a break-even induced demand volume from an emissions perspective 

we follow an emissions contour line up from the lower (solid black line) traffic curve to 

the upper (dashed black line) curve, arriving at an emissions-equivalent induced demand 

that would cancel marginal speed benefits (the dashed white arrow on Figure 16). For the 

example here, the original emissions are found on the upper curve at a volume of 

 � 2,252 pcphpl – which corresponds to a 2.4% increase in flow and a 5.4% increase in 

travel speed. Thus the emissions break-even elasticity of travel demand to average travel 

speed is ���C � 0.44 (calculated as the mid-point/linear arc elasticity – see Equation 12). 

This is a moderate value in comparison to the literature, which generally ranges from 0.2 

to 1 (see Section 2.5). 

As a comparison among models, full-fleet freeway CO2 and CO2e break-even 

elasticities of travel demand volume to average travel speed, ���C, are shown in Figure 17 

for the three macroscopic emissions models used above for emissions rate modeling: 

MOVES, Barth, and Boulter. The MOVES and Barth models, formulated as 

exponentiated polynomials, use Equation 38. The Boulter model is formulated as a non-

exponentiated 5th-order polynomial and is simply differentiated with respect to speed 

using ���C � s��#�C � s �C�# · n�#n�C. The emissions break-even elasticities ���C can be interpreted as 

‘carbon-neutral’ curves for demand elasticity. True elasticities above the curves 7���C �
���C8 are expected to increase total CO2 emissions from traffic speed increases and true 
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elasticities below the curves 7���C � ���C8 are expected to decrease total CO2 emissions 

from traffic speed increases. By Equation 39 the vertical distance between the break-even 

elasticity curve and the true elasticity is the elasticity of total emissions to travel speed – 

the farther the distance, the greater the emissions impact, positive or negative.  

The results in Figure 17 are highly intuitive in light of the preceding analysis. 

Assuming a moderate demand elasticity of ���C � 0.5, only in heavily congested freeway 

conditions is it possible to reduce total emissions through traffic speed increases. For 

more elastic demand near ���C � 1.0, induced demand will always increase total emissions 

with a traffic speed increase. By the MOVES model, any elasticity above 0.4 would 

likely lead to increased total emissions for speed increases from an initial speed over 

25mph.  

 

Figure 17. Calculated Emissions Break-Even Elasticities of Travel Demand to 

Travel Speed, §¡��, for CO2 (Barth and Boulter) and CO2e (MOVES)  
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At high speeds the MOVES model produces ���C notably different from the other 

two models. Emissions rates �# decrease with speed when approaching free-flow speed 

(around 60mph) in the MOVES model, but increase with speed when approaching free-

flow speed by the other two models (see Figure 4).  Break-even elasticities below zero 

(���C � 0) indicate that emissions rates increase with higher speeds – even before induced 

demand. Hence, in the Barth and Boulter models increasing freeway speed over 45mph 

always increases emissions.  

Figure 18 presents calculated ���C using the MOVES-modeled emissions rates for 

freeways and arterials and the Boulter emissions model (which does not segment by 

facility type), calculated as for Figure 17, for the other four pollutants modeled. Note that 

the vertical scale in Figure 18 is different from Figure 17, to accommodate higher values 

of ���C. There is less agreement here among the models than in Figure 17, which is not 

surprising since not only do other pollutants generally have more modeling uncertainty 

than CO2, but the emissions controls for these pollutants are different between the U.S. 

and the U.K. The emissions models produce particularly different ���C for speeds above 40 

mph. 
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Figure 18. §¡�� for Different Pollutants versus �� 
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the demand elasticities are the same – since the arterial break-even elasticity curve is 

higher than the freeway curve for CO. 

Although the break-even elasticities vary by emissions model, pollutant, and 

initial speed, almost all ���C values here are within a reasonable long-term range of 

demand elasticity to travel speed, between 0 and 1. Values of ���C closer to zero are more 

feasibly reached on a short time scale – which is the case for most pollutants at moderate 

initial speeds. For lower initial speeds below 25mph, the marginal emissions rate benefits 

of speed increases are greater, and so less likely (though still possible) to be offset by 

induced demand. Figure 17 and Figure 18 show that in most situations it is likely that 

traffic speed increases will increase emissions in the long-run by the induced demand 

effect, though the time required for induced demand to cancel marginal emissions rate 

benefits would be longer for heavier initial congestion.  

5.7 Total Emissions Elasticity to Travel Demand Volume  

Combining Equations 35 and 37, the full-fleet total emissions elasticity to volume 

changes is 

��� � 1 J ��#�C · ��M�����V] ���^�d�Y ∑ 7����·��8�Q�  .  (42) 

Assuming that 
n��n� � ��� � ∑ 723�% · �%8SQT  – the  PCE-adjusted flow grows proportionally 

with the volume flow – we can calculate ��� using the previous values for +, ,, c, and "$, 

Equation 17 for ��#�C , the BPR function (Equation 1), and the ESC fit parameters from 

Table 4. The calculated values for Elasticity of Total CO2e Emissions to Volume, ���, are 
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shown in Figure 19 along with the Elasticity of Emissions Rate to Speed, ��#�C , and the 

Elasticity of Speed to Volume, ��C�. These three elasticities are the components of 

Equation 35, where ��� � 1 J ��#�C��C�.  

 

Figure 19. Elasticity of Total CO2e Emissions to Travel Demand Volume, ¥ ¡ , along 

with ¥�C�� and ¥��¡ 

Figure 19 shows ’ values up to 3,500 pcphpl – which corresponds to an average 

travel speed of about 12 mph. For volumes below about ’ � 2,000 pcphpl, the speed 

effects are minimal, as expected. Since ��#�C  and ��C� are both negative, ��� increases at 

higher values of ’ and is always at 1 or above. The increase in ��� is especially dramatic 

for ’ above 3,000 pcphpl (where �# drops below 26 mph), since ��#�C  is large (close to -1) 
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increasing volumes is always expected to increase total emissions. The effect is larger at 

demand volumes well above capacity, where emissions rates increase rapidly with 

demand volume as well (since ��#� � ��#�C · ��C� from Equation 33). Finally, since ��#� � ��� s
1 (see Equation 35), we see that ��#� will be close to 0 for volumes up to about 2,800 

pcphpl. 

 

In this chapter we have shown that: 

1. Emissions rates are “stagnant” at a wide range of moderate speeds, 

2. Emissions rates are more sensitive to speed on arterials than on freeways and 

for local pollutants than for greenhouse gases, 

3. Varying demand volume can outweigh changing efficiency for total emissions 

effects of travel speed changes, and 

4. Total emissions reductions from travel speed increases are only likely for low 

demand elasticity and low travel speeds. 

In the next chapter we look at how the total emissions picture changes when we 

incorporate advanced-drivetrain vehicles. 
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6 THE IMPACTS OF ADVANCED VEHICLE TECHNOLOGIES 

The results in Chapter 5 are for conventional Internal Combustion Engine (ICE) 

vehicles only – the vast majority of the existing on-road fleet (U.S. Environmental 

Protection Agency, 2009b). In this chapter we look at the effects of advanced drivetrain 

and electric vehicles in the fleet. Let vehicle class - � * stand for all conventional 

Internal Combustion Engine (ICE) vehicles, vehicle class - � � stand for Electric 

Vehicles (EV), and vehicle class - � 4 stand for Advanced Drivetrain (AD) vehicles. We 

assume this is the complete set of vehicles, . � ©*, �, 4ª.  
The AD vehicle class contains vehicles (such as gas-electric hybrids) with 

regenerative breaking and other powertrain efficiencies which render them less sensitive 

or insensitive to low-speed inefficiencies. If we are interested in local pollutants, then 

�� � 0 since EV’s have zero on-road air pollution emissions. By extension, 
r��r�� � 0. Let 

us assume for this analysis that AD vehicles in class - � 4 have emissions rates which 

are not zero (�� « 0), but which are insensitive to congestion level and average speed: 

r�¬r�¬ � 0.  

6.1 Emissions Rate Sensitivity to Speed and Advanced Vehicles 

The average emissions rate from a mixed vehicle fleet including EV and AD 

vehicles is �# � ���� J ���� (from Equation 4). Since 
r�¬r�¬ � r��r�� � 0, we know that 

��¬�¬ � ����� � 0. Then from Equation 28 (which assumes proportional speed changes 

among the vehicle classes) 

n�#n�C � >�C 7�� · �� · ���8 � �� ��C n�n� . (43) 
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Compared to the ICE-only gradient 
n�n�, if we assume that �� ® �#, then 

n�#n�C decreases 

proportionally with ��, the fraction of ICE vehicles in the fleet. With a higher fraction of 

EV and AD vehicles, the gradients in Figure 4 would be proportionally closer to zero.  

For emissions rate elasticity to average speed, from Equations 29 and 43, 

��#�C � �� ��# n�n� � ����d�¬�¬ · ��� � �� ��� . (44) 

Again comparing with the ICE-only elasticity ���, here we see that ��#�C  decreases with the 

fraction of ICE emissions out of total emissions. Hence, ��#�C decreases with increasing AD 

vehicle emissions, ��, since the AD vehicle emissions are insensitive to speed changes. 

Furthermore, if the presence of EV’s does not affect the relative proportions of AD and 

ICE vehicles, �� ��� , then the presence of EV’s will not impact ��#�C . 

6.2 Total Emissions Sensitivity to Speed and Advanced Vehicles 

Total emissions, �, from a mixed vehicle fleet including EV and AD vehicles are  

� � ¯���� J ����° . (45) 

Again assuming that the presence of EV’s does not affect the relative proportions of AD 

and ICE vehicles, �� ��� , then the impact on � of EV’s is simply a proportional reduction 

in � equal to the EV proportion of the fleet, ��. For total emissions elasticity to speed, 

from Equation 19 we know that ����� � 0 and ��¬�¬ � ��¬�¬, since ��¬�¬ � ����� � 0. Then, from 

Equation 26, for a mixed ICE/EV/AD fleet 

n�n�C � ��C 7�� · �� · ��� J �� · �� · ��¬�¬ 8. (46) 
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For a fleet of only ICE and EV vehicles (�� � 0), the rate of change of total emissions 

with traffic speed shrinks proportionally with decreasing fraction of ICE’s in the fleet, �±. 

For an increasing fraction of AD vehicles, ��, if the AD vehicles are replacing EV’s then 

n�n�C is expected to increase with �� (because of variable demand). If the AD vehicles are 

replacing ICE vehicles, then the change in 
n�n�C depends on the relative emissions rates and 

elasticities, ��, ��, ��¬�¬, and ���.  
In terms of emissions elasticity to speed, using the assumption that ��¬�¬ � ���, 

then from Equation 27 

���C � �·�·²³´ d�¬·�¬·µ�¬´¬
�·�d�¬·�¬ � ��� s �¬� ��� .  (47) 

For a fleet of only EV and ICE vehicles 9�� � 0:, the elasticity is unaffected by the 

presence of EV’s, ���C � ���. With an increasingly high fraction of AD vehicles, ��, the 

elasticity increases (becomes more positive), since ��� is expected to be negative through 

most of the range of feasible speeds – see Figure 13. This makes sense, as the AD 

vehicles do not see the efficiency improvements of ICE vehicles with increasing speed, 

but still are subject to increased emissions through induced demand.  

6.3 Break-Even Demand Elasticity and Advanced Vehicles 

Equation 40 implies emissions break-even conditions when  

�� · �� · ��¬�¬ � s�� · �� · ��� .  (48) 

If we again assume that ��¬�¬ � ���, then emissions break-even conditions exist when 

��¬�¬ � ��� � �·��¬·�¬d�·� · γ�� � �� γ��  .  (49) 
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Thus the break-even demand elasticity with AD vehicles is proportionally smaller than 

for ICE vehicles alone, in proportion to the fractional ICE emissions out of total 

emissions. As with ��#�C and ���C , if the presence of EV’s does not affect the relative 

proportions of AD and ICE vehicles, �� ��� , then the EV’s will not impact break-even 

demand elasticity. 

