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ABSTRACT

Policy-makers, transportation researchers, and activists often assumnafficat
congestion mitigation results in reduced vehicle emissions without propécgistn or
guantification of the benefits. If congestion mitigation is going to be tied tpality
goals, a better understanding of the impacts of traffic congestion @n vedticle
emissions is needed. This research addresses that need by investigatinghigider
circumstances the commonly held assumption linking congestion mitigation to@aissi
reductions is valid.

We develop and apply a mathematical framework to study the trade-offshetwe
vehicle efficiency and travel demand that accompany travel speed charilesthé/
exact relationships among emissions, travel speed, and travel demand véogatitim
and pollutant, several consistent results arise. The potential for mMangissions rate
reductions through average travel speed adjustments is small for speeds betut:@b
and 70 mph. Emissions rate sensitivity to speed increases with the fractionyetlbga
vehicles and for certain pollutants (gaseous hydrocarbons and particul&te,raatt
decreases with the fraction of advanced-drivetrain vehicles, such ag eladtgas-
electric hybrid vehicles.

But travel volume is also a key consideration for the total emissions impacts of
congestion and congestion mitigation. While travel speed increases aralgener
expected to increase efficiency, they are also expected to increade trakiel volume

as a result of induced demand. To explore efficiency and volume trade-offs we look at



emissions break-even conditions for average speed and travel demand elasticity.
Depending on the pollutant and the vehicle fleet, total emissions are only expected t
decrease with increasing travel speed for initial conditions of both low denzatidity
and low average speed. Thus, higher levels of congestion do not necessarilg increas
emissions, nor will congestion mitigation inevitably reduce emissions. Tduk re
includes projects that seek to increase vehicle throughput from existohgawpaupply
through better traffic management and operations. Congestion mitigation thrdugbade
vehicle volumes, on the other hand, presents the opportunity for additive emissions
benefits through efficiency improvements and total Vehicle Miles Ted &/ MT)
reductions.

Comparing capacity-based congestion mitigation strategies with diverna
emissions reduction strategies we show that where emissions reductionssdnie pos
through speed increases, the emissions benefits are likely to be moraedsidst-
effectively attained by other strategies. A sketch analysis of vetiads segregated
facilities shows that truck-only lane strategies consistently afitpe general-
purpose/mixed-flow lane strategies in terms of emissions reductions.

An analysis of several congestion-related performance measures bhoves t
reflecting emissions impacts, VMT is an essential component of perfoemahus,
alternative congestion metrics such as total/excess travel distanca\eaiditne are

preferable emissions performance indicators to speed or distance-nodrdelag. The



Travel Time Index, in particular, poorly reflects emissions changes orsteag
roadways.

This thesis offers several original contributions to the body of knowledge
regarding congestion and emissions. First, it describes a parsimoniougtaahce
framework for assessing the effect of congestion on emissions. Then from that
framework, several simple and original equations are presented which can berused f
sketch-level planning to estimate emissions impacts from congestigaton. Finally,
application of the framework provides quantitative support for the decoupling of

congestion and emissions mitigations.
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NOTATION

1 TRAFFIC VARIABLES

L length of a section of roadway under consideration (distance)

t average travel rate over a section of roadway for all vehicles
(time/distance)

to average travel rate over a section of roadway in free-flow conditions
(time/distance)

tj average travel rate over a section of roadway for vehicles ofjclass
(time/distance)

v average travel speed over a section of roadway for all vehicles
(distance/time)

v; average travel speed over a section of roadway for vehicles of class
(distance/time)

v, average travel speed over a section of roadway in free-flow conditions
(distance/time)

q total volume rate of vehicles traversing a section of roadway
(vehicles/time)

q; volume rate of vehicles of vehicle clgdsaversing a section of roadway

(vehicles/time)

XVi



!

q effectiveflow: volume rate of vehicles in passenger-car equivalent units
traversing a section of roadway, per lane (passenger-cars/lane/time)

q actual vehicles throughput at a location on a section of roadway
(vehicles/time)

VMT;  travel demand distance of vehicles of vehicle dlass/ersing a section

of roadway (vehicles-miles/time)

c effectivecapacity vehicle carrying capacity of the roadway in
passenger-cars per lane (passenger-cars/lane/time)

a dimensionless parameter for the Bureau of Public Roads (BPR) volume-

travel time function

e f dimensionless parameter for the BPR function
FLEET VARIABLES
o vehicle class in the set of vehicle classes
o | set of mutually exclusive and exhaustive vehicle classes
e s emissions source type used in emissions modeling
o S set of all emissions source types modeled
e 5 set of emissions source types contained in vehicle tlass
e fi fractional fleet composition (by distance traveled) of vehicle glass
o f fractional fleet composition (by distance traveled) of emissions source
types

XVil



PCE;  passenger car equivalents for vehicle cjass

3 EMISSIONS VARIABLES

e spatial marginal emissions rate from emissions sourcestype
(mass/vehicle-distance)

e.

g average spatial marginal emissions rate from vehicles ofjclass

(mass/vehicle-distance)

e average spatial marginal emissions rate from all vehicles (mhi&tése
distance)
e average temporal marginal emissions rate from all vehicles

(mass/vehicle-time)

a; j parameters from emissions rate equatiore; ]-), for vehicle clasg
a; parameters from emissions rate equatiore o, for all vehicles
n power parameter from emissions rate equationq-(ayy) ande(v)

by, by, b,,m parameters from emissions rate equatiore{qf)
E total emissions from all on-road vehicles (mass/time/road-distance)

E.

f total emissions from on-road vehicles of clagsass/time/road-

distance)

4 ELASTICITIES

77:,];. elasticity ofq; to ¢; for vehicle clasg

XVili



v
Yq;

elasticity ofq; to v; for vehicle clasg
aggregate elasticity @f to v for all vehicles
elasticity of MT; to v; for vehicle clasg

elasticity ofe; to v; for vehicle clasg

elasticity ofE; to v; for vehicle clasg
elasticity ofE to v for all on-road vehicles
elasticity ofv; to g; for vehicle clasg
elasticity ofv to q for all on-road vehicles
elasticity ofe; to q; for vehicle clasg
elasticity ofe to q for all on-road vehicles

elasticity ofE; to q; for vehicle clasg

elasticity ofE to g for all on-road vehicles

elasticity ofE to TT1I for all on-road vehicles

elasticity ofq; to v; for vehicle clasg which leads to emissions break-

even conditions

v

Yq

elasticity ofg to v for all vehicles which leads to emissions break-even

conditions

XiX



1 INTRODUCTION

Motorized transportation’s role in decreasing urban air quality and increasing
atmospheric greenhouse gases through motor vehicle emissions is a globa conce
(Fenger, 1999; U.S. Environmental Protection Agency, 2009). Concurrently, roadway
congestion impacts urban areas throughout the world with varying economic, social, and
environmental costs (European Conference of Ministers of Transport (ECMT), 2007,
HDR, 2009). But the full effects of traffic congestion on motor vehicle emissionsilare s
not well quantified because of interactions and impacts on many scales, frofa vehic
maintenance to land use.

Policy-makers, researchers, and activists often assume that congestatiomsdu
inevitably lead to reduced vehicle emissions. In many cases, emissionsoresiamc
cited as an implicit benefit of congestion mitigation without proper justification or
guantification of the benefits. For example, the U.S. Federal Highway Adratiosts
Congestion Mitigation and Air Quality (CMAQ) Improvement Program suggestear
co-beneficial relationship between the two. The CMAQ program has provided over $14
billion in funding since 1991 for transportation projects to improve air quality and reduce
congestion (Federal Highway Administration, 2010) — one third of it for traffic flow
improvement projects (Grant et al., 2008; Transportation Research Board, 2002).

If congestion mitigation is to be tied to air quality goals, we need better
understanding of total congestion impacts on motor vehicle emissions. Towardahat g

this thesis presents a unique conceptual and mathematical framewaskdssing the



effects of congestion on emissions (Chapter 4). This framework includes the iefluenc
of varying travel efficiency and travel volume in a parsimonious way. Fran thi
framework, results, equations, and insights are presented which can be usetther ske
level planning to estimate emissions impacts of congestion mitigati@p{€ib).

Beyond aggregate full-fleet emissions, we investigate the impacts of advance
drivetrain vehicles (Chapter 6) and heavy-duty vehicles (Chapter 7) on theteamges
emissions relationship. We then apply the sketch-planning approach to investigate
conditions in which emissions co-benefits can broadly be expected from cdpsety-
congestion mitigation, including a comparison of alternative emissions re@aucti
strategies (Chapter 8). Further analysis presented in this theageasthe emissions
impacts of vehicle class-segregated road facilities (Chapter 9Ohamanissions
implications of congestion performance measures (Chapter 10). The resuksthesis
provide quantitative support for the decoupling of congestion and emissions mitigations.
A literature review with background information and research objectivesegented

next in Chapters 2 and 3, respectively.



2 LITERATURE REVIEW AND BACKGROUND

The broad extent of congestion on urban roadway networks is well documented in
the literature (ECMT, 2007; Schrank & Lomax, 2007). Not only are nearly all major
metropolitan areas in the U.S. congested during peak periods, but congestion is
increasing with population growth and urban densification. This growth in congestion is
magnified in developing countries as the rate of automobile ownership and usage is
increasing as well. Although there is no debate that congestion exists andirgygthe
full impacts of congestion (and how best to address them) are not yet decidhesl. In t
chapter we describe the state of knowledge about the relationship between traffi

congestion and motor vehicle emissions.

2.1 General Costs of Congestion

Various studies have attempted to quantify the impacts of congestion (Goodwin,
2004; HDR, 2009; Kriger, C. Miller, Baker, & Joubert, 2007; Weisbrod, Vary, & Treyz,
2001). The suggested impacts include direct effects such as excess traaeldime
indirect effects such as increased business operating costs and human exposure to
pollution. Across multi-dimensional studies, excess travel time is consysieaiargest
estimated social cost of congestion (HDR, 2009; Kriger et al., 2007; Schrank, Lomax, &
Turner, 2010). But comprehensive attempts to quantify total congestion impaets suff
from challenges such as estimating the extent of higher-order, indirectsef.g.

congestion impacts on land use) and quantifying intangibles (e.g. traveletestedss



Too often, congestion cost analyses do not even go as far as to estimate driver behavio

responses to congestion (such as mode shift).

2.1.1 Congestion Benchmarks

Congestion studies are also inhibited by inconsistent definitions and thresholds of
congestion. A ‘congestion-free’ scenario is typically used as a benchmastifoatng
congestion effects, but the attributes of this hypothetical situation are noestanif
Probably the most common benchmarking approach is to simply compare congested
speeds to free-flow or uncongested threshold speeds (Greenwood, Dunn, & Raine, 2007,
HDR, 2009; Kriger et al., 2007; Schrank & Lomax, 2009). The hypothetical system
change, then, is limitless roadway supply, with all existing travel demavideskr
without impedance. The problem with this approach is that it ignores suppressed demand
from exiting congestion — an effect described by Hymel, Small & Dender (2010)
Ignoring this suppressed or latent travel demand distorts the costs of congestiam and ca
potentially magnify the predicted benefits of congestion mitigation.

The European Conference of Ministers of Transport (ECMT) criticizes a free
flow speed benchmark as suggestive of unattainable and unaffordable policy outcomes
(2007). Goodwin (2004) also provides a sound critique of the fixed-demand, free-flow
comparison approach to congestion cost estimates. He points out that because of induced
demand, free-flow conditions with existing traffic volumes are unrealfstipurely
notional idea, not a conceivable description of a world we might choose to provide for.”
Hence, congestion indicators and cost estimates need more clear and consistent
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benchmarking to be comparable and realistic: benchmarks that fully repmasent

alternative situation to the congested roadway.

2.1.2 Congestion Performance Measures

As with cost estimates, congestion performance measures are alsd satidle
the distortions of fixed-demand/free-flow speed comparisons. Most congestion
performance indicators measure mobility or its impedance (Cambridgenstics, Inc.
& Texas Transportation Institute, 2005). Mobility is typically estimated\werage travel
speed or its inverse (distance-normalized travel time) — which neglectsesharitavel
distances and travel volume. This approach has the same problems described above for
fixed-demand congestion cost estimates, which are unrealistic anddimgle@ortright
(2010) criticizes the approach of the Texas Transportation Institute’s Urbhititiy
Report (Schrank et al., 2010), which uses a normalized travel time mettg fomary
congestion indicator. Cortright describes this as an unrealistic measure wgigttthe

roles of travel distances, land use, sprawl and accessibility.

2.1.3 Recurring and Non-recurring congestion

The transportation literature often distinguishes between recurring and non-
recurring congestion. Recurring congestion is essentially the expeadtgdiadiay
connected to peak travel demand. Nonrecurring congestion is unexpected or unusual
congestion caused by incidents such as crashes, inclement weather, spetsiatieles,
roadside distractions, and even announced construction closures (DowlingdShkeha

Carroll, & Wang, 2004; Kwon, Mauch, & Varaiya, 2006; Skabardonis, Varaiya, & Petty,
5



2003). The causal distribution of nonrecurring congestion is location-specifidi(lgat
al., 2004), and the nonrecurring portional contribution to total congestion has been
reported in ranges from 13-70% (Kwon et al., 2006; Skabardonis et al., 2003;
Hallenbeck, Ishimaru, & Nee, 2003).

To the author’s knowledge, no published studies have revealed an intrinsic
difference in microscopic traffic flow characteristics betweeuméng and non-
recurring congestion for the same roadway and delay charactetistiogt{ non-
recurring congestion is often caused by a sudden, temporary change inygapacit
Differences in road users’ expectancy could lead to different trip-levavimeh
responses to recurring and non- recurring congestion (such as departurbdioe and
routing), since non- recurring congestion is harder to anticipate.

Non- recurring congestion decreases travel time reliability — whicHusddy
travelers and so likely to influence their travel behavior (Brownstone &1 S2085;
Small, Winston, & Yan, 2005). Some travel time unreliability, though, is also asswci
with fluctuating/uncertain travel demand and roadway capacity (Tu, vangLugn
Zuylen, 2007), such as would be encountered during peak period recurring congestion.
Bigazzi and Figliozzi (2011) showed that the instability in traffic flows neadway
capacity increases time, fuel, and emissions costs for freeway traveh thighg
flow/capacity ratios can occur during recurring or non- recurring cioge The
differing cost implications for recurring and non- recurring congestian igrea needing

research, particularly as it relates to emissions.



2.2 Emissions from Motor Vehicle Traffic

One of the external costs cited by congestion studies is increasedamsair
pollutants from motor vehicles. This claim is explored more in the literatur@wevi
below, and is the subject of this thesis. Motor vehicle emissions in general are a
significant contributor to poor air quality in urban areas (Fenger, 1999), wgeh haalth
effects (Health Effects Institute, 2010). According to data from the U.Srdfrvental
Protection Agency (EPA), “Highway Vehicles” was the single souragoay with the
largest emissions of carbon monoxide (CO), nitrogen oxides)(M@d volatile organic
compounds (VOC) in the U.S. in 2002 (U.S. Environmental Protection Agency, n.d.).
On-road vehicles also emit roughly one quarter of greenhouse gas emissiors.B. the
(U.S. Environmental Protection Agency, 2009).

Vehicle emissions of local pollutants and greenhouse gases have differemt scale
of impacts, temporally and spatially. Local pollutants such as CO, VOg,aw@
particulate matter (PM) can be relatively short-lived and geneavallyimpact the region
or even street where they are emitted. Health research has suggested a 50 tet&/500 m
impact zone from highways and major roads for measured health impactedaim |
pollutants (Health Effects Institute, 2010). Greenhouse gas emissions sudtoas ca
dioxide (CQ), on the other hand, have minimal local impact but are important in terms of
cumulative global emissions, and over long time scales. This delineation is a
generalization, as some pollutants have an immediate local impact andrafrdoute to

climate change (sometimes after atmospheric transformatiom). #dme pollutants



impact air quality primarily through formation of harmful secondary pollstanth as
ozone and acid rain — which delays their temporal influence and broadens their spatial
influence.

The primary factors influencing on-road vehicle emissions are the quahtity
vehicle travel (typically assessed as vehicle-miles traveled, or)Viti@ vehicle engine
loads (often characterized by operating modes or speed profiles), and the fleéicl
characteristics (vehicle type, condition, emissions technology, etc.) (Kumh&v
Friedrich, 2000, 2005; Pandian, Gokhale, & Ghoshal, 2009; Singh, Huber, & Braddock,
2007). These factors, therefore, are of principal interest in examining congéfsiais e
for possible emissions implications. Additionally, not all pollutants react the say to
changing vehicle/road conditions (Barth, Scora, & Younglove, 1999; Boulter, Barlow,
McCrae, & Latham, 2009), so different pollutants should be considered separately. |
general, more research is needed on the correlations of emissions raffesenftdi
pollutants under various traffic/fleet conditions — especially between gresalgases

and local air pollutants — which would allow more generalization of congestenisef

2.3 Methods for Estimating Congestion Impacts on Emissions

Before describing the body of research results relating congestionssicams, it
is worthwhile to look at how congestion-emissions relationships have been studied.
Despite increasing research interest, the wide breadth of congestitis effietinues to
hinder comprehensive investigations of congestion impacts on emissions. Itys near

impossible to simultaneously trace/model all potential connecting pathveays f



congestion to emissions, so studies are forced to draw effect boundaries fit to the
resolution and scope of available data and models. Existing research thusytypicall
measures the emissions effects of specific congestion chartaztehsough select

influence paths.

2.3.1 Empirical Emissions Quantification

After establishing an uncongested benchmark scenario, emissions during
congested and uncongested traffic conditions can be compared directly througbresmissi
measurements. This turns out to be a difficult approach, though, because of Hgcessari
limited sampling. Ropkins et al. (2009) provide a detailed description of the qualities
emissions monitoring techniques relating to factors captured and spaticgmve

Individual vehicle emissions can be measured on-road using probe vehicles
(Barth, Scora, & Younglove, 2004; Holmen, Sentoff, Robinson, & Montane, 2010) or in
a laboratory using realistic driving speed patterns for vehicles on a ctiasamometer
(Barth et al., 2000; Smit, Smokers, & Rabe, 2007). These methods measure true vehicle
emissions and avoid some of the challenges of other approaches, but their relevance
depends on the representativeness of the vehicles sampled and driving patterndtapplied.
is also a costly approach if broad samples of vehicles and traffic conditicohesaed.

In-situ measurement of roadway air quality can capture full, repedsent
emissions or air quality effects, but experimental factors are diffcaibntrol and
emissions effects can only be quantified for existing roadway condifRopkins et al.,
2009). Most often, roadside air quality measurements are gathered concurrdmtly wi
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traffic data to establish empirical relationships between the twoZH&igdan Lint,
Klunder, Stelwagen, & Ligterink, 2010; H. Chen, Namdeo, & Bell, 2008; Kohler,
Corsmeier, Vogt, & Vogel, 2005). A major challenge of using pollution concentration
measurements to estimate on-road vehicle emissions is controlling faisdispe
influences, which creates large uncertainties (Venkatram, 2004; Venkétedkay,
Thoma, & Baldauf, 2007). Additionally, in-situ measurements are generaléylguited

in spatial extent and so subject to confounding factors related to the measurement

location (Croxford & Penn, 1998).

2.3.2 Emissions Modeling

As an alternative to direct measurement of emissions or air qualitysienss
modeling is more often employed because it allows full control over studydaatdr
estimation of emissions in hypothetical scenarios (useful for mitigation pignni
Additionally, modeling can estimate a wider range of vehicle/traffic camgitgiven
limited resources. The broad typical approach to emissions modeling is tatestima
average emissions rate per vehicle-mile of travel (per VMT), and then cothbine
emissions rate with estimates of the volume of vehicle travel, VMT.

The main drawbacks of emissions modeling are high uncertainty (Kuhlwein &
Friedrich, 2000; Frey & Zheng, 2002; Joumard, Philippe, & Vidon, 1999), lack of
standards (Adler, Grant, & Schroeer, 1998), difficulty in validating (Dowling, 2008), a
challenges in modeling on multiple scales. The uncertainty in emissionssnwdel
context-dependent and not necessarily prohibitive (Frey & Zheng, 2002), though the
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effects can be magnified if emissions are modeled in series witie &atf/or dispersion
models — e.g. (J. Y. Park, Noland, & Polak, 2001). Because of limited calibration data,
emissions models have known accuracy weaknesses related to heavy-digg agluic
particulate emissions (Dowling, 2005) — though these are being addredseewer

models (Barth et al., 2004; U.S. Environmental Protection Agency, 2009a).

2.3.2.1 Microscopic Emissions Modeling

Microscopic modeling combines detailed traffic data with a microscopic
emissions model to investigate the effects of changes in detailed tradfacteristics
(Barth et al., 1999; Rakha, Van Aerde, Ahn, & Trani, 2000). This level of detail can be
important because short, intense accelerations can produce emissions ratgshafndr
times higher than ‘normal’ driving (Joumard et al., 1999). As an example of where this
type of modeling is needed, small roadway changes such as continuous-access versus
limited-access High-Occupancy Vehicle (HOV) lanes can significamihact emissions
because of increased weaving intensity (Boriboonsomsin & Barth, 2008).

The significant data demands of microscopic emissions models are difficult t
satisfy (Pandian et al., 2009). Most models require second-by-second vehidleatzee
which can be obtained from probe vehicles (Malcolm, Younglove, Barth, & Davis, 2003)
or traffic micro-simulation (K. Chen & Yu, 2007; Hirschmann & Fellendorf, 2010).
Driving data based on probe vehicles, like the empirical emissions estimatibods
described above, limit the study to existing traffic conditions. Microscogufifoctr

simulation models can create various congestion scenarios, but they have not been wel
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validated for use in creating inputs to microscopic emissions models (Dowling, 2005; J
Y. Park et al., 2001) — primarily because of unrealistic accelerationslipiasm &
Fellendorf, 2010) and speed fluctuations (Jackson & Aultman-Hall, 2010). Other
challenging data requirements are detailed vehicle information, metepdatag and

fuel data. Finally, while microscopic modeling can replicate the tsflifodetailed
congested traffic flow characteristics, larger network and behavideat®fre difficult

to include because of limited spatial/temporal coverage (Dowling, 2005).

2.3.2.2 Macroscopic Emissions Modeling

Most macroscopic emissions models use average travel speed as the primary
traffic input (Barlow & Boulter, 2009; Smit et al., 2007; U.S. Environmental Protecti
Agency, 2009a). As with microscopic emissions modeling, relevant vehicle acawity
be collected on-road but is often modeled instead (see Ziesman & Rilett (2001) for a
comparison). Average speed inputs allow macroscopic emissions models toybe easil
interfaced with travel demand models for regional emissions estinmdatdsréon,
Kanaroglou, E. Miller, & Buliung, 1996; Affum, Brown, & Chan, 2003; Roberts,
Washington, & Leonard II, 1999). However, research has shown that travel demand
model outputs require additional post-processing before use in macroscopic emissions
modeling (Bai, Nie, & Niemeier, 2007).

A typical method for using average speeds to estimate emissions is by assuming
an archetypal driving pattern that matches an average speed (thesabyaemesented

by 1 Hz vehicle speed time-series, also called drive cycles, speedgrofidrive
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schedules, depending on the application) (Lin & Niemeier, 2003a; U.S. Environmental
Protection Agency, 2009a). For more accuracy, these drive cycles can bie spdod
relevant vehicle type, roadway facility type, and even region of the countrg(Lin
Niemeier, 2003b). There are other methods of macroscopic emissions modeling(such a
multilinear regression), but these still assume a representativenpttriving at some
point in the data collection or model development.

Average-speed emissions models can capture typical characterisbesiway
congestion if the imbedded drive cycles are facility-specific and saritlg
representative (Smit, Brown, & Chan, 2008). Fortunately, the applicabilityve dycles
for “real-world” driving conditions has received considerable attentioe$garchers
(Ericsson, 2000; Joumard et al., 1999; Lin & Niemeier, 2003b, 2002; Nesamani &
Subramanian, 2006). Since macroscopic emissions models are not applicable for “non-
standard” driving (Frey & Zheng, 2002) atypical traffic featuresadfitr management
strategies must be modeled with caution.

