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Finding Haystacks with Needles: Ranked Search for 
Data Using Geospatial and Temporal Characteristics 

V.M. Megler, David Maier 

 
Computer Science Department, Portland State University  

{ vmegler@cs.pdx.edu, maier@cs.pdx.edu } 

Abstract. The past decade has seen an explosion in the number and 
types of environmental sensors deployed, many of which provide a 
continuous stream of observations.  Each individual observation 
consists of one or more sensor measurements, a geographic location, 
and a time.  With billions of historical observations stored in diverse 
databases and in thousands of datasets, scientists have difficulty finding 
relevant observations.  We present an approach that creates consistent 
geospatial-temporal metadata from large repositories of diverse data by 
blending curated and automated extracts.  We describe a novel query 
method over this metadata that returns ranked search results to a query 
with geospatial and temporal search criteria. Lastly, we present a 
prototype that demonstrates the utility of these ideas in the context of an 
ocean and coastalmargin observatory.  

Keywords: spatio-temporal queries, querying scientific data, metadata. 

1 Introduction 

In the past decade, the number and types of deployed environmental sensors have 
exploded, with each sensor providing a sequence of observations.  Each individual 
observation has one or more sensor measurements and is associated with a geographic 
location and a time.  Almost a decade ago, this explosion was described as “the Data 
Deluge” [14], and continued exponential growth in data volumes was predicted [19].  
For example, an oceanography observatory and research center with which we 
collaborate (CMOP, http://www.stccmop.org) now has terabytes of observations 
spanning more than a decade, reported by a changing set of fixed and mobile sensors. 
This collection of data provides a rich resource for oceanographic research.   

Scientists now research ecosystem-scale and global problems.  Marine biologists 
wish to position their samples within a broader physical context; oceanographers look 
for comparative times or locations similar to (or dissimilar from) their research target.  
They want to search these collections of sensor observations for data that matches 
their research criteria.  However, it is getting harder to find the relevant data in the 
burgeoning volumes of datasets and observations, and the time involved in searching 
constrains scientist productivity and acts as a limit on discovery.  For example, a 
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microbiologist may be looking for “any observations near the Astoria Bridge in June 
2009” in order to place a water sample taken there into physical context.  Within the 
observatory, there are many observation types that the microbiologist needs to search.  
Observations range from a point in space at a point in time, such as a group of water 
samples, through fixed stations, which have a single point in space but may have a 
million observations spanning a decade, to mobile sensors.  The mobile sensors may 
collect millions of observations over widely varying geographic and temporal scales: 
science cruises may cover hundreds of miles in the ocean over several weeks, while 
gliders and autonomic unmanned vehicles (AUVs) are often deployed for shorter time 
periods – hours or days – and a few miles, often in a river or estuary.  Locating and 
scanning each potentially relevant dataset of observations is time-consuming and 
requires understanding each dataset's storage location, access methods and format; the 
scientist may not even be aware of what relevant datasets exist. Once geospatially 
located, fixed sensors can easily be filtered based on location but must still be 
searched on time; identifying whether mobile sensors were close by at the appropriate 
time may require time-consuming individual analyses of each sensor’s observations.   

The scientists have powerful analysis and visualization tools available to them 
(e.g., [16, 25, 27]); however, these tools must be told the dataset and data ranges to 
analyze or visualize.  While these tools allow the scientist to find needles in a 
haystack, they do not address the problem of which haystacks are most likely to 
contain the needles they want.  Visualizing a dataset of observations for the desired 
location in June may confirm there is no match. However, potentially relevant 
substitutes “close by” in either time or space (say, from late May in the desired place, 
or from June but a little further away) are not found using current methods, much less 
ranked by their relevance.  Even with a search tool that can find data in a temporal or 
spatial range, the scientist may not know how far to set those bounds in order to 
encompass possible substitutes. 

We can meet this need by applying concepts from Information Retrieval.  The 
scientists’ problem can be cast as a compound geospatial-temporal query across a 
collection of datasets containing geospatial and temporal data; the search results 
should consist of datasets ranked by relevance.  The relevance score for each dataset 
should be an estimate of the dataset content’s geographic and temporal relevance to 
the query.  The desire for real-time response implies that the query be evaluated 
without scanning each dataset's contents.   

This paper describes a method for performing such a ranked search.  Our 
contributions are: 
1. An approach, described in Section 2, to scoring and ranking such datasets in 

response to a geospatial-temporal query.  We calculate a single rank across both 
geospatial and temporal distances from the query terms by formalizing an intuitive 
distance concept.  The approach is scalable and light-weight.   

2. An approach, described in Section 3, for creating metadata describing the relevant 
geospatial and temporal characteristics of a collection of scientific datasets to 
support the ranking method.  The metadata supports hierarchical nesting of 
datasets, providing scalability and flexibility across multiple collection sizes and 
spatial and temporal scales. 