6.4 Summary of Advanced Vehicle Impacts 

In summary, emissions rates from fleets with advanced vehicles are less sensitive 

to speed changes than all-ICE fleets. But because AD vehicles decrease emissions rate 

sensitivity to speed while still experiencing variable demand, they increase (make more 

positive) total emissions elasticity to speed. Similarly, the break-even demand elasticity 

of a fleet with AD vehicles is smaller than that of a fully ICE fleet. Although EV’s 

decrease total emissions and emissions gradients, they do not affect emissions elasticity 

to speed for local pollutants (since the induced demand emissions are zero). 

These results show that emissions from fleets with more advanced vehicles are 

less sensitive to congestion. As vehicle emissions rates become less sensitive to speed, 

the break-even demand elasticity gets smaller. Thus, the potential for emissions benefits 

from congestion mitigation will decrease with more advanced vehicles. In the next 

chapter we extend the analysis to consider heavy-duty and light-duty portions of the fleet 

separately. 
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7 THE IMPACTS OF HEAVY VEHICLES  

In this chapter we compare the differing impacts of two ICE vehicle classes: light-

duty (- � ¶) and heavy-duty (- � ·). Thus, . � ©¶, ·ª, where ¶ and · are differentiated as 

described in Section 4.3.2. These two vehicle classes have emissions rates �� and �� 

(calculated from Equation 3), and volume flows � and �. 

7.1 Emissions Rates and HD/LD Vehicle Classes 

The MOVES-fitted parameters for emissions rates (by Equation 5 using ; � 4) of 

LD and HD portions of the vehicle fleet are shown separately in Table 7 and Table 8 for 

the PM peak periods on freeways in April, 2010. Figure 20 illustrates the emissions rate 

relationships between LD and HD vehicle classes and average speed for all five 

pollutants as the ratio of HD to LD emissions rates, �� ��� , assuming �� � �� � �#.  
Table 7. MOVES Emissions-Speed Curve Fit Parameters for �¸ on Freeways 

Freeways CO2e CO PM2.5 NOx HC 4=,� 7.987 2.788 -2.856 0.3239 -0.2644 4>,� -0.1856 -0.1760 -0.2000 -0.1152 -0.1878 4?,� 0.006352 0.006535 0.007365 0.004155 0.006173 4�,� -9.550E-05 -1.077E-04 -1.157E-04 -6.270E-05 -9.570E-05 4�,� 5.210E-07 6.460E-07 6.560E-07 3.440E-07 5.510E-07 

Table 8. MOVES Emissions-Speed Curve Fit Parameters for �¹ on Freeways 

Freeways CO2e CO PM2.5 NOx HC 4=,� 9.254 3.541 1.005 4.124 2.059 4>,� -0.1748 -0.1900 -0.1740 -0.1839 -0.2206 4?,� 0.006307 0.006843 0.006599 0.006461 0.006967 4�,� -1.007E-04 -1.097E-04 -1.141E-04 -1.003E-04 -1.018E-04 4�,� 5.740E-07 6.201E-07 6.870E-07 5.599E-07 5.380E-07 

 



89 

 

 

Figure 20. �¹ �¸�   versus �� 

The major HD vehicle pollutants are PM2.5 and NOx, which reach factors of more 

than 60 and 25 times the LD vehicle emissions rates, respectively. By the generally 

downward sloping trends of the curves Figure 20 we see that HD vehicle low-speed 

inefficiencies are proportionally greater than LD vehicles’ low-speed inefficiencies. In 

other words, HD vehicles’ emissions rates increase faster in congestion. CO emissions 

rates are similar (a ratio of 1 to 2), CO2e emissions rates are about 4 times greater, and 

HC emissions rates are 4-8 times greater for HD vehicles than LD vehicles (per vehicle-

mile).  

Some of the differences in Figure 20 relate to greater fuel consumption required 

to move heavier vehicles, as evidenced by 4 times higher CO2e emissions rates (which 

are closely tied to fuel consumption). For the extreme differences in PM2.5 and NOx the 

dominance of diesel fuel in the HD fleet and gasoline in the LD fleet is also an important 
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factor. As an illustration, Figure 21 shows the emissions rate ratios for diesel versus 

gasoline-powered passenger cars (PC) and passenger trucks (PT). For this figure, we first 

define vehicle classes for gasoline PC (- � pcg), diesel PC (- � pcd), gasoline PT 

(- � ptg), and diesel PT (- � ptd). We then compute �% using Equation 3 with the 

appropriate source types from Table 3. Finally, Figure 21 plots 
�»¼½ �»¼¾�  versus �# on the 

left and 
�»±½ �»±¾�  versus �# on the right (assuming �# � �»±¾ � �»±½ � �»¼¾ � �»¼½). Note 

the different scales on the vertical axes in Figure 21, reflecting the fact that the 

diesel/gasoline differences are more pronounced for PT than PC. In both cases PM2.5 and 

NOx have the highest emissions rate ratios, though the ratios are many times greater for 

PT than PC. CO2e emissions rates are similar between the two, while CO emissions rates 

are lower for diesel vehicles. As with the HD/LD ratios, �� ��� , the difference is 

magnified at lower average speeds – showing that diesel LD vehicle emissions are more 

affected by congestion than gasoline LD vehicle emissions.  

 

Figure 21. Diesel/Gasoline Vehicle Emissions Rate Ratios for Passenger Trucks (left) 

and Passenger Cars (right) 
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Since light-duty and heavy-duty vehicles have distinct emissions characteristics, 

their combination in the total fleet affects the fleet-wide ESC and ESC gradients. Figure 

22 shows the sensitivity to fraction HD vehicles, ��, of fleet ESC and ESC gradients for 

all five pollutants modeled, with �# computed from Equation 4 using �� from 0.0 to 0.5. 

As in Figure 3, we include LOS indicators for freeways. No adjustment is made for PCE. 

As expected, higher �� increases the fleet emissions rates, �# (seen in the left 

panels). The emissions rate increases are proportionally larger for pollutants with higher �� ���  ratios in Figure 20. Fleet emissions rate sensitivity to speed also increases with �� – 

evidenced by the larger absolute values of the gradients in the right-side panels of Figure 

22). This is expected from the downward sloping curves in Figure 20. For PM2.5 and 

NOx, which are dominated by HD vehicle emissions, the gradient changes most 

dramatically with the initial introduction of HD vehicles (compare the gradients at 

�� � 0% and �� � 10% for these pollutants). Interestingly, the optimal speed also 

increases with �� – shown by the gradients crossing the horizontal (speed) axis at higher 

values with higher percentage HD. These plots show that traffic streams with more HD 

vehicles potentially have greater efficiency benefits from increasing average travel 

speeds. Also, because of their different emissions-speed relationships, LD and HD 

vehicles could be targeted separately for congestion mitigation with air quality objectives.   
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Figure 22 (Part I). Fleet Emissions Rate Sensitivity to À¹, with freeway LOS 
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Figure 22 (Part II). Fleet Emissions Rate Sensitivity to À¹, with freeway LOS 

7.2 Total Emissions and HD/LD Vehicle Classes 

We next look at how �� impacts total emissions, �. The total vehicle fleet 
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� � ¯91 s ��:�� J ����° . (50) 
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These curves assume 23�� � 1.5 (for level terrain from the HCM (Transportation 

Research Board, 2000)), �� � 0.1 (10% HD in the mixed fleet), and �� � �� � �#.  
The results in Figure 23 are largely the same as those in Figure 20, but adjusted 

for �� and 23��. For �� � 0.1 and 23�� � 1.5, the effect of the 23�� adjustment is to 

reduce the impact of the presence of HD vehicles by 5% (see the denominator of 

Equation 52). In other words, since HD vehicles occupy more capacity than LD vehicles, 

the impact of HD vehicles’ higher emissions rates ]���� � 1^ are mitigated by 23�� � 1. 

As above for emissions rates, the presence of HD vehicles greatly increases total PM2.5 

and NOx emissions – with a larger impact at slower speeds.  

 

Figure 23. Comparison of Total Emissions from Mixed and LD-only Fleets, adjusted 

for PCE, as    Ä¸¸�ÅÆ�  versus �� 
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7.3 Total Emissions Elasticity Considering Variable Demand and HD/LD Vehicle 

Classes 

Figure 24 shows the class-specific freeway emissions break-even elasticities, γ���� , 

for CO2e by Equation 38 with the MOVES model. Similarly for the other pollutants we 

get Figure 25. Note the larger vertical scale in Figure 25 to accommodate the wider range 

of γ���� .  

 

Figure 24. Vehicle Class-Specific Emissions Break-Even Elasticities for CO2, Ç¡¸�¸ and Ç¡¹�¹ versus �� 
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decrease with increasing speeds. So although the HD vehicle emissions rates are much 

higher for some pollutants, �� � ��, the potential for total emissions reductions through 

congestion mitigation can be higher, too – depending on the true demand elasticity for 

each vehicle class.  

 

Figure 25. Vehicle Class-Specific Emissions Break-Even Elasticities for Other 
Pollutants, Ç¡¸�¸ and Ç¡¹�¹ versus �� 
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9�� s 1:������� � ���������    È    ���� � �²³�´�
²³�´�  .  (53) 

Thus, depending on each vehicle class’s contribution to total emissions, a net emissions 

increase with speed from one class can be offset by a net emissions decrease with speed 

from the other.  

Figure 24 and Figure 25 show the emissions reduction potentials of each vehicle 

class, but cumulative emissions changes depend on each vehicle class’s share of the total 

emissions, as evidenced by Equation 27. HD vehicles’ emissions rates can be many times 

larger than LD vehicles’ emissions rates, but their portion of the total number of vehicles 

is typically smaller. Figure 26 shows the fraction of total fleet emissions that are from HD 

vehicles, 
��� , assuming � � 0.1 and �� � �� � �#. As could be expected, HD vehicle 

emissions dominate total PM2.5 and NOx emissions while LD vehicle emissions dominate 

total CO and CO2 emissions. All pollutants trend downward – toward a greater portion of 

total emissions from LD vehicles – since HD vehicles are comparatively more inefficient 

at low speeds 
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Figure 26. Fraction of Total Emissions from HD Vehicles, 
 ¹  , versus �� (À¹ � É. Ê) 

The different contributions to total emissions from each vehicle class in Figure 26 

weight each vehicle class’s effect on ���C  (see Equation 27). As shown by Equation 53, if 
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���� � �²³�´�

²³�´� . 
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But in addition to different γ���� , LD and HD vehicles are also likely to have 

different ����� in a given situation (Graham & Glaister, 2004). Since travel time costs are a 

much smaller portion of total travel costs for freight than for personal travel (Graham & 

Glaister, 2004; HLB Decision Economics Inc., 2008), it is possible that freight travel 

demand is less sensitive to travel time costs than passenger travel demand (though this 

has not yet been empirically demonstrated, to the author’s knowledge). If HD vehicle 

travel demand (primarily goods movements) is less elastic to travel speed than LD 

vehicle travel demand, ����� � �����, then the potential for HD vehicle emissions reductions 

through speed increases improves.  

As an illustration, Figure 27 shows the elasticity of total CO2e emissions to 

uniform travel speed changes, ���C  (computed from Equation 25), on the ����� versus �# 
plane, assuming � � 0.1 and �� � �� � �#. The three panels in Figure 27 present the 

results assuming (a) ����� � �����, (b) ����� � ����� · 50% and (c) ����� � 0, in accordance with 

the wide range found in the literature (see Table 2). Although HD vehicles makeup only 

10% of the fleet, reducing ����� substantially increases the potential emissions benefits of 

general travel speed increases. These results are for CO2e emissions, of which about 30% 

come from HD vehicles (Figure 26). The impact is 2 to 3 times greater for PM2.5 since 

HD vehicles dominate those emissions.  
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 (a)  

(b)  

(c)  
Figure 27. CO2e Emissions Elasticity to Average Speed, ¥ �� , with À¹ � É. Ê and ¦¡¹�¹ 

at (a) 100%, (b) 50%, and (c) 0% of ¦¡¸�¸ 
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In conclusion, heavy-duty vehicles contribute a large share of on-road emissions, 

particularly for PM2.5 and NOx, even though they are the minority of vehicles the fleet. 