Although macroscopic modeling neglects unique, detailed traffic charéicteris
is better suited than microscopic models to measure the indirect, broader edloénc
congestion. Dowling (2005) suggests a hybrid modeling methodology to address the
congestion-emissions guestion because of the infeasibility of microscopitimgdde
capture demand effects and limitations of macroscopic modeling to detect mége subt

operational benefits.
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2.3.3 Congestion Benchmarks

One final note on emissions estimation methodologies relates to the congestion
thresholds and cost comparisons discussed above. Uncongested comparison conditions
for emissions estimates can be characterized from real-worlfldveéraffic or
simulated as constant-speed steady-state traffic flow. Hypothetiesiant-speed driving
generates lower emissions rates than real-world driving around dreesffleeds, which
has intrinsic variability (Barth & Boriboonsomsin, 2008; Barth et al., 1999; Jackson &
Aultman-Hall, 2010). Hence, congestion indicators and cost estimates should use realis
transient free-flow speed profiles (not steady-state speeds) fpacisons. Ideally,
congestion studies should further account for uncongested differences in the vetdticle fle

though this is rarely done.

2.4 Impacts of Traffic Congestion on Vehicle Emissions

When they are included in total congestion cost estimates, emissions areytypicall
a very small portion of total costs (HDR, 2009; Kriger et al., 2007). These results,
though, are subject to the uncertainty of applying an economic-equivalent value to an
externality such as pollution emissions (see Hall, Brajer, & Lurmann (2008nf
example of the complexity in valuing air pollution). Furthermore, to the author’s
knowledge no comprehensive congestion cost study has estimated costs with a
benchmark other than the fixed-demand/free-flow speed approach — with all its
limitations described above. In other wortle broad cost studies have all ignored the
effects of variable demand on emissions.
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The major published studies focusing on the congestion-emissions relationship
are summarized individually in Appendix A. The general consensus is that the tota
emissions effects of congestion are either not well understood or highly gaAata@icent
analysis for the U.S. Department of Transportation (HDR, 2009) asserts thatthe
impact of congestion on emissions can be beneficial or detrimental, depending on the
context. But these studies vary greatly in terms of the breadth and detailysfsafoa
different effects pathways from congestion to emissions. A summary ofi¢lvant
literature on different congestion effects on emissions is shown in Tablesk athects

are discussed in more detail in the following sections.

2.4.1 Direct Effects of Congestion

The most salient direct impact of congestion is an increase in travel times
(decrease in average travel speed), which increases average emasopsr mile of
travel when speeds are low (Barth & Boriboonsomsin, 2008; Barth et al., 1999). This
emissions rate increase is due both to increased engine loads from bagheragion
intensity and frequency during unsteady traffic and to longer operatiegoer unit
distance at slower travel speeds (Barth & Boriboonsomsin, 2008; Greenwogd et al
2007). However, studies have also shown that moderate travel speed reductions from
excessively high speeds can reduce emissions rates per mile of Biartel&
Boriboonsomsin, 2008; Barth et al., 1999; Dijkema et al., 2008; Farzaneh, Schneider, &
Zietsman, 2010; S. Park et al., 2010). In other words, the direct effects of congestion on
emissions rates vary across congestion levels.
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Table 1: Summary of Roadway Congestion Effects on Vehicle Emissions

Congestion Effect Impacts on Motor Vehicle Emissions
Decreased average ¢ Increases emissions rates at very low speeds
travel speeds (Barth & Boriboonsomsin, 2008; Barth et al., 1999)
o Decreases emissions rates for moderate speed reductions gn
freeways

(Barth & Boriboonsomsin, 2008; Barth et al., 1999; Dijkema gt
al., 2008; Farzaneh, Schneider, & Zietsman, 2010; S. Park et al.,

2010)
Increased speed e Increases emissions rates with acceleration intensity and
variability frequency; impact varies with travel speed and facility
(accelerations) (Barth & Boriboonsomsin, 2008; Barth et al., 1999; Greenwqod
et al., 2007)
Suppressed travel o Less VMT decreases total emissions, but changes depend an the
demand road network and other factors; much research still needed
(or induced demand (Dowling, 2005; Noland & Quddus, 2006; Stathopoulos &
with less congestion) Noland, 2003)
Travel time ¢ No studies found on direct emissions effects (related to driving
unreliability behavior or traffic characteristics of non-recurring congestion)

¢ Indirectly, could suppress travel demand (Goodwin, 2004) and
so reduce VMT and emissions as above
e No studies found on other indirect effects on emissions (related
to routing, departure time, etc.)
Trip rerouting e Mixed effects possible (Nagurney, 2000); more research ne¢ded
Departure time shifts | e No studies found

Mode shift to transit | e Increases bus emissions, but smaller than savings from reduiced
driving (Beevers & Carslaw, 2005) ; more research needed
Increased vehicle wear e  No studies found on potential increased emissions rates with
increased vehicle wear
Increased vehicle ¢ No studies found on potential indirect emissions effects through
operating costs decreased travel demand

Freight operating cost | ¢  Emissions impacts vary with route (Figliozzi, 2011)
increases and potential ¢  Congestion mitigation can increase freight VMT (Weisbrod &
supply chain or freight al., 2001) and so increase emissions

operations responses |«  No studies found on potential emissions effects through
changing fleet mix, freight mode shift, or delivery time shifts

—
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2.4.2 Indirect Effects of Congestion

Longer travel times due to consistent congestion suppress vehicle travel demand
(Hymel et al., 2010). This the inverse of the induced demand caused by traffic flow (and
travel time) improvements (DeCorla-Souza & Cohen, 1999; Douglass Lee, Klein, &
Camus, 1999; Noland & Cowart, 2000; Noland & Lem, 2002). Using microscopic traffic
simulation, research has shown that induced demand can increase total vebkgilenemi
at a bottleneck location after a traffic flow improvement (Noland & Quddus, 2006;
Stathopoulos & Noland, 2003). If this is true, then suppressed travel demand has the
potential to offset higher emissions rates per vehicle-mile and so redalcent@dsions in
congestion.

Travel behavior changes in response to congestion vary with the road network and
other factors, and more detailed research is needed in this area. For examgée, ve
travel demand can change by way of the frequency, distance, schedulirigntvdegor
routing of trips (Cervero, 2002; DeCorla-Souza & Cohen, 1999). Different demand
responses will have differing impacts on the total volume of emissions — in addition t
the spatial-temporal allocation of emissions.

In addition to demand-suppressing long travel times, congestion causes travel
time unreliability, another common indicator of poor performance for a roadv@y TE
2007; Schrank & Lomax, 2007). The demand-suppressing effects of the disutility of
unreliable travel times are not as well studied or quantified as for aveaagetimes.

Goodwin (2004) presumes they could exceed average travel speed effects on demand.
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Indeed, as an implication of support for this notion, Small, Winston, & Yan (2005)
estimate the value of reliability at about 50% to 100% of the value of trawelwihile
Brownstone & Small (2005) estimate it at 95%-140%.
The emissions impacts of other facets of unreliability besides demand suppression

(e.g. direct effects related to traffic characteristicsrapnon-recurring congestion or

other indirect effects related to routing, departure time, etc.) have not bewifiegiao

the best of the author’s knowledge. More generally, the emissions differencegiet
recurring and non-recurring congestion is in an area needing research —grgrticul

because they are targeted with different types of mitigation strategie

2.5 Travel Demand Elasticity

Given the importance of changing travel volumes for emissions effectenee
describe travel demand responses in more detail. Travel demand responsesitg chang
congestion levels are typically assessed using travel demand sldsttcavel time,
which is the percent change in travel volume (typically measured as veliliesesi
travel (VMT)) with each percent change in travel time (see LitrA@aX) for a
discussion). Demand elasticity to travel time has a negative value bet#use o
decreased attractiveness of longer-duration trips. Demand elasticigg welry with the
roadway network, time range of interest, value of travel time in relation to cubts,
trip length and purpose, and other local characteristics such as the amount ofavetant |

(DeCorla-Souza & Cohen, 1999).
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The literature generally agrees on a range of -0.2 to -1.0 for likely vetagtd t
demand elasticities to travel time (DeCorla-Souza & Cohen, 1999; Goodwin, 1996; Jong
& Gunn, 2001; Douglass Lee et al., 1999; Noland, 2001; Noland & Cowart, 2000).
Larger absolute values for demand elasticity (more negative) aeeapplicable for
longer time scales and situations with more travel options (in terms of modes, route
destinations, etc.). Demand elasticity of VMT reflam$changes, and so ideally
includes the aggregate affects of rerouting and changes in the number oetfigst/y
inelastic (fixed) demand has an elasticity of 0, and perfectly elastiart (which
implies a fixed travel time) would have an elasticity approaching vegatinity.

Demand elasticity to generalized costs is higher than demand elasticayel
time alone, varying with the value of travel time in the context of total tradjoort
costs. For example, Graham and Glaister (2004) point out that demand elastrergl
time for personal travel is increasing because the value of time is aasinglg large
portion of generalized driving costs (65% by 2000).

For freight the demand elasticity to generalized cost has been enhpirical
estimated as a full order of magnitude greater than the freight dematnatglastravel
time alone (HLB Decision Economics Inc., 2008). This is logical since the aiker ¢
components for freight transport are proportionally higher than for persondl Fave
freight vehicles, complex relationships exist between travel time and d&vand

because time costs must be viewed in the context of supply chains, labor, and market
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costs. This complexity is discussed thoroughly by Weisbrod in NCHRP Report 463
(2001).

Demand elasticity to average travel speed can be simply estinsateel megative
of demand elasticity to travel time. Table 2 presents a summary dfdeawand
elasticities to travel speed that have been reported in the literature ¢sigverted when
originally reported as demand elasticity to travel time). This is by ramsa
comprehensive list, though it incorporates several meta-reviews of induced demand
studies. For passenger-only and passenger-dominated general road travelifargtom
personal auto trips), elasticities of VMT demand to travel speed have been mos
commonly reported from 0.2 to 1.0 (DeCorla-Souza & Cohen, 1999; Goodwin, 1996;
Jong & Gunn, 2001; Barr, 2000; Cohen, 1995; Williams & Moore, 1990). Lower
elasticities are more often found over shorter time scales, as many behadgifications

require time to realize.

Table 2. Elasticity of Travel Demand (Distance) to Travel Speedrom the
Literature

Source Elasticity Values Context

(Jong & Gunn, 2001) 0.2-0.7 Passenger Travel
(Barr, 2000) 0.3-0.4 Passenger Travel
(DeCorla-Souza & Cohen, 1999) 0.4-1.0 General

(Cohen, 1995) 0.6-1.8 General
(Williams & Moore, 1990) 0.3-1.5 General
(Goodwin, 1996) 0.5-1.0 General

(Oum, 1989) 0.9-1.0 Freight
(Abdelwahab, 1998) 1.0 Freight

(HLB Decision Economics Inc., 2008) | 0.01-0.02 Freight

" Signs have been reversed on values originally tegars elasticity to travel time
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Road/truck freight elasticities have been reported from 0.0 to 1.0 (HLB Decision
Economics Inc., 2008; Oum, 1989; Abdelwahab, 1998). The freight elasticities, however,
are based on much fewer studies, as fewer data are available and the sitozdien is
complex. While demand elasticity is generally highly uncertain (as arebloavioral
responses), this is particularly true for freight transport. Grahana&tér (2004) point
out that freight travel demand in general is under-studied and not as well understood as
passenger travel, and that while freight travel demand has traditionallyabsemed to
be inelastic, that is likely not the case.

The unique behavioral responses of freight vehicles is an important consideration
for emissions because freight is moved by heavy-duty vehicles, which have highe
emissions rates than light-duty vehicles — largely because of high groske wesights
(Brodrick et al., 2004). Heavy duty vehicles are also predominantly diesetfusid
diesel fuel has different emissions characteristics from gas&owd, Boriboonsomsin,

& Barth, 2010), which powers most of the U.S. light-duty fleet (U.S. Environmental
Protection Agency, 2009b).

The uncertainty of demand responses makes prediction of congestion and
congestion mitigation effects on total emissions especially difficult @igireA more in-
depth analysis of demand elasticity to speed or travel time is beyond the scope of this
thesis, but there are many quality published papers that do exactly that. Wetes ref
demand elasticity that might interest the reader include: Goodwin, D& ddgnly,

2004; Goodwin, 1992; Graham & Glaister, 2004; and Oum, II, & Yong, 1992.
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2.6 Congestion Mitigation and Emissions

Assuming isotropic conditions, congestion mitigation will have the opposite
effects of congestion. Thus the engine operating inefficiencies of cedgtsit-speed
vehicle travel have prompted suggestions for congestion mitigation targeisgjas
reductions. Unfortunately, assessment of congestion mitigation steasegdiers the

same limitations as estimates of congestion impacts and costs descrioed abo

2.6.1 Capacity-Based Strategies

Capacity-based strategies (CBS) for reducing emissions ease tcamgs
increasing a roadway'’s vehicle throughput and so increase vehicle opefétiency.
CBS can increase capacity by increasing physical lane-milgsinciteasing existing
roadway efficiency and utilization through traffic flow improvements. Theetks
emissions benefit of congestion mitigation through CBS is reduced marginal@mis
rates at higher traffic speeds. This approach presents the potential for induced.dema

A report by Dowling (2005) used travel demand modeling to estimate air quality
effects of traffic flow improvements but yielded very large uncertaiiiesand &
Quddus, 2006). The conclusion of the report was that more research is needed “to better
understand the conditions under which traffic-flow improvements contribute to anl overal
net increase or decrease in vehicle emissions.” Other, more focusedhresearmnited
spatial scale has shown that induced demand from traffic flow improvements make
emissions rate reductions through CBS unlikely to reduce total emissionadNola
Quddus, 2006; Stathopoulos & Noland, 2003).
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2.6.2 Non-Capacity-Based Strategies

As an alternative to CBS for emissions reductions, non-capacity basedisgat
(NCBS) aim to reduce emissions without increasing roadway capacitynerepasing
vehicle efficiency at a given travel speed or by reducing the total amouavelf tAs an
example, Barth and Boriboonsomsin (2009) show that more efficient driving behavior on
freeways can reduce greenhouse gas emissions by 10%+#@8at a significant change
in travel time with more benefits at higher levels of congestion. NCBS also can directly
target emissions through cleaner vehicles and fuels. Demand-side NCB&l titat met
travel volumes by methods such as road pricing can reduce emissions and also ease
congestion (Beevers & Carslaw, 2005).

Admittedly, the CBS/NCBS division does not cleanly categorize all possible
approaches to emissions mitigation. For example, “road diets” or roadpagitya
reductionsare capacity-based strategies thatease(or at least maintain) congestion
levels, but still with the potential for emissions reductions through suppresseld tra
demand. The most commonly suggested NCBS include some style of “eco-driving”
(Barkenbus, 2010; Barth & Boriboonsomsin, 2009), high-occupancy vehicle lanes
(Boriboonsomsin & Barth, 2007; Krimmer & Venigalla, 2006), congestion pricing or
road pricing (Beevers & Carslaw, 2005; Johansson, 1997; Smyth & Christodoulou,
2010), and speed-smoothing/steadying traffic management techniques sucaldes var
speed limits and intelligent speed adaptation (Barth & Boriboonsomsin, 2008; Mahmod

et al., 2010; Wu et al., 2010).
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2.7 Literature Summary

While a great deal of work has been done in the field of motor vehicle emissions
estimation, our understanding of the full congestion impacts on emissionslisgéd.
Generally, congestion decreases vehicle efficiency but also suppresstésiemand —
and the balance of these is not easily quantified. Too many estimates ofticongests
and impacts consider efficiency changes but simply neglect variablendefiacts.
Furthermore, those studies which do consider variable demand are typicalfy highl
context-specific, with unknown applicability to other situations. Thus, assumptions of
congestion and emissions co-mitigation require more inspection. The objectives of this
thesis are motivated by observation of these gaps in the state of knowledgeribsdlesc

in the next chapter.
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3 OBJECTIVES

This research aims to alleviate some of the uncertainty about the relationship
between congestion and emissions and the potential for congestion mitigation as an
emissions reduction strategy. As illustrated in Figure 1, capacity-basgédstion
mitigation which increases travel speed can influence total emissions lmtglthr
emissions rate reductions (due to increase vehicle operating efficanty)creased
travel volumes (due to travel behavior changes). The opposite can be said fomgcreas
congestion: decreased travel speeds tend to increase emissions through increased
emissions rates but simultaneously decrease emissions through lowevdhaneds.

Understanding the balance of these two effects pathways is the purview of¢hische

Vehicle E ns
Operating

Effi cienY’

Congestion
Mitigation

Travel
Behavior vy e
Changes

Figure 1. Congestion-Emissions Influence Paths

The specific objectives of this thesis are enumerated as follows:

1. Present a conceptual framework for assessing the impacts of congestion o
emissions with minimal location specificity

2. Develop generalized relationships between travel speed and vehicle emissions

— taking into consideration variable travel demand
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3. Describe situations in which capacity-based traffic congestion mitigation i
likely to reduce motor vehicle emissions — with particular attention to the role
of different vehicle classes

4. Compare capacity-based congestion mitigation with other emissions reduction
strategies

5. Assess congestion performance measures and their applicability for
emissions-related impacts

This research will address several gaps in the literature and shortcoiriings o

current body of knowledge by:

1. Using a variable travel demand approach (and not simple free-flow speed
comparisons) to estimate congestion impacts on emissions

2. Developing generalized relationships between congestion and emissions that
are comprehensible, expedient, and broadly applicable — and include
emissions sensitivity to both travel speed and volume

3. Providing simple sketch-planning tools that can be applied anywhere with
some simple assumptions and estimation of parameters

The effects pathways in Figure 1 are the motivation for the framework of the

methodology, as described in the next chapter.
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4 METHODOLOGY

The macroscopic modeling in this study is designed to advance our understanding
of the relationships between traffic congestion and vehicle emissions. We ldgan w
broad description of the conceptual framework of the modeling, and then continue with
detailed descriptions of individual components. A summary list of the variables used in
this analysis is provided in the prefatory pages of this thesis under “NOTAT &M
consolidated reference for the reader. The variables are all describedaltothmg text

of Chapter 4.

4.1 Conceptual Framework

There are many direct and indirect influence paths from congestion to@maissi
A primary challenge of this research is to include as many effdotvpgs as possible,
aiming for a comprehensive and yet still broadly applicable approachppruaagh to
accomplishing this is suggested by the diagram in Figure 1. This diaguatraties two
aggregateeffect pathways, each representing multiple effects. Congestion level is
indicated by average travel speed. Then on the top pathway, myriad vehicle operating
conditions (speeds, accelerations, idling) with varying congestion level arafigdant
the changing average emissions rates (per vehicle-mile). On the bottonayatiamy
diverse traveler behavioral responses are represented by net charaes ohetmand
volume.

If our primary interest is thehangesn total emissions witkhangesn
congestion level, then we do not need to model absolute vehicle volumes or emissions

rates, but individual and join changes with changes in travel speed. We witl tf@sis
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framework at the end of the Methodology chapter, after introducing key vareafude
relationships. In the following sections we describe processes for aaffiemissions
modeling and develop the equations that relate changes in total emissions to thanges

speed.
4.2 Macroscopic Traffic Modeling

4.2.1 Rate of Travel

Travel demand modelers use demand volume-travel speed relationships to
estimate the average speed over a road section (with respect to the)tbassdron
demand flow, road capacity, and other parameters. This analysis emgaoyalltknown
Bureau of Public Roads (BPR) model for this purpose (Bureau of Public Roads, 1964).
The BPR volume-travel time function calculates the average travet ratd¢ime per
unit distance, as a function of the effective demand volgme) passenger-cars per lane

per unit time, as

B
F=t, 1+a<q/c) (1)

wheret, is the free-flow travel rate, is the roadway capacity in passenger-

cars/lane/time, and andpg are dimensionless parameters. The average travel speéed,
distance per unit time, is then simply the inverse of average traved raté/f. We use

0=0.15 angs=7 from Hansen et al. (2005), calibrated for the Portland region. This model

and these parameter values are used illustratively, while recogrhainipé¢ selection of
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a volume-speed relationship can have a significant impact on total emiss@ratons

(Bai et al., 2007).

4.2.2 Vehicle Classes and Effective Flows

The effective vehicle flow rate for the BPR functigh,is the volume of vehicles
traversing a section of roadway, converted to passenger-car equivalenufRSEJhe
PCE value for each passing vehicle is the amount of roadway capacity thatithe veh
occupies, referenced to the capacity occupied by a typical passenger car usbibto
adjust for the larger spatial requirements for larger and heavier vehicleian Trgpical
PCE values for trucks range from 1.5 for level terrain to 4.5 for mountainous terrain
(Transportation Research Board, 2000). There are more complex ways to accthet for
differing performance of trucks in congestion (see Yun, White, Lamb, & Y(2005)
for an example), but the PCE method is considered sufficient for the macroscopic
analysis performed here.

Let f; be the fractional fleet composition (by travel volume) of each vehicle class
J in the set of vehicle classgsFurther, letPCE; be the PCE value for all vehicles of
classj andgq; be the volume flow rate (in number of vehicles per unit time) of vehicle of
classj. If q is the total volume flow rate of all vehicles (in number of vehicles per unit
time —notadjusted for PCE), thayy = f; - gq. Furthermore, if the vehicle clasges |
are mutually exclusive and exhaustive, thgp, f; = 1 and so% ¢, q; = q. Finally, the

effective flow rateg’ can be calculated from these variables as

q' = Zje(PCE; - q;) = q - Zjes(PCE; - f;) - (2)
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4.2.3 Level of Service Indicators

As a qualitative congestion reference in this thesis, we use the leseivade
(LOS) indicators for basic freeway sections described in the Higi@apacity Manual
(HCM) (Transportation Research Board, 2000). In the HCM, freeway LOSoAghrF
are based on traffic density thresholds where LOS F is the most congestechpivg
average travel speeds for each freeway LOS following Barth @989), who calculated

average travel speeds from EPA driving schedules.

4.3 Emissions Rates

4.3.1 Emissions Rate Modeling

Average vehicle emissions rates are estimated usirig@her Vehicle
EmissionsSimulator (MOVES) 2010, the latest average-speed emissions model from the
U.S. Environmental Protection Agency (EPA) (2009a). Emissions rates (i1 gexm
vehicle-mile) are modeled using estimated on-road vehicles in the PortlandnOreg
metropolitan region for the year 2010. More information on the modeled vehicles is in
the next section. The modeled pollutants aree0@reenhouse gases in carbon dioxide
equivalent units), CO (carbon monoxide), N@itrogen oxides), Pl (particulate
matter smaller than 2.5 microns), and HC (hydrocarbons). Where available, county-
specific inputs are used (meteorology, vehicle inspection and maintenance prfogiam
formulation), and national averages are used for other model inputs (vehicle age
distributions). The MOVES model outputs emissions rates in 16 average-speed bins for
17 emissions Source Types (combinations of vehicle class and fuel type) fordndiffe

seasons and 24 hours of the day on urban freeway (restricted) and urban arterial
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(unrestricted) facilities. The average speed bins are in 5 mph increments, upgb.75 m
The modeled emissions are running exhaust and evaporative emissions; refueling,
brakef/tire wear, and start emissions are not included. Particulate resosge not
modeled by MOVES.

The average-speed emissions modeling approach estimates emissionsafgg ave
travel speeds using facility-specific driving patterns (speedl@sdfiThese driving
patterns (also called “drive cycles” or “drive schedules”) are composedadured,
archetypal combinations of acceleration, deceleration, cruise, and idle behae@ooas
average travel speeds on specific facilities, collected on-road in variSusities (see
MOVES documentation for details). Drive patterns effectively repragpital
congested conditions for emissions modeling, as long as they are representatie of
world driving (Smit et al., 2008). They generally do not represent unique microscopic
traffic characteristics and so cannot be used to model individual featu@sg@stion
(e.g. weaving sections), but they are appropriate for a macroscopicdssabls as
performed here. For robustness, comparison analysis is also done using emi&Esons ra

published by Boulter et al. (2009) and Barth & Boriboonsomsin (2008).