3. A loosely-coupled, componentized architecture that can be used to implement 
these approaches (Section 4). 

 



4. A tool that implements these ideas and demonstrates their utility in the setting of an 
ocean observatory, in Section 5.  Figure 5 shows the user interface. 

We provide additional notes and implications of our approach in Section 6, describe 
related work in Section 7 and conclude with future research (Section 8). 

In devising the details of our approach, we are biased towards identifying 
computationally light-weight approaches in order to achieve speed and scalability; as 
noted in considering the success of Google Maps, “Richness and depth are trumped 
by speed and ease, just as cheap trumps expensive: not always, but often.” [22]  We 
are also biased towards exploiting well-studied and optimized underlying functions 
and techniques wherever possible.  We assume that after a successful search the 
scientist (who we also call the user) will access some subset of the identified datasets; 
we generically refer to a “download”, although it may take other forms. 

2 Ranking Space and Time 

The scientist identifies a physical area and a time period he or she wishes to explore, 
which we will refer to as the query; we define the query as consisting of both 
geospatial and temporal query terms.  The scientists have a qualitative intuition about 
which observations they consider a complete geospatial or temporal match, a 
relatively close match, or a non-match for their queries.   

The top of Figure 1 shows a temporal query term, denoted T, with a line 
representing the query time span of “June”.  We consider the temporal query to have a 
center and a radius; here, the center is June 15 and the radius 15 days.  Lines A(t), 
B(t), ..., E(t) represent the time spans of observations stored in datasets A, B, …, E.  
Span A(t) represents a complete match; all observations in this dataset are from June.  
Span C(t)'s observations span the month of May and so is “very close”; similarly, 
Span B(t) is “closer” than Span C(t) but is not a complete match.  Span D(t) is further 
away and Span E(t), with observations in February, is “far” from the June query. 

The bottom section of Figure 1 shows a two-dimensional geospatial query term G 
as drawn on a map, represented by a central point P (in our running example, 
geocoordinate 46.23,-123.88, near the Astoria bridge), and a radius r (½ km) within 
which the desired observations should fall.  The marker labeled A(g) represents the 
geospatial extent of observations in dataset A; here, they are at a single location, for 
example a fixed station or a set of observations made while anchored during a cruise. 
Extents B(g), E(g) and F(g) represent single-location datasets further away from the 
query center. Linear Extents C(g) and D(g) represent transects traveled by a mobile 
observation station such as a cruise ship, AUV or glider.  Polygonal Extents J(g) and 
K(g) represent the bounding box of a longer, complex cruise track.  Point Extent A(g) 
falls within the radius of the query and so is a complete match to the geographic query 
term. The qualitative comparison remains consistent across geometry types, with 
marker B(g) and line C(g) both being considered “very close” and polygon K(g) and 
marker F(g) being “too far” from the query to be interesting.  

Intuitively, these qualitative comparisons can be scaled using a multiple of the 
search radius.  For example, if the scientist searches for “within ½ km of P”, then 
perhaps a point 5 km away from P is “too far”.  However, if the scientist searches for 

 



“within 5 km of P”, then 5 km away from P is a match but 50 km is too far.  In fact, 
the scientist is applying an implicit scaling model that is specific to his task [24]. 

The same intuitive scaling can be applied across both the temporal and spatial 
query terms; temporal observations at F(t) and spatial observations at marker B(g) 
could be considered equidistant from their search centers.  Further, when considering 
both the temporal and spatial distances simultaneously, the dataset F, with temporal 
observations F(t) (quite close) at location F(g) (too far), is further from the query than 
datasets A (“here” in both time and space), B and C (“quite close” in both time and 
space).  These examples illustrate the situation of one dataset dominating another: 
being closer in both time and space. The more interesting case arises in ranking two 
datasets where neither dominates the other, such as D and F: F is temporally closer, 
but D is closer in space. To simplify such comparisons, we propose a numeric 
distance representation that uses the query radii as the weighting method between the 
temporal and geospatial query terms.  For example, had the spatial portion of the 
query been “within 5 km of P”, D(g) and F(g) would both be considered “here” 
spatially, but D would now be dominated by F since it is temporally dominated by F.  
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Fig. 1. Example of qualitative geospatial and temporal ranking: the top section shows a 
temporal query T and the time spans of various observation datasets.  Dataset A(t) is a complete 
match, while datasets B(t), C(t), D(t), E(t) and F(t) are at increasing times from the query.  The 
bottom section shows a geospatial query G, with the geospatial locations and extents of the 
same observation datasets represented by points (shown by markers), polygons and lines at 
various distances.  In the middle is a qualitative scale that applies to both time and space. 