Heavy vehicles also are more sensitive to speed than light-duty vehicles, which leads to 

higher break-even demand elasticities for heavy-duty vehicles and potentially greater 

emissions benefits from congestion mitigation. In the next chapter we build on the results 

of Chapters 5, 6, and 7 to estimate the emissions effects of congestion mitigation, and 

compare them with other emissions-reduction strategies.  
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8 EMISSIONS IMPACTS OF CONGESTION MITIGATION 

This chapter discusses how the above results can illuminate the emissions-

reducing potential of congestion mitigation. We compare the likely benefits of capacity-

based strategies (CBS) and non-capacity-based strategies (NCBS) for emissions 

reductions. The base conditions are an all-ICE fleet with both LD and HD vehicles. 

Further assumptions are described below. 

8.1 Capacity-based Congestion Mitigation 

8.1.1 Local Emissions Effects of Congestion Reduction through Capacity Expansion 

At the link level, if there is congestion there are queued or delayed vehicles 

upstream, so traffic flow or capacity changes that increase very-low speeds involve 

increasing flow rates (see Figure 12 for speeds below 30 mph). Depending on the initial 

traffic state, this flow increase could reduce or overturn emissions rate benefits from 

increased speeds. The total emissions over the roadway corridor over the peak period 

might be lower because of lower marginal emissions rates (depending on the demand 

elasticity), but the speed increase would provoke a spatial-temporal relocation of 

emissions to the formerly congested section – which could be important for exposure and 

hot-spot analyses. For local pollutants in urban areas, the location of congestion and its 

proximity to dense or sensitive populations is an essential consideration.  

8.1.2 Total Emissions Effects of Congestion Reduction through Capacity Expansion 

The results in Section 5.5 for total emissions elasticity to speed changes illustrate 

the emissions impacts of CBS. For CBS with no demand constraints the total emissions 
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effects can be estimated using expected values for demand elasticity, �����. If the true 

demand elasticity is highly uncertain, a simple increase/decrease estimate can be made 

using the break-even demand elasticity and a likely range of true elasticities. If it is 

reasonably expected that ����� � ����� then CBS will likely increase total emissions. The 

results in previous sections show potential total emissions reductions from CBS only for 

low demand elasticities with moderate existing congestion levels or moderate demand 

elasticities with heavy existing congestion. These results, however, can vary by pollutant 

and vehicle class.  

Figure 28 shows characterizations of CBS for each pollutant over a range of 

speeds. The characterizations are based on ranges of break-even demand elasticity, �����: 
CBS are “not recommended” for ����� � 0.25, are suggested to “apply with caution” for 

0.25 £ ����� � 0.5, have “potential benefits” for 0.5 £ ����� � 0.75, and provide “good 

opportunity” for emissions reductions for 0.75 £ �����. These are subjective, qualitative 

labels based on the literature reviewed in Section 2.5.  

Clearly PM2.5 and HC have the widest range of speeds for which CBS are likely 

to reduce emissions. The other pollutants are only classified as “potential benefits” at 

speeds around 20 and below. CBS are “not recommended” for all pollutants at speeds 

above 65 mph, which shows the potential benefits of limiting free-flow speeds to below 

65 mph.   



104 

 

 

Figure 28. Characterization of CBS Based on Ranges of Break-Even Elasticities, §¡Ë�Ë 
As a further demonstration of the impacts of HD vehicle demand elasticity shown 

in Figure 27,  Figure 29 shows the same characterization of CBS, but assuming the 

extreme case of ����� � 0. We also assume �� � 0.1, as in Figure 27. Here there is a wider 

range of speeds for all pollutants which present opportunities for emissions reductions 

through CBS. For PM2.5 and HC good opportunities exist for emissions reductions 

through CBS from 10 mph all the way up beyond 60 mph. Although this is an extreme 

value of demand elasticity for HD vehicles, it demonstrates that even at only 10% of the 

fleet, ����� is an important consideration for predicting emissions effects of congestion 

mitigation.  
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Figure 29. Characterization of CBS Based on Ranges of Break-Even Elasticities for 

LD Vehicles, §¡¸�¸, Assuming ¦¡¹�¹ � É and À¹ � É. Ê 

As a final note, CBS are not necessarily additional lane-miles. Capacity or 

throughput can also be increased by various traffic management strategies that target 

roadway efficiency such as variable speed limits on freeways or traffic signal 

coordination on arterials. Some traffic management techniques would have implications 

for speed profiles (drive schedules) that would affect average-speed emissions rate 

estimates and so change the ESC used to derive �����. For example, a significant 

“smoothing” of vehicle speeds could reduce the average emissions rate at a given average 

travel speed by reducing engine loads (Barth & Boriboonsomsin, 2008). This change in 

the ESC would have to be considered in concert with average travel speed and travel 

demand changes to estimate the full emissions impact of congestion-relieving CBS 

through roadway/traffic management.  
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8.2 Travel Demand Reductions 

When ����� � ����� for all vehicle classes -, speed-based efficiency alone cannot 

reduce total emissions and some demand restraint must be employed if we want to 

mitigate emissions. From another perspective, when ����� � ����� a capacity decrease (i.e. 

“road diets”) would likely reduce total emissions because the suppressed demand volume 

would offset engine inefficiencies at lower speeds. In other words, with a capacity-based 

approach, lower total emissions are more likely by increasing capacity when ����� � ����� 
and by decreasing capacity when ����� � �����. This, of course, assumes that demand 

elasticities to speed changes in each direction are the same – i.e. the aggregate travel 

response to a speed increase is equal and opposite to the response to a speed decrease. 

Using arc elasticities as in Equation 12, this isotropic nature of demand elasticity can be 

expressed ����� � ]��od��p^]��o���p^]��od��p^]��o���p^ � ]��od��p^]��p���o^]��od��p^]��p���o^. 
There are, additionally, NCBS where travel demand is reduced by motivators 

other than travel time increases (road pricing or travel restrictions, for example). In those 

situations the key value for application of these analysis tools is the net demand elasticity 

to travel speed: the net change in travel demand with changes in travel speed, after 

adjusting for the NCBS. For example, if a demand-moderating measure (such as road 

pricing) is implemented along with a capacity expansion, then that can be incorporated 

into the estimate of expected �����. When ����� � ����� and emissions increases are a likely 

result of capacity-based congestion mitigation, road pricing presents an option for 

decreasing or reversing that effect. 
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8.3 Comparing Strategies for Emissions Reductions 

In this section we put emissions changes from speed improvements into context 

by rough comparison with a set of alternative NCBS for emissions improvements. We are 

evaluating changes in total emissions from peak period travel for highly aggregate 

conditions. The alternative strategies considered are  

1. reduced VMT as reflected by peak-period VMT per peak-period traveler 

(made possible by denser, more mixed land use, road pricing, or other demand 

management strategies),  

2. vehicle fleet fuel efficiency improvements (by lighter vehicles or less power-

intensive engines),  

3. reduced fuel carbon intensity (by using alternative fuels such as biodiesel or 

electricity, or by less energy-intensive fuel production and delivery methods), 

and  

4. replacement of light-duty ICE vehicles in the fleet with electric vehicles.  

For travel distance reduction (1) the net VMT change is assumed to be reflected in 

a change in average peak-period VMT per peak period traveler – accounting for potential 

demand rebound due to travel time savings and assuming a fixed number of peak period 

travelers. We further assume that the VMT reduction has no net effect on average 

emissions rates (which is the case if there is no change in  on congested facilities). In 

reality, the VMT reduction could have varying effects on  (and �#) depending on how it 

is achieved. Demand management which targets the number of trips would likely reduce 

 (thus increasing �# and reducing �#). Land use strategies which encourage shorter trips 

through increased density would more likely increase  (thus decreasing �# and increasing 
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�#). Also, there could be a shift in travel in which  increases or decreases with no net 

effect on VMT – such as a partial VMT rebound from shorter trips increasing  or a 

partial VMT rebound from lower  as longer trips. Regardless of the effect of (1) on , 

the assumption of �# insensitivity to VMT reductions is likely to be sound since the 

elasticity of emissions rates to volume, ��#�, is low for a wide range of  (see Section 5.7).  

The vehicle-based NCBS (2-4) do not increase capacity or improve traffic flow 

and therefore we assume that there is no speed-induced demand generated by their 

application. It is worth noting that increasing fuel efficiency (2) can reduce operational 

costs and there is potential for induced demand through travel cost reductions. Similarly, 

depending on the costs of EV’s and electricity, there could be marginal operating cost 

reductions for EV replacement of LD ICE vehicles (4) which induces demand. This 

effect, like the induced demand effect from travel time savings, could be offset by 

additional pricing of travel or fuel.  

The main assumptions used for this comparison analysis are: 

1. no additional demand volume or average speed changes are generated by 

application of the NCBS, 

2. average daily peak period travel on freeway and arterial facilities is 8.0 and 

8.6 miles, respectively, per peak period traveler (the average of 439 U.S. 

urban areas in 2007 – extractable from the data tables accompanying the 

Urban Mobility Report (UMR) (Schrank & Lomax, 2009)), 

3. 55% of peak period freeway and arterial travel (by VMT) is congested (the 

average of 439 U.S. urban areas in 2007 – from the UMR data tables), 
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4. average fuel efficiency of 21.1 miles per gallon (mpg) (for the U.S. light-duty 

vehicle fleet, model year 2009, from the U.S. EPA (2009b)), 

5. average fuel carbon intensity of 8.9 kgCO2e per gallon (calculated from U.S. 

EPA, 2009b),  

6. electric vehicle carbon intensity of travel of 0.216 kgCO2e per mile (from the 

supplementary material of Samaras & Meisterling (2008)), and  

7. all other fleet and emissions characteristics are as described above, as modeled 

in MOVES for Portland, 2010. 

The EV carbon intensity of travel is based on life-cycle assessment (LCA), 

although upstream emissions are not included in the roadway emissions estimates for 

petroleum vehicles. In order to make an equivalent comparison with the on-road 

emissions estimates, an additional estimate is made using zero emissions for EV’s. The 

assumption of zero emissions for EV’s is also made for local pollutants (all non-CO2), 

since EV’s produce no on-road emissions (though they do contribute to regional air 

pollution through power generation).  

In this analysis we use the emissions rates generated by MOVES modeling for a 

full fleet and a LD-only fleet (for the EV replacements). The calculations for VMT 

reductions (1) and EV penetration (4) use average emissions rates by facility (including 

congested and uncongested conditions); calculations for the two fuel-based NCBS, (2) 

and (3), use the average fuel economy and carbon intensity given in the list of 

assumptions above. The portion of peak-period travel on uncongested freeways and 

arterials is assumed to have average speeds of 60 mph and 35 mph, respectively. 

Emissions from travel on local roads is neglected – a conservative assumption with 
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respect to the NCBS. Induced demand is calculated using mid-point arc elasticity as in 

Equation 12.  