4.3.2 Vehicle Fleet Composition

For this analysis the MOVES emissions Source Types are combined into
composite vehicle fleets based on the estimated distribution of 2010 Portland freeway
vehicle miles traveled (VMT) by Source Type. First the percentage®iviay travel in 6
Highway Performance Monitoring System (HPMS) vehicle type classestimated

using length-based classifications from 14 inductive dual-loop detector stations on
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Portland metropolitan freeways for 2009 (Oregon Department of Transportation, 2010).
National-level 2010 freeway VMT and vehicle population estimates from the(BFA
Environmental Protection Agency, 2010) are used for additional detail where length-
based classifications cannot discriminate MOVES emissions Source (bghesen
passenger cars and passenger trucks for example).

The method to estimate fleet composition is summarized in following steps:

1) Estimate fraction of daily freeway VMT in each of 6 HPMS vehicle ctags®e
motorcycles20: passenger car8(. other two-axle, four-tire single unit vehicl&g)
busespH0: single-unit trucks, an0: combination trucks)

a) Collect length-based vehicle classification data for 2009 from 14 inductive dual-
loop detector stations on Portland area freeways (Oregon Department of
Transportation, 2010)

b) Average across stations for fraction of daily VMT in each of the 13 Federal
Highway Administration (FHWA) vehicle classes

c) Combine the 13 FHWA vehicle class fractions into five HPMS vehicle dasse
(10: motorcycles20/30: all two-axle, four-tire single unit vehicle$): busesb0:
single-unit trucks, an@0: combination trucks); HPMS vehicle clas28sand30
are combined because length-based discrimination is unreliable — based both on
observation of inconsistent data among stations and on HPMS documentation
(Federal Highway Administration, 2001)

d) Use EPA estimates of 2010 freeway VMT fractions to separate HPMSevehic

classe20and30
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i) EPA documentation provides national-level guidance for 1999 total VMT by
HPMS vehicle class, with growth factors to estimate 2010 total VMT by
HPMS vehicle class (U.S. Environmental Protection Agency, 2010)

i) The same document provides estimates of the fraction of total VMT on urban
restricted (freeway) facilities for each HPMS vehicle class.(U.S
Environmental Protection Agency, 2010)

i) The resulting EPA estimates of 2010 freeway VMT fractions agree wéll wi
the combined 2009 Portland-area vehicle class distribution of freeway daily
VMT

2) Separate each HPMS vehicle class into MOVES emissions Source Type

a) Use EPA estimates of 2010 vehicle populations by MOVES Source Type to
apportion fractional VMT to MOVES Source Types within each HPMS vehicle
class

b) The same EPA document used above also provides national-level guidance for
1999 vehicle populations by MOVES Source Type, with growth factors to
estimate 2010 populations (U.S. Environmental Protection Agency, 2010)

c) An example of different MOVES Source Types within an HPMS vehicle class is
the separation of Passenger Trucks from Light Commercial trucks in HPMS
vehicle class80

3) Estimate gasoline/diesel fuel splits for MOVES Source Types

a) Again, in the same document as used above the EPA provides national-level

guidance for estimation of diesel fractions for each vehicle class (U.S.

Environmental Protection Agency, 2010)
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b) Assumed diesel fractions from EPA documentation are 0.4% for Passenger Cars
1% for Passenger Trucks, 6% for Light Commercial Trucks, 70% for Single Unit
Trucks, and 100% for Combination (trailer) Trucks

c) Assume buses are 100% diesel

d) Assume all non-diesel vehicles use gasoline fuel

The resulting fleet composition from following these steps is shown in Table 3.
Details on each of the MOVES emissions Source Types can be found in the MOVES
documentation (U.S. Environmental Protection Agency, 2009a). After estimation of the
full fleet composition, the emissions Source Types are also combined into ligiit Bjity
and heavy duty (HD) vehicle fleets. The LD vehicle fleet includes MOVESc8duype
ID’s below 40 (motorcycles, passenger cars, passenger trucks, and sih¢\estmile
light commercial trucks under 19,500 Ibs Gross Vehicle Weight Rating (GVWR9). T
HD vehicle fleet includes MOVES Source Type ID’s above 40 (buses, combination
trucks, and other heavy trucks over 19,500 Ibs GVWR). Using this partition, the full fleet
is composed of 8.9% HD vehicles.

As stated above, for each vehicle-fuel combination the MOVES model outputs
emissions rate estimates in 16 average-speed bins for 4 different seasddsaars of
the day on freeway and arterial facilities. For each of the LD, HD, and¢hittle fleets,
composite emissions rates for each pollutant-speed-season-houy-Eacitibination are
calculated using weighted averages. The weights are based on the perceritages of

composition shown in the fourth column of Table 3.
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Table 3. MOVES Source Type Distribution

MOVES Source Type | Vehicle Type Fuel % of Fleet

11 Motorcycle Gas 0.43

21 Passenger Car Gas 52.83

21 Passenger Car Diesel 0.21 E o
31 Passenger Truck Gas 27.92 e g
31 Passenger Truck Diesel 0.28 _'&D 2
32 Light Commercial Truck Gas 8.86 -
32 Light Commercial Truck Diesel 0.57

41 Intercity Bus Diesel 0.04

42 Transit Bus Diesel 0.03

43 School Bus Diesel 0.29

51 Refuse Truck Diesel 0.07 >
52 Single Unit Short Haul Truck Gas 1.00 a é
52 Single Unit Short Haul Truck Diesel 2.34 % %
53 Single Unit Long Haul Truck Gas 0.06 QL >
53 Single Unit Long Haul Truck Diesel 0.14

61 Combination Short Haul Truck | Diesel 2.84

62 Combination Long Haul Truck | Diesel 2.11

Let f; be the fractional fleet composition (by VMT) of each Source Tyjpethe
set of Source Types, and lete; be the spatial marginal emissions rates (in mass per
vehicle-distance) for each Source Typé&-urther, lej be a composite vehicle class

composed of a subset of Source Types, it} < S (such as all LD vehicles). Then the

composite average emissions rajefor vehicle clasg can be calculated as

_ fores _ Zsesj(fs'es)
ej N ZSES]' <Zses‘jfs> N fj (3)

sinceZSEijs = f;. Average emissions rates from the full vehicle fleetan be seen as
a special case ef whereS; = S andZsesj fs = 1. Alternatively, if] is a set of mutually

exclusive and exhaustive vehicle clasgebenS = U¢, S; and
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e =Yses(fs - €) = Xjey (Zsesj(fs . es)) = Z}'é](fj ) e]-) . (4)

4.3.3 Marginal Emissions Rates as a Function of Speed

To generate emissions rate versus average speed curves, emissions fitited ar
to a function of average speed for each pollutant-season-hour-facility corobiridie
discrete average-speed-bin emissions rates are least-squanés fiteexponentiated
polynomial of speed following previous emissions research (Barth & Boriboonsomsin,
2008; Sugawara & Niemeier, 2002). The functional form for vehicle class-avsayatal

marginal emissions rateg, as a function of vehicle class-average spggdor each

vehicle clasg is
¢i(vj) = exp(Tioai; - vjt) 5)
whereaq, ; are fitted parameters; is in grams per vehicle-mile, amgis in miles per

hour (mph). We use = 4, again following previous research (Barth & Boriboonsomsin,
2008; Sugawara & Niemeier, 2002). We can similarly calculate the spas&bt full-

fleet average emissions rates as

e(®) = exp(Toa; - ') . (6)
Full-fleet average temporal marginal emissions r&egin grams per vehicle-
hour of travel) are simply the product@findv. Thus from Equation &' can be

modeled as a function of average travel speading

e =¢e-7=exp(Tloa ). (7)
In the same way, temporal marginal emissions rates for each vehicleasidss

modeled using; ; andv;.
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4.3.4 Marginal Emissions Rates as a Function of Volume

Using a travel volume-speed relationship, marginal emissions rates paevehi
mile can also be estimated as a function of the travel demand vajuorahe effective
travel demand volume,’. A volume-speed model (such as the BPR function described
above) relateg’ to average spead— which allows a transformation efv) toe(q’) =

é(ﬁ(q’)). Using the fitted parametess from Equation 6 and the BPR model shown in

Equation 1 along with the relationship= 1/5' we can calculate

-1

8
e(q) = exp(Tioa; - 7(g)") = exp| Tioait, | 1+ a (q /c) . (8)

A similar approach was used by Sugawara & Niemeier (2002) to estimaaggnal
emissions costs on a network link for an emissions-minimizing network assignment
algorithm. If the vehicle class-average speed is the same as thgeaivavel speed for
all vehicles,y; = 7, then we can similarly estimagefrom q’ by substitutings; ; for a;
in Equation 8.

We also propose a simpler formulationed§’) which approximates the form of

the BPR function (Equation 1), using four fitted parametgyrdi,, b,, m, and capacity:

&(q') = by + by ("'/c>+bz (q'/c) . ©)

The fitted parametets,, b,, b,, and m are estimated by minimizing the square error of

e(q") with respect to emissions rates from Equation 8, ugirg the independent

37



variable. Both Equations 8 and 9 can easily be transformed to cake(gatestead of

eé(q") using estimates dtCE; andf; with Equation 2.

4.4 Total Corridor Emissions

Total emissionsk; (in mass per time, per length of roadway), from all on-road
vehicles of clasg passing through a corridor are simply the product of the spatial
marginal emissions rate;, and the traffic volume flow ratg;. Cumulative total corridor
emissionsE, from on-road vehicles of all vehicle clasgas the set of mutually
exclusive and exhaustive vehicle classgger unit length of road per unit of time, are

then

E=Yigk =2ig(a¢)=a-Zig(fi-eg)=q-e. (10)
4.5 Travel Demand Elasticity
The concept of travel demand elasticity is discussed, analyzed, and assessed
thoroughly in the literature, as described in Section 2.5. We use demand elbastieias
the most established way of accounting for broad behavioral responses without
introducing numerous other parameters to this analysis (such as networkeststies;t
trip characteristics, and other non-time cost components).

First we define the elasticity of travel demand volupén number of vehicles
per unit time) to travel ratg (in time per unit distance) for vehicles of clasasnflf;,,

which can be calculated

G _ % 04
T’qj - q]- atj ! (11)
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This is the point elasticity it]-, q]-). The linear or mid-point arc elasticity between two

travel rate/demand volume conditio(rt§1, ‘71'1) and(tjz, qu) is calculated as

n = (t*5,)72 (9,795, _ (¢, +t5,)(aj,-9;,) (12)
U (qj2+qj1)/2 (tjz_tj1) (qj2+qj1)(tjz_tj1)

(see Litman, 2011). Using point elasticity, the elasticity of travel demalntneq; to

changes in average travel speedor vehicles of clasg represented aﬁZj is then

”f:ﬁ.%:ﬁ.%.ﬁ:_ntf (13)
a; qj 617]' q; 6tj 6vj aj
incev; = 1 9 _ -2
sincev; /tj andavj v 72

Travel demand elasticity in the literature generally addressehaeges in total
travel distance (i.e. VMT) with changes in average travel rates orgaveevel speeds.
The changes in VMT are the result of a combination of chamgingperof vehicle trips
and changing vehicle trighstancesthrough various pathways (Cervero, 2002). The
changes araetchanges because travel speed changes can have offsetting effects. For
example, with a travel speed reduction some vehicle trips could be eliminatedéeta
the increased time costs (reducing VMT), while other vehicle trips could be &ldnga
because of rerouting (increasing VMT).

If L is the length of a corridor under study, then the total travel demand distance

on the corridor for vehicle claggin vehicle-miles traveled per unit of analysis time) is
VMT; =q;-L. (14)
.. . . . v j
The demand elasticity as assessed in the literature is best repimm;,arj, the

elasticity ofVMT; to average travel speed on the corrigpr]f we assume that all
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changes in travel demand resulting from travel speed changes on the corridor are

represented as changes in volumge.on the fixed-length corridor, then

vi OVMT; _ i, 9(q;-L) _ v; 0q; _

Vi
J
nVMTj VMTj an Qj'L av]- q; an q;’

(15)
. . V; . . ‘Uj
This allows us to use estlmatesngmj from the literature to apprommaﬁ;gj.

The effect of the assumption thé;t; = n:;j'wj is that all net travel demand (VMT)

change related to the facility of interest is realized on the fadg#yfi The advantage of
this approach is that it avoids specification of the characteristics ofglmitside the
corridor, the broader roadway network, and the travel behavior responses. The

disadvantage is that some of the net travel demand (VMT) change is actaalyrac

on other facilities. Usingsj accurately represents the net change in the quantity

v
= nvﬁwq
of VMT, but it neglects the changing characteristics of VMT (the distabuty facility
type, speed, etc.). But note that the utilization of demand elasticity itsel¥v@sval

potential redistribution of VMT, since it only represenéschanges in VMT. For
estimating emissions effects, the assumptionngﬂat: nszj will be most accurate
when the emissions rates on the facility of interest are similar to dmosther affected
facilities.

The general assessmemnéf”j from the literature is in the range of 0.2 to 1.0,
as described in Section 2.5. This value, however, can vary with vehicle class, depending
on the trip purposes (take the goods movement dominance of HD vehicle demand, for

example). Beyond the average-speed effects on demand represe;qﬁgquyafﬁc
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instability and unreliability also increase the costs of travel (BigaFigliozzi, 2011),
and thus can influence the travel demand volume. We assume no travel unreliability
effects on travel demand for this analysis. Thus the results here will beaiives as
incorporating unreliability relationships would likely increase the dehedasticity to

traffic speed/congestion level changes (Goodwin, 2004).

4.6 Emissions Gradients and Elasticities
The gradients of total and marginal emissions rates can be calculaigthesin

derivates oft; ande;.

4.6.1 Emissions Changes with Travel Speed

In this section we formulate equations which represent how emissions rates and
total emissionsg; andE;, vary with changes in;. This considers botf; ande; to be
functions ofv; — i.e. variable demand volume and emissions rates with changing average
speed. With marginal emissions raigs defined as in Equation 5, the emissions rate

gradient for each vehicle clagsvith respect to changes# is

dej _

L =¢ - Ni(iav' ). (16)

6vj
Expressed as the elasticiti;, for vehicle clasg of emissions rates;, to speedy;, this
becomes

v; v; Oe; . ;
ee]’, =-Z. 07]_ =2 (iayv) . (17)
]

€j
Using Equations 10, 13 and 17, we can then calculate the gradient in total

emissionsE;, from each vehicle class due to a change in class-average speed,
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0E; aq; de; E; v v

J J J 2] J J
— —.e.+qg; - — £ + ¢ . 1
617]- 6vj J q] 6vj Uj (nq] el) ( 8)

Expressed as a total emissions elasticity to speed for each vehislevelaave simply

vj_ﬁ.an_ vj vj

Ej - Ej 6vj - nq] + Sej (19)
Combining Equations 17 and 19,
v v; i ;
EE; = T’qj + Z?zl(Lai‘jvjl) , (20)

and we see that the elasticity of total emissions to traffic speed cfangsach vehicle
class is dependent only on travel demand volume elastfg:‘]:ixyraffic speed;, and fitted
emissions rate parameters;.

Let us define the average travel speed for all vehitless the volume-weighted

average of each vehicle class’s average travel spged,
v =Yg(fi ) - (21)
For the gradient of total emissions to average speed changes for all vekitlagev

an an Uj.%

96 _ vy [%i]_y %, % _y |E,
ov = Ziel [017] = Zje) [av,- 017] = Zje) [v]- ®rj v | - (22)
Expressed as the elasticity of total emissions to average speddvahicles,

B U A )
J€J vj Ej ov |’

QJlQ)
<A |

Q<A

(23)

(32)
my
Il
| <A

If we assume that the absolute speed change is the same for all vehielg class

ov; .. . ..
% = 1V j €], then for total emissions gradient and elasticity to average speed for all

vehicles we have

42



0E 0E; E; v
5= Dol = B @)

and

g =

Q<A

fiej vj
T[22 ey (25)
]
Alternatively, if we assume that tipeoportional (percentage) speed change is the same

: w; v .
for all vehicle classes;—ﬁ’ = % Vj €], then we have

=1 Tglfi-e e (26)
and
ef =2 Talfi e e @7)
Therefore, in addition to the demand elasticity, traffic speed, and emissipasafineters

for each class needed to calculaﬁé,(see Equation 20), elasticity of total emissions

simply requires estimates of the fraction fleet composiffipn,

Finally, for the average emissions rate from all vehi@de#,we assume that the
. af; _
fleet mix is unaffected by average speed chanéés; 0 Vj €], and assume the same
. . av; ;
average-speed-change proportionality as abgvg’/e—: %’ Vj €], then

e

dej 0v; 1 v;
o Zle](av ok ov ) Lie) (av ar;]'f1'> =5 Zie) (e]- i Ee;) ' (28)
For the elasticity of average emissions raje¢p average speed, for all vehicles (using

the same assumptions),

NIRN
°”|%.

%)

Il
] | <A
<A

é ZJEI(eJ fi-e e]-)' (29)
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4.6.2 Emissions Changes with Travel Volume

In this section we formulate equations which represent how emissions rates and
total emissionsg; andE;, vary with changes ip;. Here we consides; to be a function
of q; throughvj(q]-) — by using a volume-speed relationship such as the BPR function.

We first define the elasticity of travel speeg,to changes in volumey, for vehicle

classj as
aj _ 4q;0vj
e =40 30
b= (30)
and for all on-road vehicles as
q_4a9m
81_7 - 7 dq (31)

We can then calculate the elasticity of emissions ratem travel volumeg;, for each

vehicle class as

aj _ 4; 9ej _qj Oe; 0v; vj 4
g, =~ —=—.—.—= =g -’ 32
ej ej 6q]- ej an 6q]- ej vj ( )
and for all on-road vehicles as
q_4d,0e_4q 9 v_ p _q
€ =3 9"z 95 aq "% S (33)

The elasticity of total emissior% to changes in travel volunag for each vehicle class

is calculated
=284 e~+q-ﬂ =14+l =1+¢ - ¢J (34)
Ej Ej aq; E;j\J J aq; €j e v’
and for all on-road vehicles
q _4q OE _ q _ 7. .4
sE—E-£—1+eé—1+£é & - (35)
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. Vi . . . .
Slnceee]’, andez can be calculated as described in the previous section, the

remaining task is calculation 93; ands,f,’. If we apply the BPR function, then for the

general case inclusive of all on road vehicles, by differentiatingtiegqui we get

o toap ot ()
dq ¢ aq c ! (36)
which allows us to compute
% t v ! B—l _aﬁa_q’
ggzg.a_v.ﬂ:_w.ai.(q_’) — 7 dq (37)
v v 0t 0 ) c .
v t q c q c <(E) +0_,> Zje](PCEj'fj)

It should be noted that these equations assume a certain, fixed relationship géteeen
q) andv (ort) — namely, the BPR function. Importantly, the roadway capadiya

fixed parameter. For this reason using the volume-speed equations will only help us
estimate the impacts of varying demand volumes on emissioes all other operational

and roadway capacity factors are unchanged

4.7 Demand Elasticity for Break-Even Emissions Conditions

Given the high uncertainty of true demand elasticity to travel sp%edt can be
informative to simply calculate a demand elasticity which represeetk-even
conditions from an emissions perspective, here denéfﬁ_edhen we can compas% to
a likely range ohg in order to predict the net emissions effects of a change in traffic

speedy;. This is similar to the approach used by Noland & Quddus (2006) to predict the

total emissions effects of a traffic flow change using microsinumat
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4.7.1 Break-Even Demand Elasticity by Vehicle Class

From Equation 18 total emissions will remain constant with travel speed changes

: 9E; : : . . -
for each vehicle clasgg =0, Whenan, = —e:]’,. That is in addition to the trivial cases
J

in which the traffic flow volume or the emissions rate from that vehicle ctas
zero,q; = 0 ore; = 0. Therefore, from Equation 17 break-even demand elastvrgiiy,

for vehicle clasg is calculated

YZ] = —SZ; = —Z?zl(iai,jvji) . (38)

J
For formulations of the emissions versus speed relationskip,), other than Equation

o,

ov;

Vi Vi Vi
5, yqj_ can more generally be calculated frw;;] = —e—{- ,-

J

From Equations 19 and 38 follows that

vi _

Vi Vi
SE]. - nqj - Yqj ' (39)
Thus, the elasticity of class-total emissions to traffic speedgelsan the difference
between the vehicle clasgisie demand elasticity to travel speaﬂé, and itsbreak-even

demand elasticity to travel spemg;. When true demand elasticity exceeds break-even

demand elasticit(nZ; > y;jj ) sg Is positive and traffic speed increases witrease
total emissions from vehicle clag¢due to the dominance of induced demand). When
true demand elasticity is less than break-even demand ela@ig;’ity yvj) e is
7714 TE)
negative and total emissions from vehicle clasdll decreasdrom traffic speed

increases (due to the dominance of increased efficiency).
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SinceyZi, in Equation 38 is only a function of, notq;, neitheryZﬁ, norsg rely
on a specific volume-speed relationship such as the BPR function. They can simply be

calculated from the existing average spegdhe fitted emissions rate parameteys,

and the true demand elasticity to qu%d The same independenceyr’éf andsg from

q; applies to other formulations e}f(v]-), as long as it is a function only of.

4.7.2 Graphical Method of Determining Break-Even Demand Elasticity
As a graphical alternative, we can use the slope of the total emissions contour

lines (“iso-emissions” lines) on thg versusy; plane to estimate break-even emissions
elasticity for a vehicle classyqj,. The total emissions contour slope can be calculated as

the orthogonal vector to the total emissions gradient at any point. For totaicemsis

E;(q;,v;) as a function of vehicle floy; and traffic speed;, the total emissions
gradient isVE;(q;,v;) = <ej, q; %). Note that this deviates from the gradient&gf;; )
J

andE;(v;) shown in the previous sections since it disregards the relationship between
andv;.

The slope of the total emissions contour lines onythe plane is the orthogonal

. de; . . .
vector to the gradient vectars-q; a—z’_, e]->. Thus the iso-emissions lines follow the slope
]

aq; —qjolej . . . . . ..
0_17] = e—’a—v’ which is the relationship betweghnandv; which represents emissions
j j 9vj

break-even conditions. Expressed as an elasticity, the iso-emissions shepbrsak-

. LV v;o0qj —v;de;
even demand elastlc%; =4 d=-_J_J

Vi . . .
—¢,’, which is the same as Equation 38.
qj 0vj ej 0v; Jj
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4.7.3 Break-Even Demand Elasticity for a Mixed Fleet

For mixed fleets of multiple vehicle classes, total emissions are ureaffeygt
OE; . . v ;
travel speed changes Wh;b% = 0 for all vehicle classes, |.3;’, = yZ’, Vj € J. But not
vj J ]

every class’s total emissions need to be insensitive to speed changes io badera net
zero change in total emissions with average travel speed changes. Songeclatsels
can increase class-total emissions while others decrease classristons, off-setting
each other.

We can see the potential for tradeoffs using Equation 27. If the travel speed

, : . , ;v
change is proportionally equivalent for all vehicle clasglf_;‘;, % Vj €], then an

emissions break-even condition exists when
T=0=Y.fe e’ 40
€E jer |fi e €g;] - (40)
For this to be true in cases other tlaéj_h= 0 Vj €], some vehicle classes must have

positiveeg and others negative (sinfeande; will always be positive). More generally,

for conditions when the speed changes vary by vehicle cldsg astal emissions are

unaffected by speed changes when

v

— f @ .
e =0 =Yg [# . EE; -Avj] : (41)
Here we see that trade-offs can come from positive and negative vahéﬂjéanﬂ/or

from speed changes in different directions (positive and negative valiieg .of
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4.8 Other Data Used in the Analysis

In addition to the data required for emissions and traffic modeling described
above, in this research we make use of real-world traffic data from the AOdRiTa
archive at Portland State University (http:\\portal2.its.pdx.edu). THistdata archive
extends back to 2004 with 20-second aggregated vehicle count, average speed, and
detector occupancy data from hundreds of inductive dual-loop detectors on the Portland,

Oregon metropolitan freeway system.