In essence, the observations within a dataset represent a distribution of both 
temporal and geospatial distances from the query center, with a single point in time or 
space being the most constrained distribution. Each query term itself represents a 
distribution of times and locations.  In order to rank the datasets, we need a single 
distance measure to characterize the similarity between the dataset and the query 
terms. There are many options for representing the proximity of two such entities, 
with varying computational complexities [23].  A commonly used surrogate for 
distance between two geographic entities is centroid-to-centroid distance. While it is a 
poor approximation when the entities are large and close together, it is relatively 
simple to calculate, at least for simple geometries.  However, this measure ignores the 
radii of the query terms, and does not directly identify overlaps between the 
geometries. Another well-studied distance measure is minimum (and maximum) 

 



distance between two entities.  This distance can be estimated by knowing only the 
bounds of the entities.  This latter measure more closely matches our criteria; it can be 
calculated quickly using information (the bounds) that can be statically extracted from 
a dataset.  This measure can be used to identify key characteristics that will drive our 
ranking: whether a dataset is within our query bounds and so is a complete match; 
whether the query and dataset overlap or whether they are disjoint, and if so by how 
much.  This discussion applies equally to the one-dimensional “space” of time.  In 
combining the space and time metrics, we will need to “scale” them by the radii of the 
respective query terms. 

To compute these comparisons across a potentially large number of datasets, we 
have formulated a numerical similarity value that takes into account query-term radius 
and dataset distribution and can be cheaply estimated with summary information 
about temporal or spatial distributions, such as the bounds.  

For the temporal term, let QTmin and QTmax represent the lower and upper bounds of 
the query time range.  Further let dTmin and dTmax represent the minimum and 
maximum times of observations in dataset d.   For calculation purposes, all times are 
translated into a monotonically increasing real number, for example “Unix time”.  
Equation 1 below calculates dRmin, the distance of dataset d’s minimum time from the 
temporal query “center”, i.e., the mean of QTmin and QTmax, then scales the result by the 
size of the query “radius”, i.e., half its range.  Similarly Equation 2 calculates dRmax, 
the “scaled time-range distance” of the dataset’s maximum time.  Equation 3 
calculates an overall temporal distance dTdist for the dataset from the query: the first 
subcase accounts for a dataset completely within the query range, the second through 
fourth account for a dataset overlapping the query range above, below, and on both 
sides, and the last subcase accounts for a dataset completely outside of the query 
range.   

Then, we let s represent a scaling function that converts the calculated distance 
from the query center into a relevance score, while allowing a weighting factor to be 
applied to the distance result; per Montello [24], the implicit scaling factor may 
change for different users or different tasks.  Finally, Equation 4 calculates our overall 
time score dTs for this dataset by applying the scaling function to dTdist.  In our current 
implementation, s is (100 – f * dTdist); that is, when the dataset is a complete match it 
is given a score of 100, whereas if it is f “radii” (currently f = 10) from the query 
center it is considered “too far” and given a score of 0 or less. 

  Similarly, let C represent the center location of the geospatial query and r the 
radius.  Let the locations of all the observations within a single dataset d be 
represented by a single geometry g.  By convention this geometry can be a point, line 
(or polyline) or polygon [12].  Let dGmin and dGmax represent the minimum and 
maximum distances of the geometry from C, using some distance measure such as 
Euclidean distance.  Equation 5 calculates the overall distance measure for three 
subcases: the dataset is completely within the query radius; the dataset overlaps the 
query circle, or the dataset is completely outside the query circle.  Equation 6 gives a 
geospatial-relevance score dGs for dataset d by again applying the scaling function s to 
the calculated overall distance measure. 

In Equation 7, the geospatial score dGs and the temporal score dTs are composed to 
give an overall score dscore.  Combining these two distance measures results in a multi-
component ranking, which are the norm in web search systems today [7, 17, 18, 20].  

 



We take a simple average of the two distance scores.  Note, however, that each of 
these rankings has been scaled by the radii of the query terms; thus, the user describes 
the relative importance of time and distance by adjusting the query terms.   
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Given a collection of candidate datasets, each dataset’s dscore can be calculated.  

Optionally, datasets with dscore ≤ 0 can be discarded.  Remaining datasets are sorted in 
decreasing order of dscore into a ranked list and become the results of the query.  

 



We performed a 40-person user study, asking respondents to rank pairs of datasets 
in response to spatial, temporal, and spatial-temporal queries.  The questions included 
comparisons with different geometries (e.g., polyline to point or polygon).  Except for 
a small number of outlier cases, across all categories, when agreement amongst 
respondents is greater than 50% our distance measure agrees with the majority 
opinion.  When there is a large disagreement with our distance measure, there is 
generally large disagreement amongst the respondents.  Not surprisingly, these cases 
are correlated with small differences in distance between the two options.   