We first look at freeway facilities alone, comparing NCBS to CBS that increase 

congested speeds as indicated by improving freeway LOS. The results of this comparison 

for freeway CO2e are shown in Table 9 and Table 10 using demand elasticities to travel 

speed of 0.0 and 0.3, respectively. The three numerical columns (from left to right) show 

LOS changes from F to E, from E to D, and from D to the A-C range (again, LOS 

average speeds are from Barth et al. (1999)). Only emissions from freeway travel are 

considered here, and the LOS change only applies to the congested portion of freeway 

travel (55%). The NCBS effects apply to all peak-period freeway travel, but other 

impacts are excluded (e.g. EV ownership would also reduce emissions from non-peak 

period trips and from travel on non-freeway facilities).  The table results also assume 

independence of strategies – in other words changes to travel distance or vehicle 

efficiency do not affect travel speeds. For each hypothetical LOS improvement the net 

changes in average speed, travel demand volume, and commute emissions are shown in 

the first three rows of the Table. The final rows show the NCBS changes that would be 

required to generate the same peak period emissions change on freeway facilities from 

each alternative strategy. 
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Table 9. Comparison of Equivalent Emissions Reduction Strategies for Freeway 

CO2e Emissions (MOVES Model with Inelastic Demand, ¥¡�� � É) 

 19 – 31 mph 31 – 53 mph 53 – 60 mph 
Avg. speed change (mph) 11.9 (64%) 22.4 (73%) 6.8 (13%) 
Travel demand change 

(vehicle miles/peak-traveler-day) 
0 0 0 

Emissions change  
(g CO2e/peak-traveler-day) 

-481 (-11%) -236 (-6%) -101 (-3%) 

Alternative Efficiency Strategy 
   

Trips length change 
(vehicle miles/peak-traveler-day) 

-0.9 (-11%) -0.5 (-6%) -0.2 (-3%) 

Vehicle efficiency change 
(miles/gallon) 

2.1 (13%) 1.3 (7%) 0.6 (3%) 

Fuel carbon intensity change  
(kg CO2e/gallon) 

-1.0 (-11%) -0.6 (-6%) -0.3 (-3%) 

EV penetration by LCA  
(% of peak period fleet) 

29% 19% 9% 

EV penetration by zero-emissions 
(% of peak period fleet) 

14% 8% 4% 

Table 10. Comparison of Equivalent Emissions Reduction Strategies for freeway 

CO2e Emissions (MOVES Model with ¥¡�� � É. Ì) 

 19 – 31 mph 31 – 53 mph 53 – 60 mph 
Avg. speed change (mph) 11.9 (64%) 22.4 (73%) 6.8 (13%) 
Travel demand change 

(vehicle miles/peak-traveler-day) 
0.7 (9%) 0.8 (10%) 0.2 (2%) 

Emissions change  
(g CO2e/peak-traveler-day) 

-131 (-3%) 112 (3%) -31 (-1%) 

Alternative Efficiency Strategy 
   

Trips length change 
(vehicle miles/peak-traveler-day) 

-0.2 (-3%) 0.2 (3%) -0.1 (-1%) 

Vehicle efficiency change 
(miles/gallon) 

0.5 (3%) -0.5 (-3%) 0.2 (1%) 

Fuel carbon intensity change  
(kg CO2e/gallon) 

-0.3 (-3%) 0.3 (3%) -0.1 (-1%) 

EV penetration by LCA  
(% of peak period fleet) 

8% -9% 3% 

EV penetration by zero-emissions 
(% of peak period fleet) 

4% -4% 1% 
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As an example, consider the first numerical column of Table 10, which considers 

CO2e emissions from a freeway LOS change from F to E. The average speed change on 

congested freeways from 19 to 31 mph (rounded) is a speed increase of 11.9 mph (64%) 

– row 1. Assuming ���C � 0.3 in this table, this speed increase induces 0.7 extra vehicle-

miles of peak period freeway travel (per day per peak period traveler), an increase of 9% 

– row 2. Considering the increased efficiency and induced demand, total emissions are 

reduced by 131 grams per peak period traveler, per day (-3%) – row 3. This 131 grams of 

emissions savings could also have been achieved by reducing daily peak-period freeway 

travel by 0.2 vehicle-miles per peak period traveler (-3%) – row 4. Alternatively, 131 

grams of CO2e could be saved if daily peak-period freeway travel were in vehicles with 

0.5 mpg better fuel economy on average (3%) – row 5. A decrease of 0.3 kg CO2e per 

gallon (-3%) in the carbon intensity of fuel burned during peak-period freeway travel 

could also save 131 grams of CO2e emissions – row 6. Finally, replacing 8% (by LCA) or 

4% (by zero-emissions EV’s) of ICE LD vehicles with EV’s for peak-period freeway 

travel could also achieve the same savings of 131 grams CO2e – rows 7 & 8. 

As expected from the previous modeling in this thesis, the LOS change from F to 

E generates the greatest marginal benefits, which require the largest alternative efficiency 

improvements to match. The greatest difference between speed improvement and 

emissions reduction is observed in the central column, LOS E to D. With inelastic 

demand (Table 9) a 73% increase in freeway speed garners a meager 6% in terms of 

emissions reductions. Similar reductions can be achieved by increasing fleet fuel 

efficiency by 1.3 mpg or reducing average peak period freeway travel by half a mile per 

peak period traveler, per day. Furthermore, alternative strategies have the potential for 
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low or zero costs for transportation agencies, while capital improvement projects such as 

urban freeway widening can be extremely expensive endeavors. These results are 

relatively conservative, since they are only considering peak-period travel on freeways. 

The fuel-related and EV-related NCBS would have additional benefits from travel 

throughout the day on all facilities.  

The values in Table 9 are based on the MOVES-modeled emissions rates. A 

comparable table based on the Barth model is similar for LOS F to E, but the efficiency 

gains from LOS E to D are less (2% net emissions reduction). For an improvement from 

LOS D to the LOS A-C range the Barth model predicts net emissions increases (even 

with inelastic demand) because of the inefficiency of high-speed travel. The Boulter 

model produces even smaller efficiency gains, with net emissions changes of -9%, -1%, 

and 8% for the three columns in Table 9. 

The results in Table 10 incorporate induced demand with an assumed elasticity of 

travel demand to travel speed of 0.3. The speed improvements reduce primary-road travel 

time and so induce travel that partially or fully offsets the emissions rate reductions seen 

in Table 9. The emissions changes shown in row three of Table 10 include both the 

emissions rate and induced travel effects. Even with moderate elasticity (���C � 0.3) the 

emissions savings in columns 1 and 3 are less than half as large as in Table 9, while the 

induced travel for LOS E to LOS D leads to a total emissions increase. When a total 

emissions increase is expected, the alternative strategy equivalents have opposite signs 

from an emissions savings – i.e. longer trips, reduced vehicle efficiency, higher fuel 

carbon intensity, and fewer EV’s in the fleet. Using an assumed elasticity of 0.5 the 

induced travel leads to total emission increases for all three LOS improvements.  
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Table 11 shows the results of a similar analysis (with the same assumptions) for 

CO2e emissions on arterials with an assumed demand elasticity of 0.3. Here we use 

travel speed increases of 10 to 16 mph, 16 to 24 mph, and 24 to 35 mph, roughly parallel 

to the heavily congested – moderately congested – uncongested LOS improvements in 

the freeway tables. As expected for a lower-speed facility and from the emissions 

gradients in Figure 7, arterial congestion mitigation is more effective at reducing 

emissions. Still, even with moderate demand elasticity (���C � 0.3) the speed improvement 

above 24 mph produces a net emissions increase because of induced demand.  

Table 11. Comparison of Equivalent Emissions Reduction Strategies for Arterial 

CO2e Emissions (MOVES Model with ¥¡�� � É. Ì) 

 10 – 16 mph 16 – 24 mph 24 – 35 mph 
Avg. speed change (mph) 6.0 (60%) 8.0 (50%) 11.0 (46%) 
Travel demand change 

(vehicle miles/peak-traveler-day) 
0.7 (9%) 0.6 (8%) 0.6 (7%) 

Emissions change  
(g CO2e/peak-traveler-day) 

-1,002 (-15%) -374 (-7%) 31 (1%) 

Alternative Efficiency Strategy 
   

Trips length change 
(vehicle miles/peak-traveler-day) 

-1.3 (-15%) -0.6 (-7%) 0.1 (1%) 

Vehicle efficiency change 
(miles/gallon) 

1.9 (17%) 1.1 (8%) -0.1 (-1%) 

Fuel carbon intensity change  
(kg CO2e/gallon) 

-1.3 (-15%) -0.6 (-7%) 0.1 (1%) 

EV penetration by LCA  
(% of peak period fleet) 

29% 17% -2% 

EV penetration by zero-emissions 
(% of peak period fleet) 

19% 9% -1% 

 

The next four tables show the same efficiency strategy comparisons on freeways 

and arterials for NOx (Table 12 and Table 13) and PM2.5 (Table 14 and Table 15) using 
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demand elasticity of ���C � 0.3. The largest emissions reductions are for heavily congested 

arterials. NOx emissions show no benefit from freeway congestion mitigation. Unlike the 

other pollutant-facility combinations, freeway PM2.5 emissions have the largest potential 

savings from a reduction of moderate congestion. This is also reflected in the high break-

even demand elasticity at moderate speeds for PM2.5 in Figure 18. The EV penetration of 

the LD vehicle fleet must be particularly high to match emissions reductions from speed 

improvements for PM2.5. This is logical, because the EV’s are only replacing LD vehicles 

and the PM2.5 emissions are primarily from the HD portion of the fleet (see Figure 26).  

Collectively, these tables show that considering moderate values for demand 

elasticity substantially degrades the potential for emissions reductions from CBS and 

increases the attractiveness of alternative strategies. That said, there are still some 

situations where traffic flow improvements can substantially reduce emissions, such as 

heavily congested arterials. But CBS for emissions reductions are still not likely to be the 

most cost-effective approach, considering the potential for low-capital-cost alternative 

efficiency strategies. CBS are more susceptible to self-defeating behavior responses 

through induced travel, and only provide efficiency benefits during peak periods. Finally, 

elasticities higher than 0.3 – which are realistic on long time scales – will increase total 

emissions in many CBS situations.  
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Table 12. Comparison of Equivalent Emissions Reduction Strategies for Freeway 

NOx Emissions (MOVES Model with ¥¡�� � É. Ì) 

 19 – 31 mph 31 – 53 mph 53 – 60 mph 
Avg. speed change (mph) 11.9 (64%) 22.4 (73%) 6.8 (13%) 
Travel demand change 

(vehicle miles/peak-traveler-day) 
0.7 (9%) 0.8 (10%) 0.2 (2%) 

Emissions change  
(g CO2e/peak-traveler-day) 

-0.1 (-1%) 0.5 (6%) 0.0 (0%) 

Alternative Efficiency Strategy 
   

Trips length change 
(vehicle miles/peak-traveler-day) 

-0.0 (-1%) 0.5 (6%) 0.0 (0%) 

EV penetration by zero-emissions 
(% of peak period fleet) 

1% -14% 0% 

 

 

Table 13. Comparison of Equivalent Emissions Reduction Strategies for Arterial 

NOx Emissions (MOVES Model with ¥¡�� � É. Ì) 

 10 – 16 mph 16 – 24 mph 24 – 35 mph 
Avg. speed change (mph) 6.0 (60%) 8.0 (50%) 11.0 (46%) 
Travel demand change 

(vehicle miles/peak-traveler-day) 
0.7 (9%) 0.6 (8%) 0.6 (7%) 

Emissions change  
(g CO2e/peak-traveler-day) 

-1.7 (-11%) -0.5 (-5%) 0.3 (2%) 

Alternative Efficiency Strategy 
   

Trips length change 
(vehicle miles/peak-traveler-day) 

-1.0 (-11%) -0.4 (-5%) 0.2 (2%) 

EV penetration by zero-emissions 
(% of peak period fleet) 

36% 13% -7% 
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Table 14. Comparison of Equivalent Emissions Reduction Strategies for Freeway 

PM2.5 Emissions (MOVES Model with ¥¡�� � É. Ì) 

 19 – 31 mph 31 – 53 mph 53 – 60 mph 
Avg. speed change (mph) 11.9 (64%) 22.4 (73%) 6.8 (13%) 
Travel demand change 

(vehicle miles/peak-traveler-day) 
0.7 (9%) 0.8 (10%) 0.2 (2%) 

Emissions change  
(g CO2e/peak-traveler-day) 

-12 (-3%) -36 (-12%) -14 (-6%) 

Alternative Efficiency Strategy 
   

Trips length change 
(vehicle miles/peak-traveler-day) 

-0.3 (-3%) -0.9 (-12%) -0.4 (-6%) 

EV penetration by zero-emissions 
(% of peak period fleet) 

18% 57% 22% 

 

Table 15. Comparison of Equivalent Emissions Reduction Strategies for Arterial 

PM2.5 Emissions (MOVES Model with ¥¡�� � É. Ì) 

 10 – 16 mph 16 – 24 mph 24 – 35 mph 
Avg. speed change (mph) 6.0 (60%) 8.0 (50%) 11.0 (46%) 
Travel demand change 

(vehicle miles/peak-traveler-day) 
0.7 (9%) 0.6 (8%) 0.6 (7%) 

Emissions change  
(g CO2e/peak-traveler-day) 

-74 (-12%) -29 (-6%) -9 (-2%) 

Alternative Efficiency Strategy 
   

Trips length change 
(vehicle miles/peak-traveler-day) 

-1.1 (-12%) -0.5 (-6%) -0.2 (-2%) 

EV penetration by zero-emissions 
(% of peak period fleet) 

74% 37% 13% 

 

8.3.1 Emissions Elasticity to NCBS  

The emissions elasticities to each of these NCBS can be analytically determined. 