4.9 Summary of Methodology

As stated previously, the conceptual diagram in Figure 1 shaped the methodology
of this research. Now that we have developed the necessary equations, we itdheevis
conceptual framework and flush it out with notation and the core equation. Figure 2
shows the key pieces of the modeling framework expressed as elastitists(ed
assuming a uniform vehicle fleet). The last equation in the fig@re,ng + &2, is the
central equation of this research; it expresses the total emissidistglasspeed as the
joint effects of both pathways (vehicle efficiency througrand behavioral responses

throughn?).
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Figure 2. Conceptual Modeling Framework as Elasticities

Emissions rate elasticitg?, can be analytically determined from emissions rate
modeling (Equation 17). There is uncertainty associated with the emissionisngdoiet
emissions rates can be estimated for aggregate average drivingacenddemand
elasticity,ny, has more uncertainty because it depends on forecasting driver behavior
changes. This driver behavior uncertainty motivates the estimation of lwveakiemand
elasticity,yg, which can also be calculated from the emissions rate modeling results (see
Equation 38). Then a likely rangef can be compared witf} to assess the expected
emissions effects of a travel speed change. This relatively simpleaappallows
estimation of the total emissions impacts of congestion or congestion mitigation,
requiring only the emissions-speed curve fit parameters and an expectetbrange
demand elasticity. In the next chapter we will see the results of thisaesusing

different emissions models.

50



5 FULL FLEET TOTAL EMISSIONS

We first present the emissions results as they relate to the full vdbaeatlelh this
chapter we treat the entire vehicle fleet as a unified class, Wwher§. The following
sections show emissions rates per vehicle-mile as a function of speed ory$raada
arterials, emissions rates per vehicle-hour, emissions rates asiafufictolume, total
emissions, and emissions elasticities. These results are for undefinedysad each

facility type.

5.1 Spatial Emissions Rates (per Vehicle-Mile)
The composite full-fleet average emissions raieare calculated as a special

case of Equation 3 whesg= S andZsESj fs = 1. Then the parametess are fitted from

Equation 6 foe(v) by minimizing square error, usimg= 4. The data points for the

curve fit are the modeled emissions rates at each of 16 average speed bins (in 5 mph
increments). The fitted parametersfor the MOVES-based Emissions-Speed Curves
(ESC) are shown in Table 4 for the full on-road fleet, for PM peak periods on freeways

April, 2010. These usg in mph anceé in grams per vehicle-mile.

Table 4. Full-Fleet MOVES Emissions-Speed Curve Fit Paramete for Freeways

Freeways CO.e CO PM; 5 NO HC
Qo 8.191 2.885 -1.223 1.897 0.3352
a; -0.1826 -0.1788 -0.1769 -0.1656 -0.2040
az 0.006339 0.006629 0.006640 0.005830 0.006643
as -9.690E-05 | -1.092E-04 | -1.127E-04 | -8.928E-05 | -1.012E-04
Ay 5.357E-07 6.518E-07 6.724E-07 4.936E-07 | 5.674E-07
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Plots of full-fleet freeway marginal emissiomsversus average travel speéd,
are shown in Figure 3 for G, CO, PMs, NO,, and HC. In addition to the ESC
generated by MOVES for a 2010 Portland on-road fleet, comparison curves ai plotte
based on research by Boulter et al. (2009) and Barth & Boriboonsomsin (2008). The
Boulter curves are for European vehicles on unspecified facilities, with an apptely
equivalent mix of vehicle types as the Portland 2010 modeled fleet, shown in Table 3.
The Boulter curves are only drawn over their valid speed range. The Barth clanve is
CO, emissions (plotted with C@® from MOVES), for a LD vehicle fleet from Southern
California in 2005. As a qualitative reference, average speeds for diffierenway level-
of-service (LOS) indicators are included, as described in Section 4.2.3. Notk thratea
models estimate slightly different G@missions: MOVES estimates g&)all
greenhouse gases in &équivalent units), Barth estimates direct emissions of @
Boulter estimates ultimate GQusing the assumption that all the carbon content of the
fuel eventually ends up as atmosphericCSince CQ dominates greenhouse gas
emissions (U.S. Environmental Protection Agency, 2009), these emissions types shoul

be comparable.
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Figure 3. Full-Fleet Freeway Emissions Rates versus Average Speed/§.v),

with Freeway LOS

The model sources for the curves in Figure 3 are based on different vehicles,

emissions test data, and assumptions, and so it is not surprising that they doenom agre

absolute emissions rates. For example, European vehicles (in the Boulter mawdel)

generally more stringent PM controls than U.S. vehicles. The key to observeein thes

figures is thae does not have a monotonic relation withand there are potential
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emissiongate reductions from moderating speeds from both directions. There is also a
relatively flat area in the middle of the curve — where sensitivigytofi is slight.
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Figure 4. Full-Fleet Freeway Emissions Rate Gradients versus Averagpeed, with
Freeway LOS

The sensitivity ofe to v is perhaps more easily seen in Figure 4, which shows the

ESCgradientsversus average travel speed for the same pollutants and models. These are

calculated using Equation 16 %g( then converting from mass rate changes to
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percentage rate changes for each 1 mph increasélime minimum emissions rate is
when the gradient curve crosses the speed (horizontal) axis.
The gradients in Figure 4 have low absolute values from 25-70 mph — meaning
speed changes over this range have a small effect on marginal emissi@asiigcr
speeds above LOS E provides small emissions benefits, and above LOS A can have an
emissions-intensifying impact. While the ESC and ESC gradients differ lngol
vehicle type, and emissions model, the emissions gradients are consistelity sma
moderate speeds. As subdww emissions efficiency gains are to be found outside of
heavily congested (or extremely high speed) freeway seciibageneral agreement
among models suggests that these findings apply to other developed countries as well
The 25-70 mph speed range with low emissions sensitivity is wide enough to
encompass most freeway travel. As an example, Figure 5 shows the dstrdfuti
freeway VMT in 5-mph speed bins using real-world traffic data from fagewun
Portland, Oregon. This figure is based on one month (July 2010) of 5-minute aggregated
inductive dual-loop detector data on 15 miles of the I-5 freeway in Portland, Oregon
(northbound from milepost 290 to milepost 305). These bounds include roughly 44
million VMT. The data were mined from the PORTAL data archive
(http:\\portal2.its.pdx.edu). The 25-70 mph speed range includes 96% of all freeway
travel, and 81% of workday peak-hour travel (5pm — 6pm). Admittedly, urban arbas wit
more heavy congestion or higher free-flow speeds would have higher percentages of

VMT outside of the 25-70 mph range (e.g. see Barth & Borboonsomsin (2008)).

55



I-5, All Hours, July 2010

40
30 _44.1 million vehicle miles of travel
|_
=
% 20 | 95.9% in 25-70mph range
S
10
0 - ey ep— | —
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Speed Range (mph)
I-5, PM Peak Hour, Non-Holiday Weekdays, July 2010
40
30 - 2 million vehicle miles of travel
}_
=
% 20 1 80.9% in 25-70mph range
S
V] —mmE i
o T N

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Sneed Ranne (mnh)

Figure 5. Distribution of VMT using 5-minute average speeds from dualelop

detectors on I-5 northbound in Portland, Oregon

5.1.1 Arterial versus Freeway Emissions Rates

The fitted parameters for the MOVES emissions-speed curves (by Eqgdjasion
shown in Table 5 for the full on-road fleet arterials for PM peak periods in April,
2010. Figure 6 shows the ESC and ESC gradients that result from the artenadtpesa
in Table 5. The Boulter ESC and ESC gradients are included in Figure 6 asneell, s
they are not facility-specific. Although the emissions rates areasimilFigure 3, the
lower speed range (expected for arterials) shows decreasing MOWHESed emissions

rates with increasing speed (negative gradients) over the full speed range
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Table 5. Full-Fleet MOVES Emissions-Speed Curve Fit Paramete for Arterials

Arterials COe CcO PM 5 NOx HC
Qo 8.161 2.772 -1.277 1.852 0.2974
a; -0.1735 -0.1378 -0.1618 -0.1554 -0.1960
a 0.005899 0.004602 0.005876 0.005390 0.006389
as -8.937E-05 | -7.356E-05 | -9.883E-05| -8.239E-05 | -9.841E-05
Qay 4.929E-07 4.435E-07 5.896E-07 4.572E-07 | 5.576E-07

Figure 7 compares the freeway and arterial full-fleet ES@igmés from the

MOVES model using the fitted parametets,shown in Table 4 and Table 5. The

differences in the curves arise because of differing driving patterns ofeeditix

different combinations of vehicle operating modes can result in the samgeatrenzel

speed. All other factors are the same between the curves (fleet compositiokesyehi

weather, fuel, etc.). The shapes are quite similar, although the artegal@®@mirates are

slightly more sensitive to speed. This meansttapotential for emissions rate

reductions by increasing average speeds is greater on arterials than on fre@Wwisyis

particularly true considering the speed range differences; a moderaighsted arterial

has a lower average speed than a moderately congested freeway.
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Figure 7. Comparison of freeway and arterial emissions-speed gradients

We can examine the facility-specific driving schedules which underlie the

average-speed emissions models (see Section 2.3.2.2) for an explanatignhef

arterial and freeway ESC gradients in Figure 7 are different.é&-Bjghows the

distributions of second-by-second speeds and accelerations for two different driving
schedules mined from the MOVES drive schedule library (used for average-spee

emissions estimates as described in Section 2.3.2.2). The top histogram isvier a dri
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schedule representing LOS F conditions on a freeway facility for LD eshielith an
average speed of 21 mph (MOVES drive schedule ID 1021). The bottom histogram
shows a drive schedule with a slightly higher average speed, 25 mph, for LOS C
conditions on an arterial facility for LD vehicles (MOVES drive schetiDl@030).
Although the overall average speeds are similar, the freeway drive schechaies
more low-speed driving in the 5-25 mph range, while the arterial drive schedudéesont
more idling and mid-speed driving (around 25-40 mph). Additionally, the two drive
schedules have different distributions of second-by-second acceleratidns)oxe
heavy accelerations and decelerations for the arterial drive schedule.sEeesad-by-
second speed and acceleration differences between facility-spkniécschedules with
similar average speeds result in different emissions rate estirnategif’en average
speed because they generate different engine loading estimates dussigresm

modeling.
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Figure 8. Comparison of Speed and Acceleration Distributions for Freway and

Arterial Drive Schedules with Similar Average Speeds

By various models and for various pollutants, the consistent pattern appears of

stagnant emissions rates per vehicle-mile over a wide range of neosieeatls. At the

more extreme speeds (below 25 and above 70 mph) travel efficiency degradgs Aapidl

comparison of ESC for different seasons and hours shows no notable difference. This is

expected, as we have modeled running exhaust emissions and seasonal/houdgsrariati

in emissions rates are due to meteorological differences which mostty e¥faporative

emissions. A final note on the sensitivity of the ESC and ESC gradients iseairé

based on archetypal driving patterns and average-speed emissions modeling. Drive

schedules representing different driver, roadway, or vehicle characsewd| produce

different ESC (see Section 2.3.2.2). Changes in microscopic traffic chaticsesver

time (behavioral, technological, or operational) will also affect the shapbe &SC.
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5.2 Temporal Emissions Rates (per vehicle-hour)

The ESC in Section 5.1 describe the relationships between average travel speed
and average emissions rates normalized to travel distanoethis section we look at the
relationship between average travel spgaahd full-fleet average emissions rates
normalized to travel timeg’, as calculated from Equation 7. We use the same fitted
parameters; as in Section 5.1, shown in Table 4. Wiitim mph,e’ is then in grams per
vehicle-hour.

Temporal marginal emissions rates versus average speed curvdsedesarithe
average travel speed affects a single vehicle’s emissions rdteyyaf operation. For
assessing long-term total emissions characteristics, temporauraes would be
indicative of the total emissions-speed relationship if travel demand werelaskic
with travel time — i.e. total travel time were fixed. This scenario has hegested by
Metz (2008), who claims that in the long run average travelers adjust theiteaesior
by modifying their access choices while maintaining a fairly constavelttime budget.
Such an approach differs greatly from the application of spatial emissteagaa found
in Section 5.1) for total emissions-speed relationships, which implies fixesd tra
distanceinsensitive to travel time constraints (i.e. inelastic demand).

An illustrative comparison of marginal freeway fleet £@missions rates (boéh
ande’ versusv) is shown in Figure 9 for Portland 2010 in grams per vehicle-minute and
grams per vehicle-mile. These curves meet at 60mph where the travellraténute per
mile. At low speeds the curves display diverging behavior. Pedisténce the spatial

emissions rates increaseat lower speeds because of inefficient driving and longer
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operating time. Per uniime, the temporal emissions rat&slecreaset lower speeds

because of lower engine loads.
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Figure 9. Fleet CQe emissions rates per mile and per minute, with freeway LOS
From a long-term perspective, the low-speed slope of total emissions as a function

of average speed depends on the relative stability of travel distance andirravél
total travel distance is fixed (perfectly inelastic), total emissioasase with lower
speeds similarly to spatial emissions rates. If adjusting for shatel tlistances to
maintain travel time (perfectly elastic demand), total emissionsakeread lower speeds
similarly to temporal emissions rates. The long-term reality of éstagsions is
somewhere in between the perfectly inelastic and elastic demand progettiwe
assume that in the long-run travelers are not fixed to an absolute travel distanee
but make trade-offs depending on the utility of each, then the most representativis shape

somewhere in between these curves. As such, the long-term emissioneimaégof
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low travel speeds are not as great as they appear to be from the spasiansnnéte

curves in Section 5.1.

5.3 Emissions Rates as a Function of Volume
For spatial marginal emissions rates as a function of traffic volegé, we
estimated the parameters in Equation 9 using value$rom Equation 8 with the
MOVES-modeled parameters above dgrt, = 1 mile/minute (60mph free-flow
speed)¢ = 2,200 pcphpl (passenger cars per hour, per lanex, 0.15 andg = 7.
Minimizing the sum of square error with non-negative parameters g'sagjthe
independent variable from 0 to 3,630 pcphpl, we generate the parameter estimates shown
in Table 6. This range fay’ was selected because it generates travel speed estimates
from 10 to 60 mph using the BPR function. Results fopelCMOVES) and C@(Barth)

are illustrated in Figure 10.

Table 6. Fitted Emissions Parameters from Equation 9

Parameter | CO,e CO, Cco PM, ;s NO, HC
-MOVES -Barth -MOVES -MOVES -MOVES -MOVES
b, 423 327 2.37 0.0248 1.05 0.0761
by 27.0 0.000 0.168 0.0105 0.0465 0.0163
b, 3.55 1.67 0.0176 0.000331 0.00398 0.00153
m 9.98 10.1 10.0 9.97 10.0 10.0
R’ 0.995 0.990 0.993 0.968 0.994 0.995

The fit for all pollutants is good, with®Ralues above 0.96. The parametes
about 10 for all pollutants, reflecting a similar shape to the emissions rates vemand
volume curve. Comparing the MOVES and Barth models fofeGnd CQ,

respectively, the proposed formulation works for both despite the different fleet
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compositions and emissions model data. The difference in magnitude is to be expected,
as the MOVES model includes heavy vehicles while the Barth model does not.
Looking at Figure 10, the(q") formulation in Equation 9 smoothes out the
MOVES curve around’ = 2,500 pcphpl. Since the fitted parameters are non-negative
(to create a concave form for Equation 9), the decrease in emissionsoates a
q' = 2,500 pcphpl in the Barth model is not captured by this formulation. From Table 6,
though, only the Barth C{nodel is constrained by non-negativity. The decrease in
emissions rate occurs because the assumed free-flow speed is above thlesppthin
the Barth Model. The non-decreasing emissions rate formulation will nott resfiiec
initial efficiency gain for high free-flow (or low optimal) speedsliSthese results show
that Equation 9 is a good approximatiore¢q”) for certain free-flow speed and
emissions-minimizing speed conditions (particularly when the later éx¢ke former).
These curves can be used for traffic modeling which requires simplified agchietd
emissions and volume estimation, such as emissions-minimizing traffiofifomization

(e.g. Bigazzi & Figliozzi (2011), Sugawara and Niemeier (2002)).
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Figure 10. CQ, Emissions Fits for MOVES (Black) and Barth (Grey) Models by
Equation 9

5.4 Total Emissions

Relationships between total emissions and traffic speed can assist with
macroscopic mitigation strategy development and assessment, talggtinghicle
emissions and congestion. While the figures in Section 5.1 demonstrate emissions rate
benefits of increasing congested vehicle speeds, the impacts of vaayielgdistances
illustrated by Figure 9 show that congestion mitigation strategiss$ atso assess traffic
volume when estimating total emissions effects of speed improvemenéadimgy
congested travel speeds will often reduce the average vehicle’s sagaiah

emissions rate, but it will also induce more travel.
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5.4.1 Total Emissions and Demand Volume

The total on-road emissionB, from a given demand volume of vehiclesjs
calculated using Equation 10 and the average emissionsedtesn Section 5.1. Figure
11 shows C@e total emissiond;, as shading on theversusg’ plane (assuming no PCE
adjustmentg’ = q). The curve on Figure 11 is the theoretical relationship between
demand volume and average speed from the BPR Equation (1). The ESC shown in

Section 5.1 can be seen as vertical slices of the shading contours, magnifced taydl

(sinceE = q - e).
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Figure 11. Total Emissions E) as Shading on the Speed] versus Effective Demand

Volume (q') Plane, with BPR Curve

Following the BPR curve in Figure 11 from left to right, we see that total
emissions continually increase with demand volume. This occurs not only b&csuse

linearly proportional t@y, but because increasigglecreases — which, in turn,
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increaseg (see Figure 3). The speed impact on total emissions is particularly
pronounced at low speeds € 25 mph,q > 3,000 pcphpl) wheres increases rapidly

with decreasing.

5.4.2 Total Emissions and Vehicle Throughput

Using demand flowg to calculate total emissiosaccounts for vehicles queued
or delayed upstream during congestion. But during heavy congestionyivien actual
vehicle throughput on the section of interest will be less gham a limited temporal
scale (May, 1989). In this case some of the emissions on the road section dfwilleres
be displaced upstream or delayed until the next time period, though the total emissions
will be the same. For a demand volugdet us define the actual vehicle throughput at a
specific location for a specific time period@sn the same units as

We can illustrate the displaced emissions effect using total emisstonates
(based orE = g - €) with observed traffic data. Figure 12 presents total emissifns (
contours in kg per hour per lane-mile of roadway as lines and shadings on tbe traff
speed ¢ in mph) versus vehicle throughpgtif vphpl — vehicles per hour, per lane)
plane. The contour lines are iso-emissions lines. In addition, Figure 12 shows &-minut
aggregated traffic states from all 24 hours of January 21, 2010 on I-5 northbound in
Portland, Oregon (as circles). These traffic data were collectedlfsanductive dual-
loop detector stations on the freeway (between mileposts 290 and 305) and mined from
the PORTAL transportation data archive at Portland State University
(http:\\portal.its.pdx.edu). The 5-minute aggregation was selected becausbeétha

shown elsewhere to best approximate average freeway travel speedgi(Bgg &
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Bertini, 2010; Wang & Liu, 2005) and it is short enough tfat ¢ for some time
periods on this busy freeway. The observed speeds are used to esfioatehe

MOVES-modeled parameters above.

CO,e co
kg/hr/In-mi | kg/hr/In-mi

B000

B0 = o 5000 B0 -

=
a
) E o
40 o - < 40 -
- 2 o
00
(5]

Speed (mph)

2000 E
20 20 o - 20 o -

1000

T T 0 T
500 1000 1500 2000 500

Vehicle Throughput (vphpl)

T
1000 1500 2000

PM,, Vehicle Throughput (vphpl NO
kg/hr/in-mi ghput (vphpl) kg/hr/In-mi

Speed (mph)

500 1000 1500 2000 500 1000 1500 2000
Vehicle Throughput (vphpl) Vehicle Throughput (vphpl)

Figure 12. Total Emissions E) as Shading and Contours on the Vehicle Speed)(
versus Vehicle Throughput §) Plane, with Observed Traffic States

From Figure 12 we see that no observed 5-minute intervad sa&,300 vphpl.
Congested time intervals with average speeds from 20 to 45 mph had throughput mostly

in the range,000 < § < 2,000 vphpl. Heavier congestion with< 20 mph had
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decreasing down to under 500 vphpl. The measured traffic states display a great deal of
variance — partly because they were measured at several locations on tioe.corri

As expected from Figure 4, for a wide range of average speeds from 25 to 70 mph
the effect ofv onE is negligible, and for different time intervals varies mostly wigh
This is observed through the vertical orientation of the contour lines. Uncongested tim
intervals from 50 to 70 mph have a particularly wide rangg (@hdE). For heavy
congestion® < 20 mph), the decreasirgwith lower v offsets increasing, resulting in
similar E during heavy congestion as during more moderate congestion or high-volume
uncongested conditions.

Figure 12 presents a different picture of congestion effecitban Figure 11,
whereE andv have monotonic relationships wigh This is becausg fails to account for
displaced vehicle emissions during congestion. The increAsaxgected at low from
Figure 11 is real, but it is displaced to another time interval or an upstreaom s¢
roadway in Figure 12. The importance of this difference is one of scope of cdrmern.
global pollutants like greenhouse gases the location of emissions is unimpodtgans a
most representative. For short-lived local pollutants and analyses of Ispeéidl and
temporal scop&j may be more relevant, depending on the time scale. However, an
analysis of congestion-emissions relationships should be cautious irfusiegtimate
total emissions since displaced emissions due to congestion are not included.iSimce
more comprehensive measuia, the remainder of this analysis we will consider anly

in calculatingE.
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5.4.3 Total Emissions Sensitivity to Speed and Volume

Figure 13 shows the elasticity of emissions rates to sgfeedmputed by
Equation 17. Referring to Figure 11 and Figuresf2s the vertical gradient ifi(q, 7) —
the total emissions on the traffic speed-flow plane — expressed agtgléstecpercent
change in total emissioswith each percent change speedt a fixed flowg). The
horizontalgradient ofE (v, q), expressed as an elasticity (the percent change in total
emissiongs with each percent change in flepat a fixed speed), is 1. Thus absolute

values ofe? less the 1 in Figure 18| < 1, reflect less sensitivity to speed than to flow.

Here,|eZ| < 1 for nearly all traffic states for all five pollutants considered.
Notable exceptions are the high sensitivity of CO to high travel speeds (ddmaesa
mph), the high sensitivity of PM to traffic speeds in the 50-60 mph range, and the

sensitivity of HC to very low travel speeds (below about 15 mph).

Elasticity of Emissions Rates to Speed

-2 T T T T T
10 20 30 40 50 60 70
Avg Spd (mph)

Figure 13. Elasticity of Emissions Rates to Speed?, by MOVES Model
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5.5 Total Emissions Elasticity to Speed — Including Variable Traffic \6lume

In Section 5.4 we looked at how average speed affects total emissions from a
given volume or flow of vehicles. This section describes the impacts of avexagke t
speed on total emissions including variable travel demand volumes with travel speed. We
define the elasticity of travel demand volume to average travel speed forl tieefiuds
1. The elasticity of total emissions to changes in spefeds described by the equations
of Section 4.6. By looking at how changing speeds impact the traffic volume and total
emissions, we are essentially assessing the emissions impactsoitiyeagsed
congestion mitigation, described in Section 2.6.1.

The elasticity of total C& emissions to changes in spesfd,calculated by
Equation 27, is shown in Figure 14for a MOVES-modeled composite freeway fteet wi
varying average speed, and demand elasticity to spea@, Total CQe emissions
increase most with speed changes at very high speeds (because the nraiggi@i®
rates,e, increase quickly) and at high demand elasticity to speed (becauseiof traff
volume,q, increases). The total emissions elastieftys negative at very low demand
elasticities with moderate speeds (because of minimal volume increasg¢shoderate
elasticities with very low speeds (because of large emissions ratei@aducthe zero-
valued contour line in Figure 14 shows the break-even conditions from an emissions
perspective described in Section 4.7. Combination‘aaﬁdng above this break-even
line will increase total emissions with a speed increase while combinagtms this

line will decrease total emissions with a speed increase.
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Figure 14. Elasticity of Total COe Emissions to Changes in Spees, as Shadings

and Contours on then2 versusv Plane
Figure 15 repeats Figure 14 for the other four pollutants modeled. The
relationships are generally similar for CO and,N compared to G®, although CO
has higher positive? for speeds above 60 mph. Pdnd HC both have generally lower
eZ than CQe. This is particularly true for PMat speeds between 40 and 60 mph. This
difference indicates that, compared to£Qotal emissions of PMand HC are more

likely to decrease with speed increases or increase with speed decreases
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Figure 15. (Part 1) Elasticity of Total Emissions to Speedg?, for PM,sand HC, as
Shadings and Contours on the;},_’ versusv Plane
5.6 Emissions Break-Even Demand Elasticity to Speed
We continue the inspection of emissions break-even conditions by illustrating the
graphical approach described in Section 4.7.2. Figure 16 shows toke@¥sions

contour shadingst(in kg/hr/lane-mi) on the average travel speet(mph) versus
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effective demandolume ( in pcphpl) planekFor illustrative purposes, assume t
(no PCE adjustmentThe two BPR-derived curves on the plge freewa

capacities of pcphp (solid black line) and pcphpdlashed blac

line) —a 10% increase.
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Figure 16. The Hfect of a Capacity Increase on Total EmissionBepends on the
Final Demand Volume; Shading s Total Freeway CQe Emissions Rate , by the
MOVES Model

As an illustration, consider an initially congestizinand state «
pcphplduring a peak period, with an initial emission®rat kg/hr/lane-mi. If
the capacity were to increase by 10%, trispeed would increase @$t and the total
emissions would decrease 3% —at a fixed demand flowf pcphpl. This is
the vertical green arrow cFigure 16. If, alternatively, the travel speeere fixed (i.e
the constant travel time budget scenario suggebtdiy (2008), the new demand flo!

would be pcphp, with a total emissions, increaseof 10%.This is the
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horizontal orange arrow on Figure 16. The most likely long-term outcome is some
induced demand and some travel time savings, ending up on the lower curve somewhere
between these two extremes.

To estimate a break-even induced demand volume from an emissions perspective
we follow an emissions contour line up from the lower (solid black liadfjdrcurve to
the upper (dashed black line) curve, arriving at an emissions-equivalent indocaatde
that would cancel marginal speed benefits (the dashed white arrow on Figuferlée
example here, the original emissions are found on the upper curve at a volume of
q = 2,252 pcphpl — which corresponds to a 2.4% increase in flow and a 5.4% increase in
travel speed. Thus the emissions break-even elasticity of travahdetim average travel
speed iy = 0.44 (calculated as the mid-point/linear arc elasticity — see Equation 12).
This is a moderate value in comparison to the literature, which generalgsraiog 0.2
to 1 (see Section 2.5).

As a comparison among models, full-fleet freeway, @ad CQe break-even
elasticities of travel demand volume to average travel spgedre shown in Figure 17
for the three macroscopic emissions models used above for emissions ratagnodeli
MOVES, Barth, and Boulter. The MOVES and Barth models, formulated as
exponentiated polynomials, use Equation 38. The Boulter model is formulated as a non-
exponentiated'Border polynomial and is simply differentiated with respect to speed

. 5 7 v oe — Y .
usingy? = —ef = —=- <. The emissions break-even elasticififscan be interpreted as

e ov

‘carbon-neutral’ curves for demand elasticity. True elasticiiEs/ethe curve{ng >

yg,_’) are expected tmcreasetotal CQ emissions from traffic speed increases and true
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elasticitiesbelowthe curvegn? < y?) are expected tdecreaseotal CQ emissions
from traffic speed increases. By Equationti38 vertical distance between the break-even
elasticity curve and the true elasticity is the elasticity of total emissioinavel speed
the farther the distance, the greater the emissions impact, positive oveegati

The results in Figure 17 are highly intuitive in light of the preceding asalysi
Assuming a moderate demand elasticityg)fz 0.5, only in heavily congested freeway
conditions is it possible to reduce total emissions through traffic speedsesr&ar
more elastic demand negf = 1.0, induced demand will always increase total emissions
with a traffic speed increase. By the MOVES model, any elasticdye0.4 would

likely lead to increased total emissions for speed increases from anspéed over

25mph.
1.2
Highly Elastic Emissions Model
—— MOVES2010 (PDX)
1.0 —— Barth, 2008 (So. Cal.)
=== Boulter, 2009 (UK)

R Emissions
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Figure 17. Calculated Emissions Break-Even Elasticities of Travel Demartd
Travel Speed,yZ, for CO, (Barth and Boulter) and CO,e (MOVES)
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At high speeds the MOVES model produg@sotably different from the other
two models. Emissions ratésdecrease with speed when approaching free-flow speed
(around 60mph) in the MOVES model, but increase with speed when approaching free-
flow speed by the other two models (see Figure 4). Break-even elkesti@tow zero
(y(;7 < 0) indicate that emissions rates increase with higher speeds — even thefoei
demand. Hence, in the Barth and Boulter models increasing freeway speed gpier 45m
always increases emissions.

Figure 18 presents calculatgfl using the MOVES-modeled emissions rates for
freeways and arterials and the Boulter emissions model (which does nohsbgme
facility type), calculated as for Figure 17, for the other four pollutanideted. Note that
the vertical scale in Figure 18 is different from Figure 17, to accommodate hajbes
of yc‘,_’. There is less agreement here among the models than in Figure 17, which is not
surprising since not only do other pollutants generally have more modelingaumigert
than CQ, but the emissions controls for these pollutants are different between the U.S.
and the U.K. The emissions models produce particularly diffggefar speeds above 40

mph.
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PM,sand HC emissions are more sensitive to speed than the other pollutants and

thus have generally larggf in Figure 18. As in Figure 15, this means that,R&hd HC

emissions are more likely to decrease with speed increases (orensrdaspeed

decreases) than other pollutants. Tﬁéor PM, 5 are particularly high around 50 — 60

mph (near freeway free-flow speeds). Similarly, CO emissions onadstare more

likely to benefit from speed improvements than CO emissions on freeways —agsum
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the demand elasticities are the same — since the arterial break-estert\yelurve is
higher than the freeway curve for CO.

Although the break-even elasticities vary by emissions model, pollutant, and
initial speed, almost aji] values here are within a reasonable long-term range of
demand elasticity to travel speed, between 0 and 1. Valqg_fscmﬁser to zero are more
feasibly reached on a short time scale — which is the case for most polutartdderate
initial speeds. For lower initial speeds below 25mph, the marginal emissiohe nafies
of speed increases are greater, and so less likely (though still possli@e)ftset by
induced demand. Figure 17 and Figure 18 show that in most situations it is likely that
traffic speed increases will increase emissions in the long-run by theetchdemand
effect, though the time required for induced demand to cancel marginal emisgons ra

benefits would be longer for heavier initial congestion.

5.7 Total Emissions Elasticity to Travel Demand Volume
Combining Equations 35 and 37, the full-fleet total emissions elasticity to volume

changes is

eg=1+¢7- (42)

c\B )
((;) +“> ey (PCEjf )
Assuming tha%iq, = %’ = Zje](PCE]- -f]-) —the PCE-adjusted flow grows proportionally

with the volume flow — we can calculatg using the previous values far g, ¢, andt,,
Equation 17 foe?, the BPR function (Equation 1), and the ESC fit parameters from

Table 4. The calculated values for Elasticity of Totab€Bmissions to Volume, are
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shown in Figure 19 along with the Elasticity of Emissions Rate to Spgeahd the

Elasticity of Speed to Volume/. These three elasticities are the components of

Equation 35, wheref = 1 + £Z¢].

6
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Figure 19. Elasticity of Total COe Emissions to Travel Demand Volumes"E , along

with £ and &2

Figure 19 showg’ values up to 3,500 pcphpl — which corresponds to an average
travel speed of about 12 mph. For volumes below adfott2,000 pcphpl, the speed
effects are minimal, as expected. Singande] are both negative,! increases at
higher values o’ and is always at 1 or above. The increas# iis especially dramatic
for ¢’ above 3,000 pcphpl (whefedrops below 26 mph), sineg is large (close to -1)
ande]! decreases rapidly. As noted above, these curves depend on a fixed volume-speed
relationship (the BPR function) and so do not reflect changing roadway conditions

(particularly capacity changes). Still, Figure 19 shows that forea fbapacity roadway
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increasing volumes is always expected to increase total emissions. 8dtasfirger at
demand volumes well above capacity, where emissions rates increase rahidly w
demand volume as well (sineg = &7 - ! from Equation 33). Finally, sincg = ¢ —

1 (see Equation 35), we see thatwill be close to 0 for volumes up to about 2,800

pcphpl.

In this chapter we have shown that:

1. Emissions rates are “stagnant” at a wide range of moderate speeds,

2. Emissions rates are more sensitive to speed on arterials than on freeways and
for local pollutants than for greenhouse gases,

3. Varying demand volume can outweigh changing efficiency for total emnissi
effects of travel speed changes, and

4. Total emissions reductions from travel speed increases are only likely for low
demand elasticity and low travel speeds.

In the next chapter we look at how the total emissions picture changes when we

incorporate advanced-drivetrain vehicles.
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6 THE IMPACTS OF ADVANCED VEHICLE TECHNOLOGIES

The results in Chapter 5 are for conventional Internal Combustion Engine (ICE)
vehicles only — the vast majority of the existing on-road fleet (U.S. Envinotaie
Protection Agency, 2009b). In this chapter we look at the effects of advancedagrivetr
and electric vehicles in the fleet. Let vehicle classc stand for all conventional
Internal Combustion Engine (ICE) vehicles, vehicle cjasse stand for Electric
Vehicles (EV), and vehicle clags= a stand for Advanced Drivetrain (AD) vehicles. We
assume this is the complete set of vehigles {c, e, a}.

The AD vehicle class contains vehicles (such as gas-electric hybrtts) wi
regenerative breaking and other powertrain efficiencies which rendetdbgsensitive

or insensitive to low-speed inefficiencies. If we are interested in lodaltgals, then
e, = 0 since EV’s have zero on-road air pollution emissions. By exten%j%ﬁ, 0. Let

us assume for this analysis that AD vehicles in glass have emissions rates which

are not zerod, # 0), but which are insensitive to congestion level and average speed:

deq

dvg

6.1 Emissions Rate Sensitivity to Speed and Advanced Vehicles

The average emissions rate from a mixed vehicle fleet including EV and AD

vehicles i = f.e. + f,e, (from Equation 4). Sinc%z—a = % = 0, we know that

Vq

Sea

= s;’: = 0. Then from Equation 28 (which assumes proportional speed changes
among the vehicle classes)

v, Oec

Z=Z(ec fereX)=f. (43)
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Compared to the ICE-only gradiejji#, if we assume that, = v, then% decreases

proportionally withf,, the fraction of ICE vehicles in the fleet. With a higher fraction of
EV and AD vehicles, the gradients in Figure 4 would be proportionally clogerd.

For emissions rate elasticity to average speed, from Equations 29 and 43,

v o_ Ve Oec fcec ve _ Ec v,
€ =femo = €y = €, - (44)
e dv, feectfaea c E ‘c

Again comparing with the ICE-only elasticitﬁcc, here we see thaf decreases with the

fraction of ICE emissions out of total emissions. HeaBalecreases with increasing AD
vehicle emissiong;,, since the AD vehicle emissions are insensitive to speed changes.

Furthermore, if the presence of EV’s does not affect the relative proportions afid\D

ICE vehicles,fa/f , then the presence of EV’s will not impagt
c

6.2 Total Emissions Sensitivity to Speed and Advanced Vehicles

Total emissionsE, from a mixed vehicle fleet including EV and AD vehicles are

E = qlfcec + faeal - (45)

Again assuming that the presence of EV’s does not affect the relative pyopatiAD

and ICE vehicles’,ra/f , then the impact o of EV’s is simply a proportional reduction
c

in E equal to the EV proportion of the fleg¢t, For total emissions elasticity to speed,
from Equation 19 we know thaf® = 0 ande;® = 7,2, sinces,* = &,¢ = 0. Then, from
Equation 26, for a mixed ICE/EV/AD fleet

0E c a
=2 (ferecr e+ fureangt). (46)

85



For a fleet of only ICE and EV vehicleg, (= 0), the rate of change of total emissions
with traffic speed shrinks proportionally with decreasing fraction of IQkthe fleet f..

For an increasing fraction of AD vehiclgs, if the AD vehicles are replacing EV’s then

‘;—g Is expected to increase wifh (because of variable demand). If the AD vehicles are

replacing ICE vehicles, then the chang%émlepends on the relative emissions rates and
elasticitiesg,, e, 752, ande,*.
In terms of emissions elasticity to speed, using the assumptiay} thatn,,

then from Equation 27

Ve Va
feeceg tfaealqq _ v, ﬁg”c
feectfaea Ec E "¢’

el = (47)
For a fleet of only EV and ICE vehiclég, = 0), the elasticity is unaffected by the
presence of EV'sg? = s;’z With an increasingly high fraction of AD vehiclgg, the

elasticity increases (becomes more positive), siﬁci:is expected to be negative through

most of the range of feasible speeds — see Figure 13. This makes sensRpPas the
vehicles do not see the efficiency improvements of ICE vehicles with inmgegseed,

but still are subject to increased emissions through induced demand.

6.3 Break-Even Demand Elasticity and Advanced Vehicles

Equation 40 implies emissions break-even conditions when

fa'ea'UZZ=—fc'ec'€gj- (48)

If we again assume thagz = UZE' then emissions break-even conditions exist when

Va _ Ve _ _ Jfeee o ve _ Ec v
Naa =Mae = Fontfooe Ve = 5 Yac - (49)
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Thus the break-even demand elasticity with AD vehicles is proportionalljestiean
for ICE vehicles alone, in proportion to the fractional ICE emissions out of total

emissions. As witl? ande?, if the presence of EV’s does not affect the relative

proportions of AD and ICE vehicleéa,/f , then the EV’s will not impact break-even
Cc
demand elasticity.

6.4 Summary of Advanced Vehicle Impacts

In summary, emissions rates from fleets with advanced vehicles asefestve
to speed changes than all-ICE fleets. But because AD vehicles dezmmeasiens rate
sensitivity to speed while still experiencing variable demand,itteegase(make more
positive) total emissions elasticity to speed. Similarly, the break-demand elasticity
of a fleet with AD vehicles is smaller than that of a fully ICE fleethdligh EV’s
decrease total emissions and emissions gradients, they do not affect emiastanity e
to speed for local pollutants (since the induced demand emissions are zero).

These results show that emissions from fleets with more advanced velacles ar
less sensitive to congestion. As vehicle emissions rates become less senspest,
the break-even demand elasticity gets smaller. Tthagyotential for emissions benefits
from congestion mitigation will decrease with more advanced vehlolése next
chapter we extend the analysis to consider heavy-duty and light-duty portionsleéthe f

separately.
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7 THE IMPACTS OF HEAVY VEHICLES

In this chapter we compare the differing impacts of two ICE vehiaksek: light-
duty (j = 1) and heavy-dutyj(= h). Thus,J = {l, h}, wherel andh are differentiated as
described in Section 4.3.2. These two vehicle classes have emissiors aaths,

(calculated from Equation 3), and volume flogysandgy, .

7.1 Emissions Rates and HD/LD Vehicle Classes

The MOVES-fitted parameters for emissions rates (by Equation 5 msing) of
LD and HD portions of the vehicle fleet are shown separately in Table 7 andSTiable
the PM peak periods on freeways in April, 2010. Figure 20 illustrates the emisg®ns r

relationships between LD and HD vehicle classes and average speed for all five

pollutants as the ratio of HD to LD emissions ra?é;éel, assuming,; = v, = v.

Table 7. MOVES Emissions-Speed Curve Fit Parameters fa; on Freeways

Freeways CQe CO PM s NOy HC
Ao, 7.987 2.788 -2.856 0.3239 -0.2644
as,i -0.1856 -0.1760 -0.2000 -0.1152 -0.1878
Az, 0.006352 0.006535 0.007365 | 0.004155 | 0.006173
as,. -9.550E-05 | -1.077E-04 | -1.157E-04 | -6.270E-05 | -9.570E-05
Al 5.210E-07 6.460E-07 6.560E-07 | 3.440E-07 | 5.510E-07

Table 8. MOVES Emissions-Speed Curve Fit Parameters fa;, on Freeways

Freeways CQe CO PM; 5 NOy HC
Qo,n 9.254 3.541 1.005 4,124 2.059
ai,n -0.1748 -0.1900 -0.1740 -0.1839 -0.2206
az,n 0.006307 0.006843 0.006599 | 0.006461 | 0.006967
aszn -1.007E-04 | -1.097E-04 -1.141E-04 | -1.003E-04 | -1.018E-04
QAan 5.740E-07 6.201E-07 6.870E-07 | 5.599E-07 | 5.380E-07

88



60 -
— COze
-- Co
50 ---- PM25
e -=- NOx
Lct:s — = HC
e 40 7
C Nh
S
7 _
£ 307
W ~.o o
[a) TS~ _
4 2071 T Trme—e___.
o e T
e T
10 e
0 | | B — -
10 20 30 40 50 60 70

Traffic Speed (mph)
Figure 20.e"/el Versusv
The major HD vehicle pollutants are RMand NQ, which reach factors of more
than 60 and 25 times the LD vehicle emissions rates, respectively. By thelgeneral
downward sloping trends of the curves Figure 20 we see that HD vehicle low-speed
inefficiencies are proportionally greater than LD vehicles’ lowespieefficiencies. In
other words, HD vehicles’ emissions rates increase faster in congestiomi€sibas
rates are similar (a ratio of 1 to 2), @emissions rates are about 4 times greater, and
HC emissions rates are 4-8 times greater for HD vehicles than LOege(per vehicle-
mile).
Some of the differences in Figure 20 relate to greater fuel consumptiorecequi
to move heavier vehicles, as evidenced by 4 times highge @0issions rates (which
are closely tied to fuel consumption). For the extreme differences i &M NQ the

dominance of diesel fuel in the HD fleet and gasoline in the LD fleet is mlsoportant
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factor. As an illustration, Figure 21 shows the emissions rate ratiosek®l diersus
gasoline-powered passenger cars (PC) and passenger trucks (PT). kgurdhisve first
define vehicle classes for gasoline FG=(pcg), diesel PCj(= pcd), gasoline PT

(/ = ptg), and diesel PTj(= ptd). We then compute; using Equation 3 with the

appropriate source types from Table 3. Finally, Figure 21 6‘?6‘[;5eptg versusv on the

e _ . .
left and p‘:d/epcg versus? on the right (assuming = vycg = Vped = Vptg = Vpta)- NOtE

the different scales on the vertical axes in Figure 21, reflectingthéhiat the
diesel/gasoline differences are more pronounced for PT than PC. In both cages8M
NOy have the highest emissions rate ratios, though the ratios are many tiaies fgre

PT than PC. Ce emissions rates are similar between the two, while CO emissions rates
arelower for diesel vehicles. As with the HD/LD ratioeéﬁ/el, the difference is

magnified at lower average speeds — showing that diesel LD vehidsiens are more

affected by congestion than gasoline LD vehicle emissions.

030 N ° 8
S ‘. — CO2e = — COze
X 25 - * - = CO 14 - = CO
2 .. --- PM25 2 6 --- PM25
3 20 ... - — NOx 2 -— NOx
2 .. — HC 2 ~. — HC
W15 Tteeee. .. i e CR T
Seoo k4 SN T Tteeaoo.
8 | - & AR,
% Seo. § o4 T
o 5 4 "\.__~ (a)
— —_—_—— e — O —_—— e ————————
N g e e
0 T T T T f 0 T T T T T
10 20 30 40 50 60 70 10 20 30 40 50 60 70
Traffic Speed (mph) Traffic Speed (mph)

Figure 21. Diesel/Gasoline Vehicle Emissions Rate Ratios for Passengrrcks (left)

and Passenger Cars (right)
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Since light-duty and heavy-duty vehicles have distinct emissions chastcseri
their combination in the total fleet affects the fleet-wide ESC and E&fiegits. Figure
22 shows the sensitivity to fraction HD vehiclgs, of fleet ESC and ESC gradients for
all five pollutants modeled, wite computed from Equation 4 usiifg from 0.0 to 0.5.
As in Figure 3, we include LOS indicators for freeways. No adjustmentds foa PCE.

As expected, highef, increases the fleet emissions ragegeen in the left

panels). The emissions rate increases are proportionally larger for pisliwith higher
eh/el ratios in Figure 20. Fleet emissions rate sensitivity to speed alsasasreithf; —

evidenced by the larger absolute values of the gradients in the right-side qgfefigure

22). This is expected from the downward sloping curves in Figure 20. Fgy&id

NOy, which are dominated by HD vehicle emissions, the gradient changes most
dramatically with the initial introduction of HD vehicles (compare the grasliat

fn = 0% andf;, = 10% for these pollutants). Interestingly, the optimal speed also
increases witlf;, — shown by the gradients crossing the horizontal (speed) axis at higher
values with higher percentage HD. These plots show that traffic streamson¢ HD
vehicles potentially have greater efficiency benefits from inangasrerage travel

speeds. Also, because of their different emissions-speed relationships, LD and HD

vehicles could be targeted separately for congestion mitigation with aitycplgéctives.
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Figure 22 (Part 1l). Fleet Emissions Rate Sensitivity t¢;,, with freeway LOS

7.2 Total Emissions and HD/LD Vehicle Classes
We next look at hovf,, impacts total emissionsg, The total vehicle fleet

emissions, from Equation 10, are

E =ql(1 - fue + fuenl] . (50)
AssumingPCE; = 1, then from Equation 2 the effective volume of vehicle travel (in

PCE) is

q =q(1+ f,(PCE, —1)). (51)
A fleet of composed entirely of LD vehicles with the same effective fleagravould

have total emissions @f,;; ;, = e; - q'. UsingPCE}, we can compare the two as

E= q [1+fh(PCEh—1) 1+fph(PCER—1) (52)

€h
(1—fh)el+fheh] _ [ 1+fh(€_z_1) ]
— Lall-LD .
Using Equation 52 we can look at the impacts of heavy vehicles on total

emissions, considering PCE, by looking at the r@)zig oD’ For a given effective flow
all—

q' (adjusted for PCE), the total emissions from a mixed HD/LD fl&eas compared to

the total emissions from an all-LD fleét,;;_;, are shown in Figure 23 §§(E eip'
all—
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These curves assum€E; = 1.5 (for level terrain from the HCM (Transportation
Research Board, 2000)]}, = 0.1 (10% HD in the mixed fleet), ang = v, = v.

The results in Figure 23 are largely the same as those in Figure 20, lstécdju
for f,, andPCE),,. Forf, = 0.1 andPCE, = 1.5, the effect of th&®CE),, adjustment is to
reduce the impact of the presence of HD vehicles by 5% (see the denominator of

Equation 52). In other words, since HD vehicles occupy more capacity than LIesehic
the impact of HD vehicles’ higher emissions re(teg%> 1) are mitigated by CE;, > 1.
l

As above for emissions rates, the presence of HD vehicles greatlgsesrotal Pls

and NQ emissions — with a larger impact at slower speeds.
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Figure 23. Comparison of Total Emissions from Mixed and LD-only Fleets, adpted
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7.3 Total Emissions Elasticity Considering Variable Demand and HD/LD \hicle

Classes

Figure 24 shows the class-specific freeway emissions break-eatﬂimiébsyz :

for COe by Equation 38 with the MOVES model. Similarly for the other pollutants we

get Figure 25. Note the larger vertical scale in Figure 25 to accommbdatéder range

Vh
of yq,-
12 .
Highly Elastic Vehicle Class
] — Light-Duty Vehicles
1.0 — — Heavwy-Duty Vehicles

0.8

- a P RN
06 Emissions s N
. Z
Increase .
/7
/7

0.4 T

Elasticity of Demand to Travel Speed

0.2
00 Wl Erissions
Decrease
0.2 I I T T
10 20 30 40 50 60 70

Initial Avg. Speed (mph)

Figure 24. Vehicle Class-Specific Emissions Break-Even Elastigs for CO,, YZ; and
Yq. Versusv

Figure 24 and Figure 25 show that in most cases the break-even elastiEify f
vehicles is higher than for LD vehicleg," > y,!. This occurs because HD vehicles are
proportionally more inefficient at lower speeds (as illustrated in FigyreB2@ause of
this difference there is a range of true demand elastioiﬁ]ésbetween the curves for
which we would expect total LD emissioi%, to increase but total HD emissio®y, to
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decrease with increasing speeds. So although the HD vehicle emissisraeateich

higher for some pollutants;, > e;, the potential for total emissions reductions through

congestion mitigation can be higher, too — depending on the true demand elasticity for

each vehicle class.
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Figure 25. Vehicle Class-Specific Emissions Break-Even Elasti@$ for Other
Pollutants, y;! and y," versusv

In addition to the break-even conditions for each vehicle class shown in Figure 24

and Figure 25, Equation 40 implies net even total emissions when
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E —&
(fn — 1)915;57; = fhehe,’;’,’j = E_; = gElh - (53)

Thus, depending on each vehicle class’s contribution to total emissions, a neiremiss
increase with speed from one class can be offset by a net emissions deithesgeed
from the other.