For VMT reductions (1), increased fuel efficiency (2), and decreased carbon intensity (3) 

the total emissions point elasticity is -1.0. For these strategies we can say that a certain 
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percentage emissions reduction from a CBS can also be accomplished through roughly 

the same percentage implementation of the NCBS. The percent changes for vehicle 

efficiency (mpg) in Table 9 and Table 11 are slightly different from the emissions savings 

percentages because emissions are inversely related to efficiency, so the point elasticity 

of -1.0 will be different from the arc elasticity. For reference, the net percent emissions 

change from CBS (as described in the previous section) for each facility-pollutant-LOS 

combination are shown in Table 16 and Table 17, using ���C � 0.3. Positive numbers 

indicate emissions increases. Thus, from the first row of Table 16, emissions of CO2e on 

freeways are expected to decrease by 3% for a LOS change from F to E (average speeds 

from 19 to 31 mph), increase by 3% with a LOS change from E to D (average speeds 

from 31 to 53 mph), and decrease by 1% with a LOS change from D to A-C (average 

speeds from 53 to 60 mph). 

Table 16. Summary of Percent Change in Emissions on Freeways from CBS 

(MOVES-Modeled Emissions with ¥¡�� � É. Ì)  

Freeway 19 – 31 mph 31 – 53 mph 53 – 60 mph 

CO2e -3% 3% -1% 

CO -1% 1% 0% 

PM2.5 -3% -12% -6% 

NOx -1% 6% 0% 

HC -13% -9% -3% 
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Table 17. Summary of Percent Change in Emissions on Arterials from CBS 

(MOVES-Modeled Emissions with ¥¡�� � É. Ì) 

Freeway 10 – 16 mph 16 – 24 mph 24 – 35 mph 

CO2e -15%  -7% 1% 

CO -11% -6% -2% 

PM2.5 -12% -6% -2% 

NOx -11% -5% 2% 

HC -21% -13%  -6% 

 

For EV penetration of the LD fleet the elasticity is slightly more complicated. 

Assuming that �� � 0 and all EV are replacing ICE LD vehicles, then 
r��r�� � s1 and 

r��r�� � r�r�� � 0. So the elasticity of total emissions � to EV penetration �� is calculated 

���� � >� r�r�� � >�¯����d����° rr�� ¯���� J ����° � �������d���� � �>>d��]�� ��� �>^��� .  (54) 

For the observed range of �� ���  from around 1 for CO up to 60 for PM2.5 (see Figure 20) 

and �� � 0.1, ���� can range from s1.0 £ ���� £ s0.1. Considering LCA EV emissions, 

the elasticity would be even smaller. Thus, total emissions elasticity of an EV-based 

NCBS is equal or smaller than the total emissions elasticity to other NCBS. From the 

denominator of Equation 54 we see that fleets with more HD vehicles 9��: or pollutants 

with higher relative emissions rates from HD vehicles 7�� ��� 8 will have lower total 

emissions elasticity to EV penetration, ����. The latter is the case for PM2.5 emissions in 

Table 14 and Table 15, where large EV penetrations of the fleet are necessary to produce 

equivalent emissions reductions to CBS. The relationships in Equation 54 are illustrated 
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in Figure 30, where ���� is plotted against �� ���  for � � 0.1, 0.2, and 0.4 and assuming 

�� � 0. The emissions elasticity to �� is reduced with increasing �� ���  and with � .  

 

Figure 30. Emissions Elasticity to EV Penetration, ¥ À�, versus �¹ �¸� , assuming À� � É and �� � É 

Looking back at Figure 14 we see that a total emissions elasticity of -1.0 is 

probably more than can be expected from any speed-based approach (especially if 

considering induced demand). Thus the emissions elasticity to non-EV NCBS is 

advantageous. For EV strategies the emissions elasticity is more in line with ���C, though it 

can vary by an order of magnitude for the observed range of �� ��� . When ���� is smaller 

(less negative) than -1.0, proportionally more EV penetration is needed to obtain the 
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equivalent emissions reductions shown in Table 16 and Table 17, as can be observed in 

the results above.  

 

In conclusion, there are many conditions (moderate speeds or moderate demand 

elasticity, for example) in which capacity-based congestion mitigation is likely to 

increase total emissions. For this reason, emissions reductions cannot be an assumed co-

benefit of congestion mitigation. Furthermore, strategies which target emissions 

reductions directly are more likely to achieve real emissions benefits. But the high 

emissions rates and high emissions rate sensitivity to speed for HD vehicles raises the 

potential for emissions benefits from more focused congestion mitigation strategies that 

target HD vehicles directly. This opportunity is addressed in the next chapter.   
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9 VEHICLE CLASS-SEGREGATED FACILITIES  

LD/HD vehicle differences can have large impacts on total emissions effects of 

congestion mitigation, as demonstrated above. In addition to having higher emissions 

rates than LD vehicles, HD vehicles are more sensitive to inefficiencies in congestion 

(Figure 24 and Figure 25). The large contribution to total emission from a small number 

of HD vehicles makes them likely targets for more focused emissions and congestion 

mitigation strategies. For PM2.5, the high values of γ����  (Figure 25) coupled with HD 

vehicle dominance of total emissions (Figure 26) suggest potentials for air quality 

benefits from HD vehicle-specific congestion mitigation strategies. Considering that 

PM2.5 is a local pollutant with large health risks (Hall et al., 2008; Health Effects 

Institute, 2010), this could be a particularly important strategy for freight congestion in 

urban areas.  

As a comparison of congestion and emissions mitigation approaches and their 

class-specific effects, Table 18 shows a short list of emissions mitigation strategies and 

their expected direct impacts on the key variables of this analysis: traffic speed �%, traffic 

flow volume  %, emissions rate parameters 45,%, and demand elasticity to speed �����. The 

cells in the table are filled in with the relationships of an increase “+”, decrease “–”, or no 

change “o”. These relationships are of course highly generalized, and actual impacts can 

depend on details of implementation. Truck-only lanes (TOL) are roadway facilities 

which provide exclusive right-of-way for HD vehicles (Transportation Research Board, 

2010). Just as general capacity expansions can employ road pricing to mitigate induced 

demand, TOL can utilize lane pricing for the same purpose. 
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Table 18. Congestion & Emissions Mitigation Strategies: Direct Impacts 

 Light-Duty Vehicles Heavy-Duty Vehicles 

Strategy �¸ ¡¸ ÄÍ,¸ ¦¡¸�¸  �¹ ¡¹ ÄÍ,¹ ¦¡¹�¹ 

Capacity increase + + o o + + o o 
Truck-only lanes (no toll) –  

new capacity 
+ + o o + + o o 

Truck-only lanes (no toll) – 
appropriated capacity 

– – o o + + o o 

Truck-only lanes (tolled) –  
new capacity 

+ + o o + o o – 

Truck-only lanes (tolled) –  
appropriated capacity 

– – o o + o o – 

Congestion pricing/demand 
reduction strategies 

+ – o – + – o – 

Vehicle/fuel efficiency 
improvements 

o o 1 – o o o 1 – o 
1 Assuming fuel cost savings do not lead to induced travel  

 

Capacity expansions increase �% and  %, and the total emissions effect depends on 

the relative magnitude of each, as illustrated in Chapter 8. The impact of TOL on LD 

vehicles depends on whether (a) the TOL are added capacity (in which case �� and � 
would increase with the relocation of HD vehicles), or (b) the TOL are appropriated 

general purpose (GP) capacity (in which case the capacity decrease for LD vehicles 

would likely lower �� and �, though traffic flow impacts of this type of TOL vary 

(Middleton, 2006; Transportation Research Board, 2010)). A tolled TOL can have similar 

efficiency benefits without an increase in truck volumes by offsetting the travel time 

savings with toll costs (reducing the effective demand elasticity to travel speed). For 

tolled TOL facilities ����� decreases because travel speed increases induce less demand. 

Congestion pricing and other forms of travel demand management (TDM) 

similarly reduce demand elasticity to travel speed, �����, by replacing time savings with 
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tolling costs or other motivators. More to the point, TDM aim to reduce traffic volumes 

and so increase traffic speeds and vehicle efficiency. Non-traffic approaches to emissions 

reductions include improvements in vehicle and fuel efficiency as analyzed in Section 

8.3. Such strategies reduce emissions rates, with the only likely impact on speed or 

volume being possible induced demand through decreased travel (fuel) costs.  

9.1 Truck-Only Lane Analysis 

In this section we illustrate the expected emissions impacts of several different 

lane management strategies, including TOL. The base conditions are given as a 3-lane 

congested freeway facility of arbitrary length (all GP lanes) with the following 

characteristics and assumptions: 

1. 10% HD vehicles (�� � 0.1) with 23�� � 1.5 for level terrain 

(Transportation Research Board, 2000)  

2. Demand elasticity to speed of 0.3 for both HD and LD vehicles 7����� � ����� �
0.3 

3. BPR equation parameters as above: + � 0.15, , � 7, "= � 1min/mi (free-

flow speed of 60 mph), and * � 2,200 pcphpl  

4. Initial volume of  � 2,300 vphpl (about 10% over capacity, considering 

PCE)  

5. An even distribution of traffic among all travel lanes 

6. On mixed LD/HD facilities, LD and HD vehicles travel at the same average 

speed  
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7. When TOL exist, they are mandatory and exclusive for all HD vehicles – 

meaning there are no mixed LD/HD flow lanes when TOL exist. 

Four different lane management scenarios are considered, all without tolling:  

1. Convert one of the GP lanes to a TOL 

2. Add a TOL  

3. Add a GP lane  

4. Remove a GP lane 

For these calculations arc demand elasticities are used (similar to Equation 12), meaning 

that if the initial demand volume and speed for vehicles of class - are %> and �%>, 

respectively, we can estimate the new demand volume %? from the new speed, �%?, using 

����� � ]��od��p^]��o���p^]��od��p^]��o���p^  

%? � %> ��pd��odµ��´�]��o���p^
��pd��o�µ��´�]��o���p^ .  (55) 

But since the additional volume, %? s %>, impacts the speed, �%?, we must also consider 

the relationship between �%? and %?. If ’? is the final volume in PCE, then using the 

BPR function (Equation 1) �%? � >B~V>d�]�’o �� ^�Y. Rearranging Equation 55 and 

substituting for �%? based on the BPR function we get  

%? w��p��o J 1 s ����� J ����� ��p��ox � %> w��p��o J 1 J ����� s ����� ��p��ox , 
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%? u�M�%>"$+*�M ]1 J �����^ J �%>"$ ]1 J �����^ J 1 s �����v J �M%>�%>"$+*�M ]1 s�-�-�-1�-1"Î1s�-�-J-11J�-�- .  (56) 

Then we can calculate   

’? � ∑ %? · 23�%%QR  .  (57) 

For two (LD and HD) vehicle classes, . � ©¶, ·ª, Equations 56 and 57 represent a system 

of three equations with three unknowns: �?, �?, and ’?. All other variables are 

parameters or initial conditions. Therefore the equations can be simultaneously solved to 

find the final volumes and speeds for each vehicle class. The final volume and speed for 

each vehicle class satisfy both the demand elasticity ����� and the theoretical volume/speed 

relationship (BPR). As with the previous analyses, we assume that all VMT changes from 

variable demand are reflected in changing . 

The results of this analysis for total CO2e emissions are shown in Table 19. This 

table shows results for base conditions and all four lane strategies, with absolute values 

and percent changes from base conditions for class-specific volumes, speeds, and 

emissions. Interestingly, the largest total emissions benefit is for a TOL conversion. Both 

TOL scenarios reduce HD vehicle emissions, ��, by 8%, but the lane conversion also 

reduces �� enough to suppress � by 10% and reduce �� by 6%. A TOL as additional 

capacity produces no net change in ��, with decreased emissions rates �� but a 4% 

increase in �. The 8% increased � with TOL is not enough to offset the increased 

efficiency for HD vehicles. Adding a GP lane has similar CO2e emissions benefits to 

adding a TOL lane. Removing a GP lane has larger emissions benefits than adding either 

type of lane, due to the 17% suppressed demand for both LD and HD vehicles.  
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Table 19. Volume, Speed, and CO2e Emissions Changes with Lane Strategies 

 Base 

Conditions 

TOL 

Conversion 

TOL Added GP Lane 

Added 

GP Lane 

Removed ¡¸ (veh/hr) 6,210 5,606 -10% 6,460 4% 6,594 6% 5,185 -17% ¡¹ (veh/hr) 690 744 8% 744 8% 733 6% 576 -17% �¸ (mph) 47 33 -29% 53 14% 57 22% 25 -46% �¹ (mph) 47 60 29% 60 29% 57 22% 25 -46%  ¸ (kg CO2e 

/hr/road-mile) 

2,333 2,188 -6% 2,337 0% 2,332 0% 2,150 -8% 

 ¹ (kg CO2e 

/hr/road-mile) 

1,044 960 -8% 960 -8% 980 -6% 1015 -3% 

  (kg CO2e 

/hr/road-mile) 

3,377 3,148 -7% 3,297 -2% 3,312 -2% 3,165 -6% 

 

Figure 31 shows the results of this analysis for all five pollutants as the percent 

change in total emissions from base conditions for each strategy. Of the TOL strategies, 

GP lane conversion outperforms lane addition from an emissions perspective for all 

pollutants except HC. Adding a TOL produces lower total emissions than adding a GP 

lane for all pollutants. GP lane removal has mixed effects. PM2.5 and HC emissions both 

increase, while NOx shows its greatest decrease of all the strategies. These results are 

intuitive: HC and PM2.5 are more sensitive to speed than NOx (see Figure 4), so more 

likely to benefit from a speed increase (adding a lane), while NOx is more likely to 

benefit from reduced volume (suppressed demand from removing a lane).  
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Figure 31. Percent Reductions in Total Emissions for Each Land Strategy and 

Pollutant 

The next four plots explore sensitivity of these results to several key 

characteristics and assumptions: initial volume, fraction HD vehicles, and demand 

elasticity to speed. Figure 32 shows the percent change in total CO2e emissions for 

varying initial volumes. For low initial volumes with nearly free-flow conditions the 

emissions effects are minimal, with the exception of removing a GP lane which increases 

emissions. At volumes around the initial conditions of 6,900 veh/hour the largest 

potential benefits are for GP lane reductions (with or without TOL) – though GP lane 

removal without TOL degrades to an emissions increase around 7,500 veh/hour. Both 

additional lane scenarios also increase total emissions for higher initial volumes because 

of induced demand. 
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Figure 32. Effect of Lane Strategies on Total CO2e Emissions with Varying Initial ¡ 

(Vehicle Travel Demand for 3 GP Lanes); Other Assumptions as Above 

Figure 33 shows the percent change in total CO2e emissions with varying initial 

fractions of HD vehicles in the fleet, � . At high initial �  the TOL strategies are not 

effective at reducing emissions because the TOL are saturated and not operating at 

efficient speeds for the HD vehicles. At very low truck volumes additional TOL are 

minimally utilized and have little effect, while TOL conversion suppresses LD demand 

enough to reduce total emissions. GP lane addition is fairly insensitive to fraction HD 

vehicles, while GP lane removal is decreasingly effective at higher fractions of HD 

vehicles because HD vehicles are proportionally more inefficient at very low speeds than 

LD vehicles.  
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Figure 33. Effect of Lane Strategies on Total CO2e Emissions with Varying Initial ÀÑ; Other Assumptions as Above 

Figure 34 shows the effect on total emissions of varying demand elasticity to 

speed ����� (assumed the same for both vehicle classes). Total emissions from lane 

additions (TOL or GP) increase nearly linearly with increasing demand elasticity as the 

increased capacity induces an increasing amount of travel. Increasing demand elasticity 

has the opposite effect on GP capacity reductions as an increasing amount of demand 

(and emissions) are suppressed at higher elasticities.  This effect is offset somewhat at 

very high elasticities as the TOL conversion induces an excessive amount of HD vehicle 

travel. At low elasticities the lane reductions are particularly ineffective because they 

decrease efficiency without suppressing demand. From this figure we see that the 

assumed elasticity of 0.3 is in a narrow range which leads to total CO2e emissions 

reductions for all four strategies. 
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Figure 34. Effect of Lane Strategies on Total CO2e Emissions with Varying Demand 

Elasticity ¦¡Ë�Ë (for Both LD and HD Vehicles); Other Assumptions as Above 

Figure 35 looks at the total emissions results from varying only HD vehicle 

demand elasticity to speed, �����. The results are similar to Figure 34 with the marked 

exception of the emissions impact of TOL conversion at low HD demand elasticity. In 

Figure 35, TOL conversion is increasingly effective at low demand elasticity because it 

continues to suppress LD vehicle demand, unlike in Figure 34. The other strategies have 

similar shapes in Figure 35 as compared to Figure 34, though with less sensitivity. As a 

final note, although simple GP lane removal outperforms TOL conversion for emissions 

reductions in some situations (particularly for high �����), TOL conversion is more likely 

to be a politically feasible option for implementation (particularly if it garners the support 

of the trucking industry). 
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Figure 35. Effect of Lane Strategies on Total CO2e Emissions with Varying Demand 

Elasticity for HD Vehicles; Other Assumptions as Above 

In their analysis of the emissions impacts of tolled TOL, Chu and Meyer (2009) 

predict net emissions reductions of 3-66% and 61-62% for HC and CO2, respectively, and 

net emissions increases of 2-5% and 1-18% for CO and NOx, respectively. Besides 

different emissions rate curves, their analysis used a travel demand model to estimate 

volume changes. The details of the demand model and its results for the studied scenarios 

are not described in the paper. Since speed results are not provided we cannot compare 

the implied demand elasticity with this analysis. The TOL are added capacity, and they 

do predict an increase in LD vehicle volumes on the GP lanes accordingly. It is 

surprising, though, that they predict a decrease in total volumes with the added TOL 

capacity (this is not explained in the paper). The emissions results are more or less in line 

with what is expected from this analysis, given the higher fraction of HD vehicles (about 

19%) – with the exception of CO2 emissions. Their expected benefit of over 61% for CO2 
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emissions is surprisingly high, particularly given the net volume change of less than 3%. 

This may be due to the rough approximation of CO2 emissions used in the paper: a simple 

percent difference in cubed speeds.  

 

In conclusion, truck-specific congestion mitigation strategies could have more 

potential for emissions reductions than general purpose congestion mitigation. This is 

particularly true if truck travel demand elasticity to travel time is moderate or low. In 

fact, converting a general purpose lane to a truck-only lane can have more emissions 

benefits than adding capacity, despite the increased congestion for light-duty vehicles. In 

the next chapter of this thesis we return to composite fleet analysis and look at congestion 

performance measures and their applicability for emissions trends.  
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10 IMPLICATIONS FOR PERFORMANCE MEASURES 

In this final results chapter we look at how the preceding analysis can inform the 

application of congestion performance measures for emissions considerations.  

10.1 Speed-Based Performance Measures 

Speed-based or delay-based performance measures are common when assessing 

congestion levels. These mobility-oriented metrics compare a congested speed or travel 

time with some threshold of uncongested conditions. They generally are normalized to 

travel distance, estimating the excess travel time per mile or with respect to a trip of a 

fixed length. Examples include the Travel Time Index (TTI), Buffer Time Index, and the 

Planning Time Index – see Cambridge Systematics, Inc. (2005). The TTI, in particular, 

enjoys extensive use in the Texas Transportation Institute’s Urban Mobility Report 

(UMR) (Schrank et al., 2010). The TTI is calculated as the ratio of average peak-period 

travel time to the travel time on the same facilities in off-peak/free-flow conditions, 

))H � B#B~ � �~�C  ,  (58) 

where "# and �# are the average peak-period travel rate and travel speed, respectively, and 

"$ and �$ are the off-peak (free-flow) travel rate and travel speed, respectively.  

Since �# � �~FFG, n�CnÒÒÓ � ��~ÒÒÓo � ��Co�~  and total emissions, �, elasticity to the TTI can 

be calculated  

��FFG � FFG� n�nFFG � �~��C nÔn�C n�CnÒÒÓ � �~��C ]���C ��C^ ]��Co�~ ^ � s���C  . (59) 

We can then go back to the ���C figures in Section 5.5 to see the conditions (for average 

speed and demand elasticity) where total emissions are expected to increase or decrease 
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with the TTI. Similar to the case of congestion mitigation, we see there are many 

situations (particularly for moderate congestion levels and demand elasticities) where 

total emissions will decrease with increasing TTI. In other words, emissions are moving 

in the opposite direction as the congestion performance measure. For this reason speed-

based congestion measures such as the TTI should not be viewed as indicators of poor 

performance from an emissions perspective.  

Total emissions do not track with speed/delay metrics partly because speed-based 

performance measures fail to account for volume changes – which are important from an 

emissions perspective. Only considering the direct impacts of speed changes on 

emissions rates (without volume changes) the total emissions elasticity to the TTI would 

be the same as the emissions rate elasticity to the TTI: 

9��FFG:����́b= � FFG�  n�#nFFG � FFG�# n�#nFFG � ��#FFG  
��#FFG � �~�#�C n�#n�C n�CnÒÒÓ � �~��C ]��#�C �#�C^ ]��Co�~ ^ � s��#�C  .  (60) 

It then follows that 

��FFG s ��#FFG � s���C J ��#�C � s7���C J ��#�C8 J ��#�C � s���C  .  (61) 

Since ��#�C  is mostly in the range of 0.0 to -1.0 (see Figure 13) and ���C is expected to be 

between 0.0 and 1.0, the impact of using a volume-insensitive performance measure such 

as the TTI to indicate emissions performance is potentially large (the effect of neglecting 

volume changes is on the same order as the effect of the speed change itself). In fact, 

neglecting demand can potentially change the direction of the relationship between 

emissions and the performance measure (i.e. expecting a positive instead of negative 
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emissions elasticity to the TTI). Any performance measure that only considers speed, not 

travel quantity (volume or distance), will likely misrepresent the total emissions 

relationship with congestion. 

10.2 Performance Measure Examples  

As an example we can look at the performance measures implied by the lane 

strategies described and analyzed in Section 9.1. The TTI can be calculated from the 

speeds in Table 19, leading to the values shown in Table 20 (assuming �$ � 60 mph), 

where ))H� and ))H� are the TTI values computed using �� and ��, respectively. 

Comparing the percent changes in total emissions and TTI for each vehicle class and for 

the total roadway, we see that the TTI is a poor predictor of emissions impacts. For GP 

lane removals (with and without TOL) the TTI moves in the opposite direction as total 

emissions (because the TTI does not account for the suppressed demand volume). Percent 

volume changes are also shown in Table 20, and although there are still large 

discrepancies between volume changes and total emissions changes (particularly for HD 

vehicles), the percent differences for  and % are closer to the percent differences for � 

and �% than are the percent differences in the TTI.
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Table 20. TTI and Total Emissions Effects of Lane Strategies Described in Section 

9.1 

 Base 

Conditions 

TOL 

Conversion 

TOL Added GP Lane 

Added 

GP Lane 

Removed  ¸ (kg CO2e 

/hr/road-mile) 

2,333 2,188 -6% 2,337 0% 2,332 0% 2,150 -8% 

¡¸ (veh/hr) 6,210 5,606 -10% 6,460 4% 6,594 6% 5,185 -17% ÕÕÖ¸ 1.28 1.82 42% 1.13 -12% 1.05 -18% 2.40 88%  ¹ (kg CO2e 

/hr/road-mile) 

1,044 960 -8% 960 -8% 980 -6% 1015 -3% 

¡¹ (veh/hr) 690 744 8% 744 8% 733 6% 576 -17% ÕÕÖ¹ 1.28 1.00 -22% 1.00 -22% 1.05 -18% 2.40 88%   (kg CO2e 

/hr/road-mile) 

3,377 3,148 -7% 3,297 -2% 3,312 -2% 3,165 -6% 

¡ (veh/hr) 6,900 6,350 -8% 7,204 4% 7,327 6% 5,761 -17% ÕÕÖ 1.28 1.66 30% 1.12 -13% 1.05 -18% 2.40 88% 

 

As another, more macroscopic example we can compare the approximate peak 

period emissions and congestion performance from all the urban areas described in the 

UMR (Schrank et al., 2010). The UMR data tables provide estimates of the TTI for each 

of 101 U.S. Urban Areas. From Equation 58 we can estimate �# for each urban area on 

freeway and arterial facilities, assuming the TTI is the same on each and assuming free-

flow speeds of 60 and 35 mph, respectively (from the UMR methodology). We can then 

calculate �#9�#: for each facility and urban area combination using the ESC fit parameters 

from Table 4 and Table 5. Next we estimate total peak period emissions for each urban 

area as the summed product of �# and total peak period VMT on each facility (peak-period 

VMT is estimated as half of the facility’s daily VMT, as per the UMR methodology). 