Figure 24 and Figure 25 show the emissions reduction potentials of each vehicle
class, but cumulative emissions changes depend on each vehicle class’s shaotabf the t
emissions, as evidenced by Equation 27. HD vehicles’ emissions rates can bemaany t
larger than LD vehicles’ emissions rates, but their portion of the total number oliegehi

is typically smaller. Figure 26 shows the fraction of total fleet simms that are from HD
vehicles,%, assumingy = 0.1 andv, = v, = v. As could be expected, HD vehicle

emissions dominate total BMand NQ emissions while LD vehicle emissions dominate
total CO and C@emissions. All pollutants trend downward — toward a greater portion of
total emissions from LD vehicles — since HD vehicles are comparativatly imefficient

at low speeds
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The different contributions to total emissions from each vehicle class ireR2gur

weight each vehicle class’s effect gh(see Equation 27). As shown by Equation 53, if

the travel speed and true demand elasticin;)Z; put us between the two curves in Figure

v

—&
24 and Figure 25, then emissions break-even conditions can still exisgbvheﬂ,i—h.
h gEl

Sincesg is the vertical distance betweeﬁ andij, (Equation 39), the proportions

shown in Figure 26 are also the fractions of the vertical distance beﬁé{eandy’;i in

Figure 24 and Figure 25 where total emissions break-even conditions learst w

'7;2 = n;; . Thus, forf;, = 0.1 and similaij,, the combined emissions break-even curve

is closer th’;l for PMy s and NQ and closer tor'éi for the other pollutants.
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But in addition to differenyg, LD and HD vehicles are also likely to have

differentnsj: in a given situation (Graham & Glaister, 2004). Since travel time casts ar

much smaller portion of total travel costs for freight than for personal tt@vaham &
Glaister, 2004; HLB Decision Economics Inc., 2008), it is possible that freayt tr
demand is less sensitive to travel time costs than passenger travel démoagi (his
has not yet been empirically demonstrated, to the author’s knowledge). If Hidevehi
travel demand (primarily goods movements) is less elastic to travel spadditha

vy

vehicle travel demanal;ZZ < 14, then the potential for HD vehicle emissions reductions

through speed increases improves.

As an illustration, Figure 27 shows the elasticity of totab€€@missions to
uniform travel speed change$, (computed from Equation 25), on ﬂpg versusv
plane, assumingj; = 0.1 andv; = v, = v. The three panels in Figure 27 present the
results assuming (&) = n,!, (b)n,"* = n,! - 50% and (c)y," = 0, in accordance with
the wide range found in the literature (see Table 2). Although HD vehicles makgup onl
10% of the fleet, reducing},”; substantially increases the potential emissions benefits of
general travel speed increases. These results are ferédissions, of which about 30%

come from HD vehicles (Figure 26). The impact is 2 to 3 times greateMgg $ince

HD vehicles dominate those emissions.
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In conclusion, heavy-duty vehicles contribute a large share of on-road emissions,
particularly for PM s and NQ, even though they are the minority of vehicles the fleet.
Heavy vehicles also are more sensitive to speed than light-duty vehiclels |ledds to
higher break-even demand elasticities for heavy-duty vehicles and potegreater
emissions benefits from congestion mitigation. In the next chapter we build osults re
of Chapters 5, 6, and 7 to estimate the emissions effects of congestiotionitigad

compare them with other emissions-reduction strategies.
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8 EMISSIONS IMPACTS OF CONGESTION MITIGATION

This chapter discusses how the above results can illuminate the emissions-
reducing potential of congestion mitigation. We compare the likely benefitgaicity-
based strategies (CBS) and non-capacity-based strategies (NCBB)igsrons
reductions. The base conditions are an all-ICE fleet with both LD and HD \shicle

Further assumptions are described below.

8.1 Capacity-based Congestion Mitigation

8.1.1 Local Emissions Effects of Congestion Reduction through Capacity Expansion

At the link level, if there is congestion there are queued or delayed vehicles
upstream, so traffic flow or capacity changes that increase vergdeads involve
increasing flow rates (see Figure 12 for speeds below 30 mph). Dependiregiomial
traffic state, this flow increase could reduce or overturn emissionseagdits from
increased speeds. The total emissions over the roadway corridor over the phk peri
might be lower because of lower marginal emissions rates (depending ominsdde
elasticity), but the speed increase would provoke a spatial-temporaticeionia
emissions to the formerly congested section — which could be important for exposure and
hot-spot analyses. For local pollutants in urban areas, the location of congestits

proximity to dense or sensitive populations is an essential consideration.

8.1.2 Total Emissions Effects of Congestion Reduction through Capacity Expansion
The results in Section 5.5 for total emissions elasticity to speed changaatd

the emissions impacts of CBS. For CBS with no demand constraints the totabesniss
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effects can be estimated using expected values for demand elaqsﬁcitﬁ/the true

demand elasticity is highly uncertain, a simple increase/decreasatescan be made

using the break-even demand elasticity and a likely range of true elestitit is
reasonably expected thquj > y;]_j then CBS will likely increase total emissioihbe

results in previous sections show potential total emissions reductions from CBSronly
low demand elasticities with moderate existing congestion levels or atedEmand
elasticities with heavy existing congestion. These results, howeweracaby pollutant
and vehicle class.

Figure 28 shows characterizations of CBS for each pollutant over a range of

speeds. The characterizations are based on ranges of break-even demaity, e%{sti
CBS are “not recommended” fqujj < 0.25, are suggested to “apply with caution” for
0.25 < y;jj < 0.5, have “potential benefits” fd.5 < y;j < 0.75, and provide “good

opportunity” for emissions reductions 0175 < y;". These are subjective, qualitative

labels based on the literature reviewed in Section 2.5.

Clearly PM s and HC have the widest range of speeds for which CBS are likely
to reduce emissions. The other pollutants are only classified as “potentialdiextef
speeds around 20 and below. CBS are “not recommended” for all pollutants at speeds
above 65 mph, which shows the potential benefits of limiting free-flow speeds to below

65 mph.
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Figure 28. Characterization of CBS Based on Ranges of Break-Even Elastie'ﬂ,y:Z

As a further demonstration of the impacts of HD vehicle demand elasticity shown
in Figure 27, Figure 29 shows the same characterization of CBS, but assiuening
extreme case ofz’; = 0. We also assumg = 0.1, as in Figure 27. Here there is a wider
range of speeds for all pollutants which present opportunities for emissimtsioas
through CBS. For PM2.5 and HC good opportunities exist for emissions reductions

through CBS from 10 mph all the way up beyond 60 mph. Although this is an extreme

value of demand elasticity for HD vehicles, it demonstrates that even dtQlypf the
fleet,ngz is an important consideration for predicting emissions effects of congestion

mitigation.
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Figure 29. Characterization of CBS Based on Ranges of Break-Even Elastieti for

LD Vehicles,y,:, Assumingn," = 0 and f, = 0.1
As a final note, CBS are not necessarily additional lane-miles. Capacity or
throughput can also be increased by various traffic management strategiasytta
roadway efficiency such as variable speed limits on freeways octsafhal
coordination on arterials. Some traffic management techniques would have fimpdica

for speed profiles (drive schedules) that would affect average-speesicemisate
estimates and so change the ESC used to d{gﬁvéor example, a significant

“smoothing” of vehicle speeds could reduce the average emissions raieeat avgrage
travel speed by reducing engine loads (Barth & Boriboonsomsin, 2008). This change in
the ESC would have to be considenmedoncert with average travel speed and travel
demand changes estimate the full emissions impact of congestion-relieving CBS

through roadway/traffic management.
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8.2 Travel Demand Reductions

Whenan: > y;jj for all vehicle classeg speed-based efficiency alone cannot
reduce total emissions and some demand restraint must be employed if vie want
mitigate emissions. From another perspective, Wﬂ@er} y;]_j a capacitydecreasdi.e.
“road diets”) would likely reduce total emissions becausastippressedemand volume
would offset engine inefficiencies at lower speeds. In other words, with eityapased

approach, lower total emissions are more likelyrzyeasingcapacity Whem;Zj < y;jj

and bydecreasingcapacity whemsj > V:z],-j' This, of course, assumes that demand

elasticities to speed changes in each direction are the same — i.e. thetaggregia
response to a speed increase is equal and opposite to the response to a speed decrease.

Using arc elasticities as in Equation 12, this isotropic nature of demandigla@sin be

expresse@;’j = (”fz“’fl)(qu‘qfl) _ ("jz’f”jl)(%'l—qu)'

(qj2+qj1)(vj2_vj1) (qj2+qf1)(vf1_vfz)

There are, additionally, NCBS where travel demand is reduced by motivators
other than travel time increases (road pricing or travel restrictionexémple). In those
situations the key value for application of these analysis tools retldemand elasticity
to travel speed: the net change in travel demand with changes in travel figeed, a
adjusting for the NCBS. For example, if a demand-moderating measuneatsuaad

pricing) is implemented along with a capacity expansion, then that can be incatporate
into the estimate of expecta@j. Whenng > y;jj and emissions increases are a likely

result of capacity-based congestion mitigation, road pricing presenoigian for

decreasing or reversing that effect.
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8.3 Comparing Strategies for Emissions Reductions

In this section we put emissions changes from speed improvements into context
by rough comparison with a set of alternative NCBS for emissions improveénere
evaluating changes in total emissions from peak period travel for highlygatgre
conditions. The alternative strategies considered are

1. reduced VMT as reflected by peak-period VMT per peak-period traveler
(made possible by denser, more mixed land use, road pricing, or other demand
management strategies),

2. vehicle fleet fuel efficiency improvements (by lighter vehicles or pesger-
intensive engines),

3. reduced fuel carbon intensity (by using alternative fuels such as bicaliese
electricity, or by less energy-intensive fuel production and delivery mgthods
and

4. replacement of light-duty ICE vehicles in the fleet with electric vebicle

For travel distance reduction (1) the net VMT change is assumed to be deithecte

a change in average peak-period VMT per peak period traveler — accounipogeiotial
demand rebound due to travel time savings and assuming a fixed number of peak period
travelers. We further assume that the VMT reduction has no net effect oneaverag
emissions rates (which is the case if there is no changernncongested facilities). In

reality, the VMT reduction could have varying effectsqofande) depending on how it

is achieved. Demand management which targets the number of trips would likely reduce
q (thus increasing and reducing). Land use strategies which encourage shorter trips

through increased density would more likely increpgihus decreasing and increasing
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e). Also, there could be a shift in travel in whiglincreases or decreases with no net
effect on VMT — such as a partial VMT rebound from shorter trips incregsing
partial VMT rebound from loweg as longer trips. Regardless of the effect of (1gon
the assumption & insensitivity to VMT reductions is likely to be sound since the
elasticity of emissions rates to volunag, is low for a wide range af (see Section 5.7).
The vehicle-based NCBS (2-4) do not increase capacity or improve tlaffic
and therefore we assume that there is no speed-induced demand generated by their
application. It is worth noting that increasing fuel efficiency (2) uce operational
costs and there is potential for induced demand through travel cost reductionshimila
depending on the costs of EV’s and electricity, there could be marginal operating cos
reductions for EV replacement of LD ICE vehicles (4) which induces demand. This
effect, like the induced demand effect from travel time savings, could be loffset
additional pricing of travel or fuel.
The main assumptions used for this comparison analysis are:
1. no additional demand volume or average speed changes are generated by
application of the NCBS,
2. average daily peak period travel on freeway and arterial facilities is 8.0 and
8.6 miles, respectively, per peak period traveler (the average of 439 U.S.
urban areas in 2007 — extractable from the data tables accompanying the
Urban Mobility Report (UMR) (Schrank & Lomax, 2009)),
3. 55% of peak period freeway and arterial travel (by VMT) is congested (the

average of 439 U.S. urban areas in 2007 — from the UMR data tables),
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4. average fuel efficiency of 21.1 miles per gallon (mpg) (for the U.S. light-duty

vehicle fleet, model year 2009, from the U.S. EPA (2009b)),

5. average fuel carbon intensity of 8.9 kge@er gallon (calculated from U.S.

EPA, 2009b),

6. electric vehicle carbon intensity of travel of 0.216 kg€@er mile (from the

supplementary material of Samaras & Meisterling (2008)), and

7. all other fleet and emissions characteristics are as described aboweeied

in MOVES for Portland, 2010.

The EV carbon intensity of travel is based on life-cycle assessment (LCA),
although upstream emissions are not included in the roadway emissions esomates
petroleum vehicles. In order to make an equivalent comparison with the on-road
emissions estimatean additional estimate is made using zero emissions for. EW&s
assumption of zero emissions for EV’s is also made for local pollutants (all ngn-CO
since EV’s produce no on-road emissions (though they do contribute to regional air
pollution through power generation).

In this analysis we use the emissions rates generated by MOVES mddebng
full fleet and a LD-only fleet (for the EV replacements). The caladatior VMT
reductions (1) and EV penetration (4) use average emissions ratedity(facluding
congested and uncongested conditions); calculations for the two fuel-based RICBS, (
and (3), use the average fuel economy and carbon intensity given in the list of
assumptions above. The portion of peak-period travel on uncongested freeways and
arterials is assumed to have average speeds of 60 mph and 35 mph, respectively.

Emissions from travel on local roads is neglected — a conservative assumgtion wit
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respect to the NCBS. Induced demand is calculated using mid-point arc tylastici
Equation 12.

We first look at freeway facilities alone, comparing NCBS to CBS titaease
congested speeds as indicated by improving freeway LOS. The resultscoitiparison
for freeway CQe are shown in Table 9 and Table 10 using demand elasticities to travel
speed of 0.0 and 0.3, respectively. The three numerical columns (from left to right) show
LOS changes from F to E, from E to D, and from D to the A-C range (again, LOS
average speeds are from Barth et al. (1999)). Only emissions from freawayare
considered here, and the LOS change only applies to the congested portion of freeway
travel (55%). The NCBS effects apply to all peak-period freeway travel, but othe
impacts are excluded (e.g. EV ownership would also reduce emissions from non-peak
period trips and from travel on non-freeway facilities). The table resultassaime
independence of strategies — in other words changes to travel distance or vehicle
efficiency do not affect travel speeds. For each hypothetical LOS immpentghe net
changes in average speed, travel demand volume, and commute emissions are shown in
the first three rows of the Table. The final rows show the NCBS chandesahia be
required to generate the same peak period emissions change on freditiag faam

each alternative strategy.
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Table 9. Comparison of Equivalent Emissions Reduction Strategies for Eeway
CO.e Emissions (MOVES Model with Inelastic Demands} = 0)

19 - 31 mph 31 -53 mph 53 — 60 mph
Avg. speed change (mph) 11.9 (64%) 22.4 (73%) 6.8 (13%)
Travel demand change 0 0 0
(vehicle miles/peak-traveler-day)
Emissions change 0 0 0
(g COglpeak-traveler-day) 481 (-11%) 236 (-6%) 101 (-3%)
Alternative Efficiency Strategy
Trips length change 0 0 0
(vehicle miles/peak-traveler-day) 0.9 (-11%) 0.5 (-6%) 0.2 (-3%)
Vehicle efficiency change 0 0 0
(miles/gallon) 2.1 (13%) 1.3 (7%) 0.6 (3%)
Fuel carbon intensity change 0 0 0
(kg COse/gallon) 1.0 (-11%) 0.6 (-6%) 0.3 (-3%)
EV penetration by LCA 0 0 0
(% of peak period fleet) 29% 19% 9%
EV penetration by zero-emissions 0 0 0
(% of peak period fleet) 14% 8% 4%

Table 10. Comparison of Equivalent Emissions Reduction Strategies fordeway
COze Emissions (MOVES Model withe} = 0.3)

19 - 31 mph 31 -53 mph 53 — 60 mph
Avg. speed change (mph) 11.9 (64% 22.4 (73%) 6.8 (13%)
Tr(a\L/\tljwliglimr;reds/i)he?kgﬁaveIer-day) 0.7 (9%) 0.8 (10%) 0.2 (2%)
En(]gijsgg:;:::;-?;veler-day) 131 (-3%) 112 (3%) 31(-1%)
Alternative Efficiency Strategy

T”(‘\)/Z;?(r:]lgtrr;ﬁzzzizk-traveIer-day) 0.2 (-3%) 0.2 (3%) 0.1 (-1%)
Ve(';iq‘;'s;;:’:s:;y change 0.5 (3%) 0.5 (-3%) 0.2 (1%)
F”(i'gcgrob;?gi;‘ﬁi:?ty change 0.3 (-3%) 0.3 (3%) 0.1 (-1%)
e e
oot peakpenod feet | - 19
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As an example, consider the first numerical column of Table 10, which considers
COe emissions from a freeway LOS change from F to E. The average speedarhange
congested freeways from 19 to 31 mph (rounded) is a speed increase of 11.9 mph (64%)
—row 1. Assuming} = 0.3 in this table, this speed increase induces 0.7 extra vehicle-
miles of peak period freeway travel (per day per peak period traveler), aasa@f 9%
—row 2. Considering the increased efficiency and induced demand, total emissions ar
reduced by 131 grams per peak period traveler, per day (-3%) — row 3. This 131 grams of
emissions savings could also have been achieved by reducing daily peak-peuad/fr
travel by 0.2 vehicle-miles per peak period traveler (-3%) — row 4. Alternatil@l
grams of CQe could be saved if daily peak-period freeway travel were in vehicles with
0.5 mpg better fuel economy on average (3%) — row 5. A decrease of 0.3&p&0
gallon (-3%) in the carbon intensity of fuel burned during peak-period frezassi
could also save 131 grams of g&missions — row 6. Finally, replacing 8% (by LCA) or
4% (by zero-emissions EV’s) of ICE LD vehicles with EV’s for peakgukefreeway
travel could also achieve the same savings of 131 gramps-€@ws 7 & 8.

As expected from the previous modeling in this thesis, the LOS change from F to
E generates the greatest marginal benefits, which require tlestlatternative efficiency
improvements to match. The greatest difference between speed improvement and
emissions reduction is observed in the central column, LOS E to D. With inelastic
demand (Table 9) a 73% increase in freeway speed garners a meagee@es iof t
emissions reductions. Similar reductions can be achieved by increasirfgdleet
efficiency by 1.3 mpg or reducing average peak period freeway travelftey inde per

peak period traveler, per day. Furthermore, alternative strategieshlegeeténtial for
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low or zero costs for transportation agencies, while capital improvement psajebtas
urban freeway widening can be extremely expensive endeavors. Thesearesults
relatively conservative, since they are only considering peak-period trawaleways.
The fuel-related and EV-related NCBS would have additional benefits froel tra
throughout the day on all facilities.

The values in Table 9 are based on the MOVES-modeled emissions rates. A
comparable table based on the Barth model is similar for LOS F to E, but theneffic
gains from LOS E to D are less (2% net emissions reduction). For arnvenpgat from
LOS D to the LOS A-C range the Barth model predicts net emissioreasegeven
with inelastic demand) because of the inefficiency of high-speed .ti@welBoulter
model produces even smaller efficiency gains, with net emissions changes €f%9%,
and 8% for the three columns in Table 9.

The results in Table 10 incorporate induced demand with an assumed elasticity of
travel demand to travel speed of 0.3. The speed improvements reduce primary-réad trave
time and so induce travel that partially or fully offsets the emissioasedtictions seen
in Table 9. The emissions changes shown in row three of Table 10 include both the
emissions rate and induced travel effects. Even with moderate elasfjcity0(3) the
emissions savings in columns 1 and 3 are less than half as large as in TabletBewhile
induced travel for LOS E to LOS D leads to a total emisdimrease When a total
emissions increase is expected, the alternative strategy equivalentsplpasite signs
from an emissions savings — i.e. longer trips, reduced vehicle efficiency, higher fue
carbon intensity, and fewer EV’s in the fleet. Using an assumed elasfi€ity the

induced travel leads to total emission increases for all three LOS impzat&em
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Table 11 shows the results of a similar analysis (with the same assumprons) f

CO.e emissions oarterials with an assumed demand elasticity of 0.3. Here we use

travel speed increases of 10 to 16 mph, 16 to 24 mph, and 24 to 35 mph, roughly parallel

to the heavily congested — moderately congested — uncongested LOS improvements in

the freeway tables. As expected for a lower-speed facility and froemtlssions

gradients in Figure 7, arterial congestion mitigation is more eféeat reducing

emissions. Still, even with moderate demand elastiefty= 0.3) the speed improvement

above 24 mph produces a net emissions increase because of induced demand.

Table 11. Comparison of Equivalent Emissions Reduction Strategies for farial
COze Emissions (MOVES Model withe} = 0.3)

10 — 16 mph 16 — 24 mph| 24 — 35 mph
Avg. speed change (mph) 6.0 (60%) 8.0 (50%) 11.0 (46
Tr({il/\;liglimrri?edsfphe?kg-ﬁaveIer-day) 0.7 (9%) 0.6 (8%) 0.6 (7%)
ET;?&Z:::E_?;WIH_ day) 11,002 (-15%) | -374 (-7%) 31 (1%)

Alternative Efficiency Strategy

T”([\)/Se;?(r:]lgtrr]nﬁzzzizk-traveIer-day) 1.3 (-15%) 0.6 (-7%) 0.1 (1%)
V‘e(m‘i:l';‘/aggs:;y change 1.9 (17%) 1.1 (8%) 0.1 (-1%)
F”(i'gcgg;‘gi;tli:fity change 1.3(-15%) | -0.6 (-7%) 0.1 (1%)
" (8 of peak period et 29% 17% 2%
vy o | | |

0)

The next four tables show the same efficiency strategy comparisons onyseewa

and arterials for NQ(Table 12 and Table 13) and PMTable 14 and Table 15) using
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demand elasticity of] = 0.3. The largest emissions reductions are for heavily congested
arterials. NQ emissions show no benefit from freeway congestion mitigation. Unlike the
other pollutant-facility combinations, freeway Phemissions have the largest potential
savings from a reduction of moderate congestion. This is also reflected inhHer duds-
even demand elasticity at moderate speeds forsMFigure 18. The EV penetration of
the LD vehicle fleet must be particularly high to match emissions remsdiiom speed
improvements for Pl This is logical, because the EV’s are only replacing LD vehicles
and the PM;s emissions are primarily from the HD portion of the fleet (see Figure 26).
Collectively, these tables show that considering moderate values fordleman
elasticity substantially degrades the potential for emissions reduation<CBS and
increases the attractiveness of alternative strategies. That sadarhetill some
situations where traffic flow improvements can substantially reducesems, such as
heavily congested arterials. But CBS for emissions reductions dreostlikely to be the
most cost-effective approach, considering the potential for low-capitakitesative
efficiency strategies. CBS are more susceptible to self-dedelaghavior responses
through induced travel, and only provide efficiency benefits during peak periodsy,Final
elasticities higher than 0.3 — which are realistic on long time scal@kironease total

emissions in many CBS situations.
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Table 12. Comparison of Equivalent Emissions Reduction Strategies for &eway
NO, Emissions (MOVES Model withe} = 0.3)

19-31 mph| 31-53mph 53 -60 mph

Avg. speed change (mph) 11.9 (64%) 22.4 (73%) 6.8 (13p0)
Travel demand change 0 0 0

(vehicle miles/peak-traveler-day 0.7 (9%) 0.8 (10%) 0.2 (2%)
Emissions change 0 0 0

(g COe/peak-traveler-day) 0.1 (-1%) 0.5 (6%) 0.0 (0%)

Alternative Efficiency Strategy

Trips length change 0 0 0

(vehicle miles/peak-traveler-day) 0.0 (-1%) 0.5 (6%) 0.0 (0%)
EV penetration by zero-emissions 0 0 0

(% of peak period fleet) 1% 14% 0%

Table 13. Comparison of Equivalent Emissions Reduction Strategies for Aatial
NO, Emissions (MOVES Model withe} = 0.3)

10-16 mph | 16 —-24 mph 24— 35 mph

Avg. speed change (mph) 6.0 (60% 8.0 (50%) 11.0 (46%)
Travel demand change 0 0 0

(vehicle miles/peak-traveler-day 0.7 (9%) 0.6 (8%) 0.6 (7%)
Emissions change 0 0 0

(g COe/peak-traveler-day) 1.7 (-11%) 0.5 (-5%) 0.3 (2%)

Alternative Efficiency Strategy

Trips length change 0 0 0

(vehicle miles/peak-traveler-day) 1.0 (-11%) 0.4 (-5%) 0.2 (2%)
EV penetration by zero-emissions 0 0 0

(% of peak period fleet) 36% 13% At
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Table 14. Comparison of Equivalent Emissions Reduction Strategies for &eway

PM. .5 Emissions (MOVES Model withe = 0.3)
19-31mph| 31-53mph 53-60mph
Avg. speed change (mph) 11.9 (64%) 22.4 (73po) 6.8 (1320)
Travel demand change 0
: : : .8 (10% 2 (2%
(vehicle miles/peak-traveler-day 0.7 (9%) 0.8 (10%) 0.2 (2%)
Emissions change 0 0 0
(g COe/peak-traveler-day) 12 (-3%) 36 (-12%) 14 (-6%)
Alternative Efficiency Strategy
Trips length change 0
. . -0.3 (- -0.9 (-12% -0.4 (-6%
(vehicle miles/peak-traveler-day) 0.3 (-:3%) 0.9( ) 0.4 (-6%)
EV penetration by zero-emissions 0 0 0
(% of peak period fleet) 18% S7% 22%

Table 15. Comparison of Equivalent Emissions Reduction Strategies for farial

PM. 5 Emissions (MOVES Model withej = 0.3)
10 - 16 mph| 16 —-24 mph 24 —35 mph
Avg. speed change (mph) 6.0 (60% 8.0 (50%) 11.0 (46%)
Travel demand change 0 0
: . . . % .6 (7%
(vehicle miles/peak-traveler-day 0.7 (9%) 0.6 (8%) 0.6 (7%)
Emissions change
-74 (-12% -29 (-6% -9 (-2%
(g COe/peak-traveler-day) ( ) 9 (-6%) 9 (-2%)
Alternative Efficiency Strategy
Trips length change 0
. . -1.1 (- -0.5 (-6% -0.2 (-2%
(vehicle miles/peak-traveler-day) 1.1(-12%) (-6%) (-2%)
EV penetration by zero-emissions 0 0 0
(% of peak period fleet) 4% 37% 13%

8.3.1 Emissions Elasticity to NCBS

The emissions elasticities to each of these NCBS can be analytidalignaesd.

For VMT reductions (1), increased fuel efficiency (2), and decreased caitieosity (3)

the total emissions point elasticity is -1.0. For these strategiesnwsagdhat a certain
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percentage emissions reduction from a CBS can also be accomplished through roughly
the same percentage implementation of the NCBS. The percent changes ter vehic
efficiency (mpg) in Table 9 and Table 11 are slightly different fronethessions savings
percentages because emissions are inversely related to efficiertuy psont elasticity

of -1.0 will be different from the arc elasticity. For reference, thigparent emissions
change from CBS (as described in the previous section) for each facilityapoil®S
combination are shown in Table 16 and Table 17, ugjng 0.3. Positive numbers
indicate emissionmcreasesThus, from the first row of Table 16, emissions of,€0n
freeways are expected to decrease by 3% for a LOS change from F todg€asmeeds
from 19 to 31 mph)increaseby 3% with a LOS change from E to D (average speeds
from 31 to 53 mph), and decrease by 1% with a LOS change from D to A-C (average
speeds from 53 to 60 mph).

Table 16. Summary of Percent Change in Emissions on Freeways from CBS
(MOVES-Modeled Emissions withe} = 0.3)

Freeway 19 — 31 mph 31 -53 mph 53 - 60 mph
COse -3% 3% -1%
(6{0) -1% 1% 0%
PMzs -3% -12% -6%
NOy -1% 6% 0%
HC -13% -9% -3%
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Table 17. Summary of Percent Change in Emissions on Arterials from CBS

(MOVES-Modeled Emissions withey = 0.3)

Freeway 10 — 16 mph 16 — 24 mph 24 — 35 mph
COe -15% -71% 1%

CO -11% -6% -2%
PMzs -12% -6% -2%

NOy -11% -5% 2%

HC -21% -13% -6%

For EV penetration of the LD fleet the elasticity is slightly more caraf@d.

Assuming thae, = 0 and all EV are replacing ICE LD vehicles, t%h= —1and

Z—’;’l = aaTq = 0. So the elasticity of total emissiofigo EV penetratiorf, is calculated

fe 1 0E 1 d —ej -1
=== e + e = = ' o4
E " Eafe  alfiertfrenl 0fe qlfier + fen] fiei+fnen 1+fh(eh/el—1)—fe (4)

For the observed range %f/el from around 1 for CO up to 60 for BMI(see Figure 20)

andf;, = 0.1, eg"’ can range from-1.0 < eg"’ < —0.1. Considering LCA EV emissions,

the elasticity would be even smaller. Thus, total emissions elasticty BV-based
NCBS is equal or smaller than the total emissions elasticity to other N&8@& the

denominator of Equation 54 we see that fleets with more HD vel§i/g®r pollutants

with higher relative emissions rates from HD vehi((Fe‘s/el) will havelower total

emissions elasticity to EV penetratiaéf. The latter is the case for BMemissions in
Table 14 and Table 15, where large EV penetrations of the fleet are ngtessaduce

equivalent emissions reductions to CBS. The relationships in Equation 54 aratdllistr
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in Figure 30, wherege is plotted agains‘ih/el for fy = 0.1,0.2,and 0.4 and assuming

fe = 0. The emissions elasticity ¥ is reduced with increasirfg‘/el and withf.
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Figure 30. Emissions Elasticity to EV Penetrationg;’, versuseh/el, assuming

fe=0ande, =0
Looking back at Figure 14 we see that a total emissions elasticity 0§-1.0 i
probably more than can be expected from any speed-based approach (gspecial

considering induced demand). Thus the emissions elasticity to non-EV NCBS is

advantageous. For EV strategies the emissions elasticity is more irithnegf wthough it
can vary by an order of magnitude for the observed ranae/glf. Whenege is smaller

(less negative) than -1.0, proportionally more EV penetration is needed to bbtain t
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equivalent emissions reductions shown in Table 16 and Table 17, as can be observed in

the results above.

In conclusion, there are many conditions (moderate speeds or moderate demand
elasticity, for example) in which capacity-based congestion mitigatitkely to
increase total emissions. For this reason, emissions reductions cannot be & assum
benefit of congestion mitigation. Furthermore, strategies which targssiems
reductions directly are more likely to achieve real emissions benefitth&htgh
emissions rates and high emissions rate sensitivity to speed for HD vehiséssthe
potential for emissions benefits from more focused congestion mitigatiorgstsatieat

target HD vehicles directly. This opportunity is addressed in the next chapter.
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9 VEHICLE CLASS-SEGREGATED FACILITIES

LD/HD vehicle differences can have large impacts on total emissionssaffect
congestion mitigation, as demonstrated above. In addition to having higher emissions
rates than LD vehicles, HD vehicles are more sensitive to inefficieimcossgestion
(Figure 24 and Figure 25). The large contribution to total emission from arsumnatler
of HD vehicles makes them likely targets for more focused emissions and comgesti

mitigation strategies. For P, the high values o;f’(;’;1 (Figure 25) coupled with HD

vehicle dominance of total emissions (Figure 26) suggest potentials furadity
benefits from HD vehicle-specific congestion mitigation strate@essidering that
PM, s is a local pollutant with large health risks (Hall et al., 2008; Health Effects
Institute, 2010), this could be a particularly important strategy for freightesting in
urban areas.

As a comparison of congestion and emissions mitigation approaches and their
class-specific effects, Table 18 shows a short list of emissions noitigatategies and

their expected direct impacts on the key variables of this analysis spéeds;, traffic
flow volume q;, emissions rate parameters, and demand elasticity to speg%i. The

cells in the table are filled in with the relationships of an increase “+fgdse “—”, or no
change “0”. These relationships are of course highly generalized, antiegtaets can
depend on details of implementation. Truck-only lanes (TOL) are roadwdtidaci
which provide exclusive right-of-way for HD vehicles (Transportation &eseBoard,
2010). Just as general capacity expansions can employ road pricing to rmtigat

demand, TOL can utilize lane pricing for the same purpose.
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Table 18. Congestion & Emissions Mitigation Strategies: Direct Impacts

Light-Duty Vehicles Heavy-Duty Vehicles

Strategy Vi | Q| @ | Mg | Vi | Gn | Qin | T

Capacity increase + + 0 0 + 4 0 (¢

Truck-only Iar_1es (no toll) — + + o o + + o o
new capacity

Truck-only lanes (no toll) — B B o o + + o o
appropriated capacity

Truck-only Iar_1es (tolled) — + + o o + o o _
new capacity

Truck-only lanes (tolled) — B B o o + o o _
appropriated capacity

Congestion pricing/demand + B o B + _ o _
reduction strategies

Vehicle/fuel efficiency o ol | — o o | o | = o
improvements

! Assuming fuel cost savings do not lead to inducadel

Capacity expansions increageand q;, and the total emissions effect depends on
the relative magnitude of each, as illustrated in Chapter 8. The impact of TAL on L
vehicles depends on whether (a) the TOL are added capacity (in whiah) easie,;
would increase with the relocation of HD vehicles), or (b) the TOL are appeapria
general purpose (GP) capacity (in which case the capacity detoeagevehicles
would likely lowerv; andq;, though traffic flow impacts of this type of TOL vary
(Middleton, 2006; Transportation Research Board, 2010)). A tolled TOL can have similar
efficiency benefits without an increase in truck volumes by offsettiegravel time
savings with toll costs (reducing the effective demand elasticity to tspeed). For
tolled TOL facilitiesngz decreases because travel speed increases induce less demand.

Congestion pricing and other forms of travel demand management (TDM)

similarly reduce demand elasticity to travel speét}ﬁl,, by replacing time savings with
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tolling costs or other motivators. More to the point, TDM aim to reduce traffic volumes
and so increase traffic speeds and vehicle efficiency. Non-traffioaches to emissions
reductions include improvements in vehicle and fuel efficiency as analyzedtiors

8.3. Such strategies reduce emissions rates, with the only likely impact on speed or

volume being possible induced demand through decreased travel (fuel) costs.

9.1 Truck-Only Lane Analysis

In this section we illustrate the expected emissions impacts of sevferedati
lane management strategies, including TOL. The base conditions are gav8rase
congested freeway facility of arbitrary length (all GP lane#f) #e following
characteristics and assumptions:

1. 10% HD vehiclesf, = 0.1) with PCE,;, = 1.5 for level terrain

(Transportation Research Board, 2000)
2. Demand elasticity to speed of 0.3 for both HD and LD vehigjgs= n," =

0.3

3. BPR equation parameters as abave: 0.15, f = 7, t, = 1min/mi (free-
flow speed of 60 mph), and= 2,200 pcphpl

4. Initial volume ofg = 2,300 vphpl (about 10% over capacity, considering
PCE)

5. An even distribution of traffic among all travel lanes

6. On mixed LD/HD facilities, LD and HD vehicles travel at the same average

speed
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7. When TOL exist, they are mandatory and exclusive for all HD vehicles —
meaning there are no mixed LD/HD flow lanes when TOL exist.
Four different lane management scenarios are considered, all without tolling
1. Convert one of the GP lanes to a TOL
2. AddaTOL
3. Add a GP lane
4. Remove a GP lane
For these calculations arc demand elasticities are used (similar thoadL2), meaning

that if the initial demand volume and speed for vehicles of;i;lasa*sqj1 andvjl,

respectively, we can estimate the new demand volyrzntrom the new speedr-z, using

nvj — (vj2+vj1)(qj2_qj1)
U (ay,%9,)(v,v),)

v,
v 4 (v —p
”11+”Jz+"q,-(”12 vj,)

jl vj '
Vi1 Vi, _nq]'(vfz_vh)

aj, = q (55)

But since the additional volum¢,-2 IR Impacts the speedjz, we must also consider
the relationship betwealr}2 andqu. If g¢’, is the final volume in PCE, then using the

! 7 Rearranging Equation 55 and

to<1+a(q'2/c) >

substituting foru]-2 based on the BPR function we get

BPR function (Equation Ly, =
v]. v]. 1;]- ‘Uj Vi
aj, i+1—nqj+n : ,1] %1[_+ +Tiq,—77q,-;.2

qj vj
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qj, [q’ﬁvjltoac‘ﬁ (1 + an:) + vt (1 + an:) +1- n:j] + q’ﬁqjlvjltoac—ﬁ (1 _

1y v/=q/ L tol—pgv/+ g/l 1+ pg/vy (56)
Then we can calculate

q'; = Zje]qu - PCE; . (57)
For two (LD and HD) vehicle classgs= {l, h}, Equations 56 and 57 represent a system
of three equations with three unknowns;, g, ,, andq’,. All other variables are
parameters or initial conditions. Therefore the equations can be simultansausly to

find the final volumes and speeds for each vehicle class. The final volume and speed fo
each vehicle class satisfy both the demand elastjgi]:t;lnd the theoretical volume/speed

relationship (BPR). As with the previous analyses, we assume that all VM@eshftom
variable demand are reflected in changng

The results of this analysis for total @Qemissions are shown in Table 19. This
table shows results for base conditions and all four lane strategies, with akahlate
and percent changes from base conditions for class-specific volumes, speeds, and
emissions. Interestingly, the largest total emissions benefit is f@Lacdnversion. Both
TOL scenarios reduce HD vehicle emissidis,by 8%, but the lane conversion also
reduces; enough to suppregs by 10% and reduck; by 6%. A TOL as additional
capacity produces no net changdinwith decreased emissions raégbut a 4%
increase ing;. The 8% increaseg}, with TOL is not enough to offset the increased
efficiency for HD vehicles. Adding a GP lane has similan€@missions benefits to
adding a TOL laneRemovinga GP lane has larger emissions benefits than adding either

type of lane, due to the 17% suppressed demand for both LD and HD vehicles.
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Table 19. Volume, Speed, and C£ Emissions Changes with Lane Strategies

Base TOL TOL Added GP Lane GP Lane
Conditions | Conversion Added Removed
q; (veh/hr) 6,210 | 5,606 -10% | 6,460 4% | 6,594 6% | 5,185 -17%
qn (veh/hr) 690 744 8% 744 8% 733 6% 576 -17%
v; (mph) 47 33 -29% 53 14% 57 22% 25 -46%
vy, (mph) 47 60 29% 60 29% 57 22% 25 -46%
E; (kg CO2e 2,333 | 2,188 6% | 2,337 0% | 2,332 0% | 2,150 -8%
/hr/road-mile)
E} (kg CO2e 1,044 960 -8% 960 -8% 980 -6% | 1015 -3%
/hr/road-mile)
E (kg CO2e 3,377 | 3,148 7% | 3,297 -2% | 3,312 -2% | 3,165 -6%
/hr/road-mile)

Figure 31 shows the results of this analysis for all five pollutants asrtenpe
change in total emissions from base conditions for each strategy. Of thdra@giss,
GP lane conversion outperforms lane addition from an emissions perspective for all
pollutants except HC. Adding a TOL produces lower total emissions than adding a GP
lane for all pollutants. GP lane removal has mixed effects.sRMd HC emissions both
increase, while N@Qshows its greatest decrease of all the strategies. These results a
intuitive: HC and PM5 are more sensitive to speed than,N§2e Figure 4), so more
likely to benefit from a speed increase (adding a lane), whilgidl@ore likely to

benefit from reduced volume (suppressed demand from removing a lane).
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The next four plots explore sensitivity of these results to several key
characteristics and assumptions: initial volume, fraction HD vehicles, armhdem
elasticity to speed. Figure 32 shows the percent change in tofalgd@ssions for
varying initial volumes. For low initial volumes with nearly free-flow coiudlis the
emissions effects are minimal, with the exception of removing a GP laich imcreases
emissions. At volumes around the initial condition$,8000 veh/hour the largest
potential benefits are for GP lane reductions (with or without TOL) — though GP lane
removal without TOL degrades to an emissions increase around 7,500 veh/hour. Both
additional lane scenarios also increase total emissions for highdniaitienes because

of induced demand.
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Figure 33 shows the percent change in totajeC€nissions with varying initial
fractions of HD vehicles in the flegf;. At high initial f; the TOL strategies are not
effective at reducing emissions because the TOL are saturated and not op¢rating
efficient speeds for the HD vehicles. At very low truck volumes additional TOL a
minimally utilized and have little effect, while TOL conversion suppresBeddmand
enough to reduce total emissions. GP lane addition is fairly insensitive tiorfrel®©
vehicles, while GP lane removal is decreasingly effective at highetrdns of HD
vehicles because HD vehicles are proportionally more inefficient ataerggeeds than

LD vehicles.
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Figure 34 shows the effect on total emissions of varying demand elasticity
speechg (assumed the same for both vehicle classes). Total emissions from lane

additions (TOL or GP) increase nearly linearly with increasing demastaiy as the
increased capacity induces an increasing amount of travel. Increasiagdalelasticity

has the opposite effect on GP capacity reductions as an increasing amount of demand
(and emissions) are suppressed at higher elasticities. This effdsetssoinewhat at

very high elasticities as the TOL conversion induces an excessive amountvehit
travel. At low elasticities the lane reductions are particularly éotffe because they
decrease efficiency without suppressing demand. From this figure we stetha
assumed elasticity of 0.3 is in a narrow range which leads to total €fissions

reductions for all four strategies.
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Figure 35 looks at the total emissions results from varying only HD vehicle
demand elasticity to speed;z. The results are similar to Figure 34 with the marked
exception of the emissions impact of TOL conversion at low HD demand elasticity.
Figure 35, TOL conversion is increasingly effective at low demand @tgdiecause it
continues to suppress LD vehicle demand, unlike in Figure 34. The other strategies ha
similar shapes in Figure 35 as compared to Figure 34, though with less sgnéisiat

final note, although simple GP lane removal outperforms TOL conversion for emissions
reductions in some situations (particularly for hdtj) TOL conversion is more likely

to be a politically feasible option for implementation (particularly ifaitrgers the support

of the trucking industry).
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In their analysis of the emissions impacts of tolled TOL, Chu and Meyer (2009)
predict net emissions reductions of 3-66% and 61-62% for HC andr&pectively, and
net emissions increases of 2-5% and 1-18% for CO ang md€pectively. Besides
different emissions rate curves, their analysis used a travel demand meskainate
volume changes. The details of the demand model and its results for the studiedscenari
are not described in the paper. Since speed results are not provided we cannot compare
the implied demand elasticity with this analysis. The TOL are added cgpmauitthey
do predict an increase in LD vehicle volumes on the GP lanes accordingly. It is
surprising, though, that they prediatl@creasen total volumes with the added TOL
capacity (this is not explained in the paper). The emissions results are maeinililee
with what is expected from this analysis, given the higher fraction of HRleshiabout

19%) — with the exception of G@missions. Their expected benefit of over 61% fop CO
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emissions is surprisingly high, particularly given the net volume changesahkas 3%.
This may be due to the rough approximation o, @@issions used in the paper: a simple

percent difference in cubed speeds.

In conclusion, truck-specific congestion mitigation strategies could trre
potential for emissions reductions than general purpose congestion mitigat®rs Thi
particularly true if truck travel demand elasticity to travel time is metdeor low. In
fact, converting a general purpose lane to a truck-only lane can havemmesgons
benefits than adding capacity, despite the increased congestion for light-datgs/dhi
the next chapter of this thesis we return to composite fleet analysis and tmwigastion

performance measures and their applicability for emissions trends.
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10 IMPLICATIONS FOR PERFORMANCE MEASURES
In this final results chapter we look at how the preceding analysis can inform the

application of congestion performance measures for emissions consiteratio

10.1 Speed-Based Performance Measures
Speed-based or delay-based performance measures are common when assessing
congestion levels. These mobility-oriented metrics compare a congesteldospravel
time with some threshold of uncongested conditions. They generally are nedtaliz
travel distance, estimating the excess travel time per mile oregfect to a trip of a
fixed length. Examples include the Travel Time Index (TTI), Buffer Tingex, and the
Planning Time Index — see Cambridge Systematics, Inc. (2005). The TTiiculaa,
enjoys extensive use in the Texas Transportation Institute’s Urban Métejitgrt
(UMR) (Schrank et al., 2010). The TTl is calculated as the ratio of averagp@eatt

travel time to the travel time on the same facilities in off-peak/fl@e-flonditions,

=2, (58)

v

TTI =

e"’lnl

wheret andv are the average peak-period travel rate and travel speed, respgeatidely

t, andv, are the off-peak (free-flow) travel rate and travel speed, respectively.

. _ v v -, —p2
Sincev = =%, —=—2=
TTI' OTTI  TTI? Vo

and total emissiong;, elasticity to the TTI can

be calculated

11 _ TTI OE vy OE 0D Vo ( 7 E) (—172) 7
&l =E—m— === =—|&p= = —¢p . 59
E E oTTI EvovdTTI Ev\ E%/)\ v, E (59)

We can then go back to thg figures in Section 5.5 to see the conditions (for average

speed and demand elasticity) where total emissions are expected to incdacease
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with the TTI. Similar to the case of congestion mitigation, we see theneaarg

situations (particularly for moderate congestion levels and demandigEstiwhere

total emissions wiltecreasevith increasing TTI. In other words, emissions are moving

in the opposite direction as the congestion performance measure. For this peasbn s
based congestion measures such as the TTI should not be viewed as indicators of poor
performance from an emissions perspective.

Total emissions do not track with speed/delay metrics partly because sgedd-ba
performance measures fail to account for volume changes — which are importaah
emissions perspective. Only considering the direct impacts of speed changes on
emissions rates (without volume changes) the total emissions elastittiey TT1 would

be the same as the emissioate elasticity to the TTI:

TTI 9& _ TTI 0 _ 7]

TTI
£ P = — = — =
(eg )0—g=o r 1o & oTTI e

=R _ Yo (pf)(P)_ .7 (60)

eV 0p OTTI  ED 5/ \ v,
It then follows that

i —elM=—el+el=—(mh+el)+el =—-nl. (61)
Sincee? is mostly in the range of 0.0 to -1.0 (see Figure 13)@rid expected to be
between 0.0 and 1.0, the impact of using a volume-insensitive performance measure such
as the TTI to indicate emissions performance is potentially large (ttet effieeglecting
volume changes is on the same order as the effect of the speed changtifaelf)

neglecting demand can potentially change the direction of the relationsivgebet

emissions and the performance measure (i.e. expecting a positive insteadio¢ nega
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emissions elasticity to the TTIAny performance measure that only considers speed, not
travel quantity (volume or distance), will likely misrepresent the totadsams

relationship with congestion

10.2 Performance Measure Examples

As an example we can look at the performance measures implied by the lane
strategies described and analyzed in Section 9.1. The TTI can be calculatétefrom
speeds in Table 19, leading to the values shown in Table 20 (assym#ng0 mph),
whereTTI; andTT]I, are the TTI values computed usimgandv,,, respectively.
Comparing the percent changes in total emissions and TTI for each vehiclendlfss a
the total roadway, we see that the TTI is a poor predictor of emissions impadE? For
lane removals (with and without TOL) the TTI moves in the opposite direction as total
emissions (because the TTI does not account for the suppressed demand voleerd). Pe
volume changes are also shown in Table 20, and although there are still large
discrepancies between volume changes and total emissions changeslgdgriar HD

vehicles), the percent differences foandgq; are closer to the percent differencesHor

andE; than are the percent differences in the TTI.
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Table 20. TTI and Total Emissions Effects of Lane Strategies Describéal Section
9.1

Base TOL TOL Added GP Lane GP Lane
Conditions | Conversion Added Removed
E; (kg CO2e 2,333 | 2,188 -6% | 2,337 0% | 2,332 0% | 2,150 -8%
/hr/road-mile)
q; (veh/hr) 6,210 | 5,606  -10% | 6,460 4% | 6,594 6% | 5,185 -17%
TTI, 1.28 | 1.82 42% | 113 -12% 1.05 -18% | 2.40 88%
E} (kg CO2e 1,044 | 960 -8% 960 -8% 980 -6% | 1015 -3%
/hr/road-mile)
qn (veh/hr) 690 | 744 8% 744 8% 733 6% | 576 -17%
TTI, 1.28 | 1.00 -22% | 1.00 -22% 1.05 -18% | 2.40 88%
E (kg CO2e 3,377 | 3,148 -7% | 3,297 2% | 3,312 -2% | 3,165 -6%
/hr/road-mile)
q (veh/hr) 6,900 | 6,350 -8% | 7,204 4% | 7,327 6% | 5,761 -17%
TTI 1.28 | 1.66 30% | 1.12 -13% 1.05 -18% | 2.40 88%

As another, more macroscopic example we can compare the approximate peak
period emissions and congestion performance from all the urban areas deschibed in t
UMR (Schrank et al., 2010). The UMR data tables provide estimates of the TTtlor ea
of 101 U.S. Urban Areas. From Equation 58 we can estitnfiteeach urban area on
freeway and arterial facilities, assuming the TTI is the same on eaassunaing free-
flow speeds of 60 and 35 mph, respectively (from the UMR methodology). We can then
calculatez () for each facility and urban area combination using the ESC fit parameters
from Table 4 and Table 5. Next we estimate total peak period emissiorfiouan
area as the summed produceand total peak period VMT on each facility (peak-period
VMT is estimated as half of the facility’s daily VMT, as per the UMR methagigl
Finally, daily peak-period emissions per peak-period traveler &related for each

urban area using the number of peak period travelers in the UMR data tables. This is a

137



highly aggregate approach, but useful for loose comparisons across manotiethat
the emissions rates versus average speed curves are assumed to be asat®sam
cities.