Finally, daily peak-period emissions per peak-period traveler are calculated for each 

urban area using the number of peak period travelers in the UMR data tables. This is a 
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highly aggregate approach, but useful for loose comparisons across many cities. Note that 

the emissions rates versus average speed curves are assumed to be as the same across 

cities. 

Estimated daily peak period CO2e emissions per peak period traveler are shown in 

Figure 36 for 2009, with Urban Areas indicated by population category (Small: < ½ 

million, Medium: ½ - 1 million, Large: 1-3 million, and VeryLarge: > 3 million 

population). Figure 37, Figure 38, and Figure 39 also compare all 101 urban areas in the 

UMR for 2009, segmented by population category, for different emissions and 

congestion variables. Comparing amongst urban areas Figure 36, total emissions per 

traveler and TTI have essentially no relationship. Although emissions rates (�#, per 

vehicle-mile) increase somewhat with the TTI, the average travel distances do not – and 

emissions per traveler correlate strongly with average daily peak period VMT per peak 

period traveler, as shown in Figure 37. We get similar results if we look at total emissions 

and VMT per capita instead of per peak-period traveler.  
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Figure 36. Daily Peak-Period CO2e Emissions per Peak-Period Traveler versus TTI, 

Segmented by Urban Area Population Size 

 

Figure 37. Daily Peak-Period CO2e Emissions per Peak-Period Traveler versus 

Peak-Period VMT per Peak-Period Traveler, Segmented by Urban Area Population 

Size 
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Total daily peak period emissions (not per traveler or per capita) do trend upward 

somewhat with TTI, as shown in Figure 38. This makes sense because the number of 

peak period travelers and population are both positively correlated with the TTI. But 

when we stratify by population category (as is done in Figure 38), we see that within 

population categories the TTI does not correlate with increasing total emissions. The two 

very high emitting urban areas are New York and Los Angeles, each with populations 

well above 10 million. As such, they better represent a fifth, “Extremely Large” 

population group, with high total emissions and TTI. What we see from the 

categorization in Figure 38 is that high total emissions are associated with larger 

population areas, not necessarily higher TTI’s (although those two are correlated). 

Comparing total emissions with total VMT reveals – similar to what is shown in Figure 

37 – that total emissions are much more strongly correlated with VMT than TTI (not 

plotted here because it essentially duplicates Figure 37). For these reasons volume 

measures are preferable to speed measures as emissions performance indicators, 

although ideally emissions performance metrics incorporate both.  
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Figure 38. Total Daily Peak-Period CO2e Emissions versus TTI, Segmented by 

Urban Area Population Size 
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16 miles for Large urban areas). Vehicle-hours traveled (VHT) per peak period traveler 

also has a strong correlation with emissions per traveler, as shown in Figure 39. If 

compared to some threshold to determine “excess” VHT it would show the same strong 

correlation, but again with a horizontal shift. Clearly, in terms of reflecting emissions 

impacts, VMT and VHT are preferable performance indicators to speed or distance-

normalized delay.  

 

Figure 39. Daily Peak-Period CO2e Emissions per Peak-Period Traveler versus 

Peak-Period VHT per Peak-Period Traveler, Segmented by Urban Area Population 

Size 

Our final comparison of performance measures looks at metropolitan-level 

changes over time. For Portland, Oregon we calculate TTI, peak period CO2e emissions 

per peak period traveler (as above), peak period travel time per peak period traveler 

(using �# and VMT by facility), and peak period VMT per peak period traveler, all with 

Daily Pk-Per. VHT per Pk-Per. TravelerD
ai

ly
 P

k-
P

er
. C

O
2e

 E
m

is
si

on
s 

pe
r P

k-
P

er
. T

ra
ve

le
r (

g)

4000

6000

8000

10000

0.2 0.3 0.4 0.5 0.6

Small
Medium
Large
VeryLarge



143 

 

the same assumptions as above using the UMR data tables. The emissions rate parameters 

are fixed at the 2010 value, so we are not assessing the impacts of an evolving vehicle 

fleet, only the impacts of changing traffic conditions and travel volumes. Figure 40 shows 

the results for the years 1982-2009, normalized to 1982 values. While emissions, travel 

time, and VMT all track closely, TTI diverges – in the opposite direction.  

 

Figure 40. Changes in Performance per Peak-Period Traveler for Portland, Oregon, 

from 1982 to 2009 

We perform a similar comparison for all urban areas in the UMR for the ten-year 

time interval from 1999 to 2009 in Figure 41. Again, the emissions rate versus speed 

relationship is taken as static over time in order to isolate traffic impacts. Figure 41 

compares changes in TTI, travel time, and VMT per traveler with changes in emissions 

per traveler for the 10-year period. In agreement with all preceding results, emissions are 

much more correlated with VMT and VHT than TTI. These figures show that in addition 

to the other advantages stated by Cortright (2010), alternative (not delay-based) 

1985 1990 1995 2000 2005 2010

0.6

0.8

1.0

1.2

1.4

Year

F
ra

ct
io

n 
of

 1
98

2 
V

al
ue

Per Peak Period Traveler

Emissions
TTI
Travel Time
VMT



144 

 

metropolitan-level congestion performance measures are also better indicators of 

pollution emissions from peak-period travel.  

 

Figure 41. Comparison of Changes in TTI, Travel Time per Peak-Period Traveler, 

and VMT per Peak-Period Traveler versus Changes in Total Emissions per Peak-

Period Traveler between 1999 to 2009 for all Urban Areas in the UMR 
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11 CONCLUSIONS   

This thesis represents a step toward better understanding of the potential 

emissions co-benefits of congestion mitigation. We first presented a unique conceptual 

framework for addressing the congestion-emissions relationship in a general way. We 

then developed and applied an original set of sketch-planning equations which generalize 

the trade-offs between vehicle efficiency and travel demand volume. This fills an 

important gap in the literature by combining both vehicle efficiency and variable demand 

effects on emissions.  

While the exact relationships among emissions, travel speed, and travel demand 

vary with location and pollutant, several consistent results arise. First, travel volume is a 

key consideration for the emissions impacts of congestion or congestion mitigation – 

looking at speed alone only reveals part (and more often the smaller part) of the picture. 

Second, higher levels of congestion do not necessarily increase emissions, nor will 

congestion mitigation inevitably reduce emissions. As such, congestion mitigation 

strategies and efforts cannot automatically claim “green” status. The results presented in 

this thesis provide quantitative support for the decoupling of congestion and emissions 

mitigation strategies.  

11.1 Sketch-Planning Equations for Elasticity of Emissions 

In Chapter 4 we developed a set of equations relating traffic speed, travel volume, 

and vehicle emissions. Those relationships were used in the analysis to calculate the 

elasticity of emissions to changes in traffic conditions. This set of relatively simple 

equations can be used by anyone wishing to estimate the emissions impacts of traffic, 
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roadway, or demand management strategies without detail. The key parameters needed 

for their application are emissions-speed curve fit coefficients and total demand elasticity 

to travel speed or travel time. Emissions-speed curve fit coefficients are provided in 

Section 5.1 and Section 7.1 for light-duty, heavy-duty, and LD/HD mixed fleets of 

vehicles in Portland, Oregon in 2010 (based on the MOVES emissions model). Other, 

distinct locations will need to develop their own emissions-speed curve fits, though this 

can be done at a regional level. Travel demand elasticity to speed is a more challenging 

value to estimate, and will most likely require a range of values for calculation of a range 

of expected emissions impacts. Still, these equations can be useful sketch-planning tools 

for incorporation of emissions considerations. 

11.2 Emissions Rates 

The central conclusion from the emissions-speed relationship analysis in Chapter 

5 is that the potential for marginal emissions rate reductions through average travel speed 

adjustments is small between about 25 and 70 mph. Larger emissions rate reductions are 

possible by moderating speeds that are outside this range, however, as vehicle efficiency 

degrades quickly at very high and very low speeds. These results were consistent across 

emissions models (with some variation in optimal speeds), suggesting that they are also 

applicable for other locations and vehicle fleets.  

The potential for emissions rate reductions by increasing average speeds is greater 

on arterials than on freeways, mostly because of lower operating speeds. Heavy-duty 

vehicles have emissions rates that range from roughly equal to those of light-duty 

vehicles (for CO) to 60 times greater (for PM2.5). This difference is partly due to the 
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dominance of diesel fuel for heavy-duty vehicles. Heavy-duty vehicles are generally 

more sensitive to low-speed inefficiency as well. As such, greater portions of heavy 

vehicles in the fleet increase the overall emissions sensitivity to speed changes.  

Comparing spatial and temporal marginal emissions rates, we showed that low-

speed inefficiency is only applicable when emissions are normalized to distance, not 

time. While spatial rates are the most common metric for assessing emissions, this 

demonstrates that distance/time trade-offs are also important to consider in order to see 

the full relationship between emissions and speed. Finally, we fit simplified emissions 

rate curves to traffic volume as the independent variable, making use of the BPR volume-

speed function. These curves demonstrate increasing emissions rates with increasing 

flows, and can be used for traffic modeling which requires simplified and integrated 

emissions and volume estimation (such emissions-minimizing traffic flow optimization). 

11.3 Total Emissions 

In Section 5.4 we brought together emissions rates and travel volumes to look at 

total emissions as they relate to traffic speed. Total emissions are influenced by two 

opposing factors with respect to decreasing travel speeds: generally increasing emissions 

rates (below some optimal speed in the range of 45 to 65 mph, depending on conditions) 

and decreasing travel demand volume. The direction and magnitude of total emissions 

changes with traffic speed changes depend on the relative size of each.  

The fundamental trade-off for total emissions is between efficiency and volume. 

For highly elastic travel demand conditions, total emissions will generally increase with 

speed, whereas for highly elastic emissions rates (at lower average speeds, for example) 
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total emissions will tend to decrease with increasing speed. In addition to low-speed 

conditions, emissions rate elasticity is larger (more negative) for heavy-duty vehicles and 

certain pollutants (HC and PM2.5). An additional consideration for local pollutants is the 

location of emissions, since congested segments displace queued vehicle emissions 

upstream. 

To explore the efficiency/volume trade-offs we looked at emissions break-even 

conditions of average speed and demand elasticity. Total emissions are expected to 

increase with speed for a wide range of conditions. Depending on the pollutant and 

vehicle fleet, total emissions are generally only expected to decrease with increasing 

speed for low demand elasticities and low speeds. The total emissions elasticity is 

expected to increase with the fraction of heavy-duty vehicles and decrease with the 

fraction of advanced-drivetrain vehicles in the fleet. 

11.4 Congestion Mitigation 

We also used the preceding equations and results to estimate the impacts of 

congestion mitigation on emissions. For capacity-based congestion mitigation (including 

traffic flow improvements), the net emissions effect depends on the balance of induced 

demand and increased efficiency described above (which, in turn, depend on the 

pollutants of interest, existing congestion levels, fleet composition, etc.). A key 

uncertainty in the analysis is the net demand elasticity to speed or travel time changes, 

which must be estimated locally.  

For many conditions, freeway capacity expansions that reduce marginal emissions 

rates by increasing travel speeds are likely to increase total emissions in the long run 
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through induced demand. Arterial roadways, more heavy-duty vehicles in the fleet, and 

pollutants other than CO2 have greater potential for emissions reductions through traffic 

flow improvements. However, the amplification of emissions rates in congestion is 

mitigated with more advanced vehicles in the fleet, such as electric vehicles and gasoline-

electric hybrid vehicles. For traffic speed increases above the emissions-optimal speed 

(most often in the range of 45 to 65 mph), total emissions are subject to the compounding 

effects of both lower efficiency and induced demand. Comparing capacity-based 

congestion mitigation strategies with alternative emissions reduction strategies we see 

that where emissions reductions are possible through speed increases, the small benefits 

are likely to be more easily and cost-effectively attained by other strategies.  