Estimated daily peak period G®©emissions per peak period traveler are shown in
Figure 36 for 2009, with Urban Areas indicated by population category (Small: < %2
million, Medium: %2 - 1 million, Large: 1-3 million, and VeryLarge: > 3 million
population). Figure 37, Figure 38, and Figure 39 also compare all 101 urban areas in the
UMR for 2009, segmented by population category, for different emissions and
congestion variables. Comparing amongst urban areas Figure 36, totabesnEsi
traveler and TTI have essentially no relationship. Although emiseites(e, per
vehicle-mile) increase somewhat with the TTI, the average travel déstaiocnot — and
emissions per traveler correlate strongly with average daily peak paviddoer peak
period traveler, as shown in Figure 37. We get similar results if we lookahetnissions

and VMT per capitainstead of per peak-period traveler.
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Total daily peak period emissions (not per traveler or per capita) do trend upward
somewhat with TTI, as shown in Figure 38. This makes sense because the number of
peak period travelers and population are both positively correlated with the TTI. But
when we stratify by population category (as is done in Figure 38), we sedtthat
population categories the TTI does not correlate with increasing totaiensisThe two
very high emitting urban areas are New York and Los Angeles, each wittapopsi
well above 10 million. As such, they better represent a fifth, “Extremelyel’arg
population group, with high total emissions and TTIl. What we see from the
categorization in Figure 38 is that high total emissions are associateldnggr
population areas, not necessarily higher TTI's (although those two are tealyela
Comparing total emissions with total VMT reveals — similar to what is showigure
37 — that total emissions are much more strongly correlated with VMT thafnatT|
plotted here because it essentially duplicates Figure 37). For these nezsare
measures are preferable to speed measures as emissions performance indicators

although ideally emissions performance metrics incorporate both.
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10.3 Alternative Performance Measures
As has been pointed out elsewhere, speed-based performance metrics such as the
TTI fail to represent the full multi-dimensionality of urban traffangestion (ECMT,
2007). Cortright (2010) states a need for new macroscopic congestion metrics end offe
as alternatives estimates of excess travel distance and exeeksinra for urban areas.
From the preceding sections, these are immediately more attractamissions
indicators because they incorporate travel volume (either in the distance or time
calculation). In fact, total travel time (unlike delay per unit distanceympurates both.
As a comparison with the TTI results above, an “excess miles per travedert
would have the same strong relationship with emissions per traveler as is slhoguren

37, but with a horizontal shift equal to the base mileage threshold (Cortright (2040) use
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16 miles for Large urban areas). Vehicle-hours traveled (VHT) per peiakl peveler

also has a strong correlation with emissions per traveler, as shown in Fglire
compared to some threshold to determine “excess” VHT it would show the sange stron
correlation, but again with a horizontal sh@@learly, in terms of reflecting emissions
impacts, VMT and VHT are preferable performance indicators to speed or distance-

normalized delay
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Figure 39. Daily Peak-Period CQe Emissions per Peak-Period Traveler versus
Peak-Period VHT per Peak-Period Traveler, Segmented by Urban Area Papation
Size

Our final comparison of performance measures looks at metropolitan-level
changes over time. For Portland, Oregon we calculate TTI, peak peri@de@Gssions
per peak period traveler (as above), peak period travel time per peak peritad trave

(usingv and VMT by facility), and peak period VMT per peak period traveler, all with
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the same assumptions as above using the UMR data tables. The emissionsmatiefsara
are fixed at the 2010 value, so we are not assessing the impacts of an evolving vehicle
fleet, only the impacts of changing traffic conditions and travel volumgard-40 shows

the results for the years 1982-2009, normalized to 1982 values. While emissions, travel

time, and VMT all track closely, TTI diverges — in the opposite direction.
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Figure 40. Changes in Performance per Peak-Period Traveler for Portland, i@gon,
from 1982 to 2009

We perform a similar comparison for all urban areas in the UMR for the &&n-ye
time interval from 1999 to 2009 in Figure 41. Again, the emissions rate versus speed
relationship is taken as static over time in order to isolate traffic imgagtse 41
compares changes in TTI, travel time, and VMT per traveler with chamgesissions
per traveler for the 10-year period. In agreement with all precedinljs,esmissions are
much more correlated with VMT and VHT than TTI. These figures show that inaudditi

to the other advantages stated by Cortright (2G@native (not delay-based)
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metropolitan-level congestion performance measures are also better indicators of

pollution emissions from peak-period travel
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Figure 41. Comparison of Changes in TTI, Travel Time per Peak-Period Travel,
and VMT per Peak-Period Traveler versus Changes in Total Emissions per Rle-
Period Traveler between 1999 to 2009 for all Urban Areas in the UMR

Because of the strong connection between VMT and total emissions illustrated
here, we conclude this section with the suggestion of a framework for looking at the
VMT-congestion-emissions connections. Rather than seeing emissions@scasabeing
at the end of a serial path where increasing VMT drives up congestion, which in tur
increases emissions, it appears more realistic to view congestion asibesboth as
direct, parallel products of increasing VMT. True, heavier congestion leneéase
emissions rates per vehicle-mile, but results throughout this thesis densotisttan
most circumstances travel volume is the dominant factor behind emissior@ses;neot

travel speed.
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11 CONCLUSIONS

This thesis represents a step toward better understanding of the potential
emissions co-benefits of congestion mitigation. We first presented a wangoeptual
framework for addressing the congestion-emissions relationship in abeagr We
then developed and applied an original set of sketch-planning equations which generali
the trade-offs between vehicle efficiency and travel demand volume. Thexfills
important gap in the literature by combining both vehicle efficiency and vadabt@nd
effects on emissions.

While the exact relationships among emissions, travel speed, and travel demand
vary with location and pollutant, several consistent results arisé. tFargel volume is a
key consideration for the emissions impacts of congestion or congestiortiontiga
looking at speed alone only reveals part (and more often the smaller part) attine. pi
Second, higher levels of congestion do not necessarily increase emissions, nor will
congestion mitigation inevitably reduce emissions. As such, congestion ronigat
strategies and efforts cannot automatically claim “green” status.€Bha#s presented in
this thesis provide quantitative support for the decoupling of congestion and emissions

mitigation strategies.

11.1 Sketch-Planning Equations for Elasticity of Emissions

In Chapter 4 we developed a set of equations relating traffic speed, travel volume,
and vehicle emissions. Those relationships were used in the analysis to edhzulat
elasticity of emissions to changes in traffic conditions. This set divelasimple

equations can be used by anyone wishing to estimate the emissions impadfis,of tr
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roadway, or demand management strategies without detail. The key pararaeted

for their application are emissions-speed curve fit coefficients and totandkelasticity

to travel speed or travel time. Emissions-speed curve fit coefficientscaidgut in

Section 5.1 and Section 7.1 for light-duty, heavy-duty, and LD/HD mixed fleets of
vehicles in Portland, Oregon in 2010 (based on the MOVES emissions model). Other,
distinct locations will need to develop their own emissions-speed curve fits, thosigh t
can be done at a regional level. Travel demand elasticity to speed is ahadtaeging
value to estimate, and will most likely require a range of values for ctdouta a range

of expected emissions impacts. Still, these equations can be useful sketchepiaolsi

for incorporation of emissions considerations.

11.2 Emissions Rates

The central conclusion from the emissions-speed relationship analysis in Chapter
5 is that the potential for marginal emissions rate reductions through averagepeed
adjustments is small between about 25 and 70 mph. Larger emissions raiemsduet
possible by moderating speeds that are outside this range, however, as Viatiahe \ef
degrades quickly at very high and very low speeds. These results were coasrstent
emissions models (with some variation in optimal speeds), suggesting thatdlasgo
applicable for other locations and vehicle fleets.

The potential for emissions rate reductions by increasing averagisspegeater
on arterials than on freeways, mostly because of lower operating speedsddav
vehicles have emissions rates that range from roughly equal to those of light-dut

vehicles (for CO) to 60 times greater (for P This difference is partly due to the
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dominance of diesel fuel for heavy-duty vehicles. Heavy-duty vehicleseaszally
more sensitive to low-speed inefficiency as well. As such, greater portionawyf he
vehicles in the fleet increase the overall emissions sensitivity to spasgkesha
Comparing spatial and temporal marginal emissions rates, we showed that low-
speed inefficiency is only applicable when emissions are normalized to distanc
time. While spatial rates are the most common metric for assessisgj@mij this
demonstrates that distance/time trade-offs are also important to consideer to see
the full relationship between emissions and speed. Finally, we fit simplifiessiens
rate curves to traffic volume as the independent variable, making use of theoBiAfe-
speed function. These curves demonstrate increasing emissions ratesregtimgc
flows, and can be used for traffic modeling which requires simplified and atéelgr

emissions and volume estimation (such emissions-minimizing traffic flomaatiion).

11.3 Total Emissions

In Section 5.4 we brought together emissions rates and travel volumes to look at
total emissions as they relate to traffic speed. Total emissions aenicdld by two
opposing factors with respect to decreasing travel speeds: generabsingremissions
rates (below some optimal speed in the range of 45 to 65 mph, depending on conditions)
and decreasing travel demand volume. The direction and magnitude of total emissions
changes with traffic speed changes depend on the relative size of each.

The fundamental trade-off for total emissions is between efficiency and volume.
For highly elastic travel demand conditions, total emissions will genenaligase with

speed, whereas for highly elastic emissions rates (at lower average,sjpe example)

147



total emissions will tend to decrease with increasing speed. In addition tpéad-s
conditions, emissions rate elasticity is larger (more negative) foytthdy vehicles and
certain pollutants (HC and PJY). An additional consideration for local pollutants is the
location of emissions, since congested segments displace queued vehiclensmissi
upstream.

To explore the efficiency/volume trade-offs we looked at emissions break-eve
conditions of average speed and demand elasticity. Total emissions are expected t
increase with speed for a wide range of conditions. Depending on the pollutant and
vehicle fleet, total emissions are generally only expected to decréhsacreasing
speed for low demand elasticities and low speeds. The total emissiongglastic
expected to increase with the fraction of heavy-duty vehicles and decrdaseew

fraction of advanced-drivetrain vehicles in the fleet.

11.4 Congestion Mitigation

We also used the preceding equations and results to estimate the impacts of
congestion mitigation on emissions. For capacity-based congestion mitigatiadiigc
traffic flow improvements), the net emissions effect depends on the balance oflinduce
demand and increased efficiency described above (which, in turn, depend on the
pollutants of interest, existing congestion levels, fleet composition, etc.y A ke
uncertainty in the analysis is the net demand elasticity to speed or imavehianges,
which must be estimated locally.

For many conditions, freeway capacity expansions that reduce marginsiceisis

rates by increasing travel speeds are likely to increase totali@msigs the long run
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through induced demand. Arterial roadways, more heavy-duty vehicles in therfteet, a
pollutants other than Chave greater potential for emissions reductions through traffic
flow improvements. However, the amplification of emissions rates in choges

mitigated with more advanced vehicles in the fleet, such as electric wehitegasoline-
electric hybrid vehicles. For traffic speed increases above the emisgitimal speed

(most often in the range of 45 to 65 mph), total emissions are subject to the compounding
effects of both lower efficiency and induced demand. Comparing capacity-based
congestion mitigation strategies with alternative emissions reductaiagir's we see

that where emissions reductions are possible through speed increases,|thersfitd

are likely to be more easily and cost-effectively attained by othéegies.

The high emissions rates, high share of total emissions, and high emissions rate
sensitivity to speed of heavy-duty vehicles makes vehicle classeadrgmtgestion
mitigation strategies an attractive option. A sketch analysis of vetiads segregated
facilities showed that truck-only lane strategies consistently otd+pe general-
purpose/mixed-flow lane strategies in terms of emissions reductions. Convefrsi
general purpose lane to a truck-only lane produces more emissions beneftsrtick-
only lane as additional capacity — and the emissions benefits can be ahiglifaling.

For vehicle class-specific strategies, the elasticity of frelghtand to travel time is a
key consideration, and one which is poorly quantified in the literature. Heavy-duty
vehicle travel demand elasticity more generally has a large impact ootémdigl
emissions effects of capacity-based congestion mitigation.

An analysis of several congestion-related performance measures shatved th

reflecting emissions impacts, VMT is an essential component of perfoemBimgas,
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alternative congestion metrics such as total/excess travel distanca\aiditne are
preferable emissions performance indicators to speed or distance-nodrdalag The

TTI, in particular, poorly reflects emissions changes on congested roadways

11.5 Final Thoughts and Future Work

In conclusion, congestion mitigation and traffic flow improvements cannotyight
be labeled as emissions-reducing unless travel speeds are low and destany eda
slight. This includes projects that seek to increase vehicle throughputxistmg
roadway supply through better traffic management and operations (signal ceonginat
ramp metering, etc.). Congestion mitigation through reduced vehicle volumes, on the
other hand, presents the opportunity for additive emissions benefits through efficien
improvements and volume reductions. This thesis presents a sketch-modeling ngethod b
which the balance of efficiency and volume trade-offs can be assessed.

This is a macroscopic analysis intending to describe the broad relationship
between congestion and emissions mitigations in many contexts.dttegbme unique
emissions effects of microscopic traffic features and some indirectisnpcongestion.
Driver behavior responses to congestion are modeled simply as aggregate tranel dem
elasticity to travel speed changes. Future work will investigaterpacts of behavior
responses in more detail, since different travel demand shifts (changedendeparture
time, route, destination, etc.) will have differing impacts on the volume of emsssiin
addition to the spatial-temporal allocation of emissions. Additional next stelpslé
detailed analysis of the broad emissions impacts of travel time unrejiatdight

responses to congestion, distinct traffic flow features such as bottlenedkstavork-
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level travel patterns (which relate back to driver behavior responses).rfothewe
hope to shortly present a broader analysis of congestion performance mdh&g as

relate to total social costs (including time, emissions, the economy, and more).
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APPENDIX A: MAJOR STUDIES OF THE IMPACTS OF CONGESTION ON

EMISSIONS

TEXAS TRANSPORTATION INSTITUTE’'S URBAN MOBILITY REPORT

The annual Urban Mobility Report (UMR) is an ongoing assessment of
congestion in U.S. cities that reports a set of performance measures indhecaxgent
of congestion, traveler delay, “wasted” fuel, and congestion costs (in d¢Satrgank &
Lomax, 2009). Emissions are not explicitly included in the assessment, though fuel
consumption is (a rough predictor of greenhouse gas emissions). The fuel consumption is
estimated from a simple linear regression equation using average Systehspeed.
The fuel regression equation comes from a U.S. Federal Highway Admioistrapiort
published in 1981 (Raus, 1981), and its use has been criticized because it was only
intended for application up to 35 mph (HDR, 2009). The benchmark for comparison in
the UMR is free-flow travel speeds (assumed 60 mph freeway, 35 mph arterial).
“Wasted” fuel is then the difference between fuel consumption at freesffeeds and at

actual speeds, which considers most factors to be exogenous (including alito trave

ECMT. MANAGING URBAN TRAFFIC CONGESTION

This large study presents a thorough analysis and discussion of the full extent and
characteristics of urban traffic congestion in Europe (European Confarekligisters
of Transport (ECMT), 2007). The complexities of and barriers to estimating ensssi
impacts are discussed. Although no quantitative emissions estimates areneagigoit
suggests that fuel consumption and ‘environmental pollution’ will increase with

congestion.

169



The conclusion with respect to estimating air pollution is that in addition to
average travel speed, microscopic flow characteristics must be consilsedhe
report makes the case (supported by Goodwin (2004)) that congestion codesstima
based on free-flow reference speeds are “artificial constructs,” andistuiube used.
Two other assertions, also claimed by Stopher (2004), are that congestion cannot be
eliminated, only managed, and that in the same way flow improvements induce demand,
congestion suppresses it. These perspectives support the notion that congestson effec

arbitrarily benchmarked to fixed-demand free-flow conditions are not relevant

U.S. DEPARTMENT OF TRANSPORTATION’S CONGESTION MANAGEMENT
AND AIR QUALITY (CMAQ) IMPROVEMENT PROGRAM

The CMAQ program was authorized by the U.S. Congress as part of the ISTEA
surface transportation act in 1991, and has since been administered by the U.S.
Department of Transportation (Federal Highway Administration, 2010). Sgce it
inception the program has provided over $14 billion in federal funding to support
transportation projects that “contribute to air quality improvements and reduce
congestion.” But these objectives are not necessarily mutually benefchasdeen
pointed out by others (Noland & Quddus, 2006). Specifically, traffic flow improvements
(33% of CMAQ projects) can induce travel demand that cancels any short-tessioasi
reductions (Noland & Quddus, 2006; Stathopoulos & Noland, 2003).

An early assessment of the program by Adler et al. estimated smadiamais
benefits for most CMAQ projects, but noted trade-offs among different pollutants

(especially for NQ) (1998). Adler et al. also reported high uncertainty in estimated
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emissions benefits, a distinct lack of emissions reporting standards, and induead dem
unaccounted for. The execution of this program highlights the need for better

understanding of how congestion impacts roadway emissions.

ASSESSING THE FULL COSTS OF CONGESTION ON SURFACE
TRANSPORTATION SYSTEMS AND REDUCING THEM THROUGH PRIC ING

A large modeling effort was recently undertaken by HDR for the Odfice
Economic and Strategic Analysis in the U.S. Department of Transportati, (2009).
This study estimates congestion costs in U.S. cities using a macroscomageasigeed
approach, with an aim of assessing potential benefits of congestion pricing. The
benchmark for emissions estimates, similar to the UMR, is free-flow conslitfixed
travel, steady speeds). In estimating pricing effects, travel denesiitiéy to
generalized cost was used (which did include travel time unreliabilityhaDé elasticity
was not, however, incorporated into the congestion cost estimates.

Emissions costs comprise less than 1% of total estimated congestion coslts (whi
include travel time, unreliability, vehicle operating costs, and mobility), emdegative
(indicating benefits) for some cities. The study’s macroscopic approashnad consider
detailed flow characteristics or some higher-order effects, but dhaiveven average-
speed comparisons can suggest increased or decreased emissions during gongestion
depending on conditions. The report concludes that “vehicle emissions contribute
negligibly to the costs of congestion,” and that road improvements can increasemsnis

because of high emissions at free-flow speeds and induced demand.
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NCHRP REPORT 535: PREDICTING AIR QUALITY EFFECTS OF TRAFFIC -
FLOW IMPROVEMENTS

This report addresses congestion mitigation, not cost quantification, but does
focus on estimating emissions with changes in congestion (Dowling, 2005). The study
objective was a methodology, not quantification, although a few case studies were
performed. The report describes a detailed travel demand modeling approach that
includes predictions of travel demand and growth pattern responses to travel time
reductions. As expected for a methodology of this scope, validation was limited.

The main strength of the method is the inclusion of long-term, higher-order
effects such as land use changes. However, the methodology represents aagacity
travel-time improvements, so microscopic traffic flow changes cannwiooeled. Also,
while travel demand is elastic with respect to total travel time, demanskissitive to
travel time reliability.

A small set of ten case studies were performed for traffic flow impnen¢s in
the Seattle/Tacoma metropolitan area. Overall, the modeled flow improvemaents
almost no effect on total regional travel which would indicate induced demand. Hpweve
Noland and Quddus (2006) point out that the small scale of the projects and large
uncertainties in the model highlight the weaknesses of these macroscopimgiodel
approaches. The final conclusion from the case studies is that more reseassfes “to
better understand the conditions under which traffic-flow improvements contribate

overall net increase or decrease in vehicle emissions.”
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MICROSCOPIC STUDY OF INDUCED DEMAND FROM FLOW
IMPROVEMENTS

In contrast to the macroscopic modeling undertaken by Dowling (2005) to
estimate the emissions effects of flow improvements, researchers inrLbade taken a
microscopic approach. In separate papers Stathopoulos and Noland (2003) and Noland
and Quddus (2006) used traffic micro-simulation and microscopic emissions models to
calculate emissions ‘break-even’ demand elasticity to travel(timeepoint at which
induced demand cancels the emissions benefits of improved flow) for each pollbtant. T
scenarios considered were signal coordination and lane expansion on an adexial a
freeway. Both studies concluded that long-run emissions reductions were unkkiblg, a
break-even demand elasticities for short time horizons were well withinrtge céd
published values.

The emissions effects varied with pollutant and vehicle fleet. In partiéudéand
and Quddus found that the emissions savings from improving flow characterisg&cs wer
negligible for modern, cleaner vehicles (for hydrocarbons and carbon monomide). |
contrast, older and dirtier vehicles can have more benefits from flow improvemesnt
with most other studies, demand elasticity to travel time reliabibity mot considered.
Stathopoulos and Noland assert that these and other studies show the potential emissions
benefits of traffic suppression through capacgyuctions The same logic extends to the
costs of congestion, where traffic suppression can compensate for the themassaons

due to inefficient driving.

173



OTHER TARGETED RESEARCH

Other papers have also addressed the congestion-emissions relationshyp directl
Researchers at the University of California, Riverside have investifegeemissions
effects of detailed traffic characteristics. These studies ggnadaress short-term
effects, where demand and higher-order impacts are not considered. Key fardings
increased emissions at high and low average travel speeds, increased enfissalns
world transient driving (as opposed to steady-state), and the importance of shibrt spee
fluctuations at high speeds (Barth et al., 1999; Barth & Boriboonsomsin, 2008).

In particular, Barth, Scora, and Younglove (1999) show that free-flow conditions
can have higher emissions (per vehicle-mile) than lower levels of s¢imigmllutants
other than carbon dioxide). Also, Barth and Boriboonsomsin (2009) show that more
efficient driving on freeways can reduce greenhouse gas emissions by 10RO &
significant change in travel time, with more benefits at higher levelsngastion. This
result illustrates the possibilities of congestion management that rezius=sons
(through more efficient driving behavior) without inducing demand.

In other work, a study by Greenwood, Dunne, and Raine (2007) showed 12-25%
increases in emissions for congested driving on urban arterials. The cefease was 30
km/hr steady-state driving, and higher-order effects were not corsidéoeleling of
traffic control on arterials by Zegeye et al. (2009) showed that both tnaneehhd
emissions cannot be minimized, and optimization involves some trade-off between the
two. An interesting paper by Nagurney (2000) illustrates 3 paradoxes of the comgesti
emissions relationship at the network level. They are essentially netveogkragnt

scenarios in which network improvements lead to increases in emissions, with the
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cautionary conclusion that the “network topology, the demand structure, as well as t

link travel cost structure must all be incorporated into any environmental matleling
Finally, Beevers and Carslaw (2005) studied air quality in London after agrici

scheme severely reduced traffic flow in the city center. They found 12% ieduict

NOy and particulates, with larger savings from improving travel speeds thamasiagre

flows. The reduced personal vehicle emissions were partly offset bysedrgansit bus

mileage as a result of mode shift.
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