The high emissions rates, high share of total emissions, and high emissions rate 

sensitivity to speed of heavy-duty vehicles makes vehicle class-targeted congestion 

mitigation strategies an attractive option. A sketch analysis of vehicle-class segregated 

facilities showed that truck-only lane strategies consistently out-perform general-

purpose/mixed-flow lane strategies in terms of emissions reductions. Conversion of a 

general purpose lane to a truck-only lane produces more emissions benefits than a truck-

only lane as additional capacity – and the emissions benefits can be amplified by tolling. 

For vehicle class-specific strategies, the elasticity of freight demand to travel time is a 

key consideration, and one which is poorly quantified in the literature. Heavy-duty 

vehicle travel demand elasticity more generally has a large impact on the potential 

emissions effects of capacity-based congestion mitigation.   

An analysis of several congestion-related performance measures showed that for 

reflecting emissions impacts, VMT is an essential component of performance. Thus, 
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alternative congestion metrics such as total/excess travel distance and travel time are 

preferable emissions performance indicators to speed or distance-normalized delay.  The 

TTI, in particular, poorly reflects emissions changes on congested roadways.  

11.5 Final Thoughts and Future Work 

In conclusion, congestion mitigation and traffic flow improvements cannot rightly 

be labeled as emissions-reducing unless travel speeds are low and demand elasticity is 

slight. This includes projects that seek to increase vehicle throughput from existing 

roadway supply through better traffic management and operations (signal coordination, 

ramp metering, etc.). Congestion mitigation through reduced vehicle volumes, on the 

other hand, presents the opportunity for additive emissions benefits through efficiency 

improvements and volume reductions. This thesis presents a sketch-modeling method by 

which the balance of efficiency and volume trade-offs can be assessed.  

This is a macroscopic analysis intending to describe the broad relationship 

between congestion and emissions mitigations in many contexts. It neglects some unique 

emissions effects of microscopic traffic features and some indirect impacts of congestion. 

Driver behavior responses to congestion are modeled simply as aggregate travel demand 

elasticity to travel speed changes. Future work will investigate the impacts of behavior 

responses in more detail, since different travel demand shifts (changes in mode, departure 

time, route, destination, etc.) will have differing impacts on the volume of emissions – in 

addition to the spatial-temporal allocation of emissions. Additional next steps include 

detailed analysis of the broad emissions impacts of travel time unreliability, freight 

responses to congestion, distinct traffic flow features such as bottlenecks, and network-
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level travel patterns (which relate back to driver behavior responses). Furthermore, we 

hope to shortly present a broader analysis of congestion performance metrics as they 

relate to total social costs (including time, emissions, the economy, and more). 
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APPENDIX A: MAJOR STUDIES OF THE IMPACTS OF CONGESTION ON 

EMISSIONS 

TEXAS TRANSPORTATION INSTITUTE’S URBAN MOBILITY REPORT 

The annual Urban Mobility Report (UMR) is an ongoing assessment of 

congestion in U.S. cities that reports a set of performance measures including the extent 

of congestion, traveler delay, “wasted” fuel, and congestion costs (in dollars) (Schrank & 

Lomax, 2009). Emissions are not explicitly included in the assessment, though fuel 

consumption is (a rough predictor of greenhouse gas emissions). The fuel consumption is 

estimated from a simple linear regression equation using average system travel speed. 

The fuel regression equation comes from a U.S. Federal Highway Administration report 

published in 1981 (Raus, 1981), and its use has been criticized because it was only 

intended for application up to 35 mph (HDR, 2009). The benchmark for comparison in 

the UMR is free-flow travel speeds (assumed 60 mph freeway, 35 mph arterial). 

“Wasted” fuel is then the difference between fuel consumption at free-flow speeds and at 

actual speeds, which considers most factors to be exogenous (including auto travel). 

ECMT: MANAGING URBAN TRAFFIC CONGESTION 

This large study presents a thorough analysis and discussion of the full extent and 

characteristics of urban traffic congestion in Europe (European Conference of Ministers 

of Transport (ECMT), 2007). The complexities of and barriers to estimating emissions 

impacts are discussed. Although no quantitative emissions estimates are made, the report 

suggests that fuel consumption and ‘environmental pollution’ will increase with 

congestion. 
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The conclusion with respect to estimating air pollution is that in addition to 

average travel speed, microscopic flow characteristics must be considered. Also, the 

report makes the case (supported by Goodwin (2004)) that congestion cost estimates 

based on free-flow reference speeds are “artificial constructs,” and should not be used. 

Two other assertions, also claimed by Stopher (2004), are that congestion cannot be 

eliminated, only managed, and that in the same way flow improvements induce demand, 

congestion suppresses it. These perspectives support the notion that congestion effects 

arbitrarily benchmarked to fixed-demand free-flow conditions are not relevant. 

U.S. DEPARTMENT OF TRANSPORTATION’S CONGESTION MANAGEMENT  

AND AIR QUALITY (CMAQ) IMPROVEMENT PROGRAM 

The CMAQ program was authorized by the U.S. Congress as part of the ISTEA 

surface transportation act in 1991, and has since been administered by the U.S. 

Department of Transportation (Federal Highway Administration, 2010). Since its 

inception the program has provided over $14 billion in federal funding to support 

transportation projects that “contribute to air quality improvements and reduce 

congestion.” But these objectives are not necessarily mutually beneficial, as has been 

pointed out by others (Noland & Quddus, 2006). Specifically, traffic flow improvements 

(33% of CMAQ projects) can induce travel demand that cancels any short-term emissions 

reductions (Noland & Quddus, 2006; Stathopoulos & Noland, 2003). 

An early assessment of the program by Adler et al. estimated small emissions 

benefits for most CMAQ projects, but noted trade-offs among different pollutants 

(especially for NOx) (1998). Adler et al. also reported high uncertainty in estimated 



171 

 

emissions benefits, a distinct lack of emissions reporting standards, and induced demand 

unaccounted for. The execution of this program highlights the need for better 

understanding of how congestion impacts roadway emissions. 

ASSESSING THE FULL COSTS OF CONGESTION ON SURFACE 

TRANSPORTATION SYSTEMS AND REDUCING THEM THROUGH PRIC ING 

A large modeling effort was recently undertaken by HDR for the Office of 

Economic and Strategic Analysis in the U.S. Department of Transportation (HDR, 2009). 

This study estimates congestion costs in U.S. cities using a macroscopic, average-speed 

approach, with an aim of assessing potential benefits of congestion pricing. The 

benchmark for emissions estimates, similar to the UMR, is free-flow conditions (fixed 

travel, steady speeds). In estimating pricing effects, travel demand elasticity to 

generalized cost was used (which did include travel time unreliability). Demand elasticity 

was not, however, incorporated into the congestion cost estimates. 

Emissions costs comprise less than 1% of total estimated congestion costs (which 

include travel time, unreliability, vehicle operating costs, and mobility), and are negative 

(indicating benefits) for some cities. The study’s macroscopic approach does not consider 

detailed flow characteristics or some higher-order effects, but shows that even average-

speed comparisons can suggest increased or decreased emissions during congestion, 

depending on conditions. The report concludes that “vehicle emissions contribute 

negligibly to the costs of congestion,” and that road improvements can increase emissions 

because of high emissions at free-flow speeds and induced demand. 



172 

 

NCHRP REPORT 535: PREDICTING AIR QUALITY EFFECTS OF TRAFFIC -

FLOW IMPROVEMENTS 

This report addresses congestion mitigation, not cost quantification, but does 

focus on estimating emissions with changes in congestion (Dowling, 2005). The study 

objective was a methodology, not quantification, although a few case studies were 

performed. The report describes a detailed travel demand modeling approach that 

includes predictions of travel demand and growth pattern responses to travel time 

reductions. As expected for a methodology of this scope, validation was limited. 

The main strength of the method is the inclusion of long-term, higher-order 

effects such as land use changes. However, the methodology represents capacity and 

travel-time improvements, so microscopic traffic flow changes cannot be modeled. Also, 

while travel demand is elastic with respect to total travel time, demand is insensitive to 

travel time reliability. 

A small set of ten case studies were performed for traffic flow improvements in 

the Seattle/Tacoma metropolitan area. Overall, the modeled flow improvements had 

almost no effect on total regional travel which would indicate induced demand. However, 

Noland and Quddus (2006) point out that the small scale of the projects and large 

uncertainties in the model highlight the weaknesses of these macroscopic modeling 

approaches. The final conclusion from the case studies is that more research is needed “to 

better understand the conditions under which traffic-flow improvements contribute to an 

overall net increase or decrease in vehicle emissions.” 
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MICROSCOPIC STUDY OF INDUCED DEMAND FROM FLOW 

IMPROVEMENTS 

In contrast to the macroscopic modeling undertaken by Dowling (2005) to 

estimate the emissions effects of flow improvements, researchers in London have taken a 

microscopic approach. In separate papers Stathopoulos and Noland (2003) and Noland 

and Quddus (2006) used traffic micro-simulation and microscopic emissions models to 

calculate emissions ‘break-even’ demand elasticity to travel time (the point at which 

induced demand cancels the emissions benefits of improved flow) for each pollutant. The 

scenarios considered were signal coordination and lane expansion on an arterial and a 

freeway. Both studies concluded that long-run emissions reductions were unlikely, as the 

break-even demand elasticities for short time horizons were well within the range of 

published values. 

The emissions effects varied with pollutant and vehicle fleet. In particular, Noland 

and Quddus found that the emissions savings from improving flow characteristics were 

negligible for modern, cleaner vehicles (for hydrocarbons and carbon monoxide). In 

contrast, older and dirtier vehicles can have more benefits from flow improvements. As 

with most other studies, demand elasticity to travel time reliability was not considered. 

Stathopoulos and Noland assert that these and other studies show the potential emissions 

benefits of traffic suppression through capacity reductions. The same logic extends to the 

costs of congestion, where traffic suppression can compensate for the increased emissions 

due to inefficient driving. 
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OTHER TARGETED RESEARCH 

Other papers have also addressed the congestion-emissions relationship directly. 

Researchers at the University of California, Riverside have investigated the emissions 

effects of detailed traffic characteristics. These studies generally address short-term 

effects, where demand and higher-order impacts are not considered. Key findings are 

increased emissions at high and low average travel speeds, increased emissions of real-

world transient driving (as opposed to steady-state), and the importance of short speed 

fluctuations at high speeds (Barth et al., 1999; Barth & Boriboonsomsin, 2008). 

In particular, Barth, Scora, and Younglove (1999) show that free-flow conditions 

can have higher emissions (per vehicle-mile) than lower levels of service (for pollutants 

other than carbon dioxide). Also, Barth and Boriboonsomsin (2009) show that more 

efficient driving on freeways can reduce greenhouse gas emissions by 10-20% without a 

significant change in travel time, with more benefits at higher levels of congestion. This 

result illustrates the possibilities of congestion management that reduces emissions 

(through more efficient driving behavior) without inducing demand.  

In other work, a study by Greenwood, Dunne, and Raine (2007) showed 12-25% 

increases in emissions for congested driving on urban arterials. The reference case was 30 

km/hr steady-state driving, and higher-order effects were not considered. Modeling of 

traffic control on arterials by Zegeye et al. (2009) showed that both travel time and 

emissions cannot be minimized, and optimization involves some trade-off between the 

two. An interesting paper by Nagurney (2000) illustrates 3 paradoxes of the congestion-

emissions relationship at the network level. They are essentially network assignment 

scenarios in which network improvements lead to increases in emissions, with the 
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cautionary conclusion that the “network topology, the demand structure, as well as the 

link travel cost structure must all be incorporated into any environmental modeling.” 

Finally, Beevers and Carslaw (2005) studied air quality in London after a pricing 

scheme severely reduced traffic flow in the city center. They found 12% reductions in 

NOx and particulates, with larger savings from improving travel speeds than decreasing 

flows. The reduced personal vehicle emissions were partly offset by increased transit bus 

mileage as a result of mode shift. 

 
 


	Traffic Congestion Mitigation as an Emissions Reduction Strategy
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - $ASQ96934_supp_undefined_83430B9E-92E8-11E0-A8F3-BC2C9E1A67F9.docx