3 Metadata Representing A Dataset Collection 

The scoring and ranking approach described here assumes availability of suitable 
metadata against which to apply these equations.  This section describes creating this 
metadata from datasets with geospatial and temporal contents, using the collection of 
observation datasets at our oceanography center as examples.  We focus here only on 
inherent metadata [15], that is, information derived from the datasets themselves. 

The base metadata requirements of our ranking and scoring approach are simple: 
the temporal bounds of each dataset, represented as a minimum and maximum time; 
the spatial footprint of each dataset, represented by a basic geometry type such as a 
point, line or polygon; and a dataset identifier.  The temporal bounds can easily be 
extracted by scanning the dataset. Similarly, every dataset’s observations fall within a 
geographic footprint.  For a single point location such as a fixed sensor, the dataset’s 
metadata record is created by combining the time range information with the fixed 
geographic location of the sensor. 

Mobile sensors store a series of observations along with the geographic location 
and time for each observation.  The overall dataset can be represented by the time 
range and the maximum geospatial bounds of the points within the dataset, that is, a 
rectangle (polygon) within which all points occur.  The geospatial bounds can be 
extracted during the scan of the dataset, identifying the lowest and highest x and y 
coordinates found.  For mobile sensors that follow a path or a series of transects 
during which the observations are collected (as in our case), a more informative 
alternative is available; the series of points can be translated into a polyline with each 
pair of successive points representing a line segment.  If appropriate, the polyline can 
be approximated by a smaller number of line segments.  The simplified polyline can 
be compactly stored as a single geometry and quickly assessed during ranking.  

To provide for additional expressiveness across the range of possible dataset sizes 
and scales, we incorporate the idea of hierarchical, nested metadata.  Across our 
collection of observations, we have locations where a single water sample was 
collected, locations with millions of sensor observations made over many years, and 
multi-week ocean cruises where millions of observations were collected across 
several weeks with tracks that crossed hundreds of miles.  The hierarchical metadata 
allows us to capture a simple bounding box for a complex cruise, but also drill down 
to the individual cruise segments to identify the subset closest to the query terms. 

 



Metadata records are classified 
recursively into parents and children.  A 
record with no parent is a root record.  A 
parent record’s bounds (both temporal 
and geospatial) must include the union of 
the bounds of its children. The children’s 
regions might not cover all of the parent, 
for example, if there are gaps in a time 
series.  A record with no children is a leaf 
record.  A metadata collection is made up 
a set of root records and their children 
(recursively). The number of levels 
within the hierarchy is not limited. For 
instance, we might decompose a cruise 
temporally by weeks and days within 
weeks, then segment each spatially. 

Fig. 2. Scoring example for intermittent data: the 
right-hand blocks represent downloadable data-
sets; the left-hand blocks represent the metadata 
hierarchy and curation choices (one record per 
year, plus one for the lifetime).  Ovals show the 
scores given each dataset relative to the query. 

The scoring method is applied 
recursively to the collection of metadata 
records.  We initially retrieve and score 
root metadata records only.  If an entry is 
deemed interesting, it is added to a list of 
records whose children will be retrieved 
on the next pass.  An entry is deemed 
interesting if the minimum geographic 
and time range distance is not “too far”, 
and the minimum and maximum scaled 
time or geographic range distances are 
different from each other.  The second 
criterion implies that if subdivisions of 
this dataset are available, some of these 
subdivisions may be more highly 
relevant than the parent dataset as a 
whole.   We repeat until either the list of 
records to retrieve is empty or no 
interesting records have children. 

Figure 2 demonstrates these concepts.  
It shows a fixed sensor station that 
reports data only during some months.  
Each light-gray block in the diagram 
represents a metadata record, showing 
time duration.  In this case, three levels 
of metadata exist: an overall lifetime 
record, a medium level for the portion in 
each year that the station reports data, 
and a detailed level consisting of a 
record for each month. Next to each 
metadata record is shown its score for 

 



the given query.  It can be seen that there are two individual months that score 100; 
datasets on either side score in the 90s.  The year in which those months occur scores 
88, whereas years that do not overlap the query range receive negative relevance 
scores.  The overall lifetime record, which overlaps the query at both ends, receives a 
score of 22.  Parent and child records are returned in the query result, allowing the 
scientist to choose between accessing only the months of interest or the entire year.  

4 Architecture 

As shown in Figure 3, our architecture extends existing observatory repositories.  In 
general, observatories contain several major components: a network of sensors; a set 
of processes that collect observations and normalize them (adjust record formats, 
apply calibrations, etc.); a repository to store the normalized observations; and a set of 
analysis programs that access the stored observations.  There may also be a web 
interface that allows the user to view the catalog and download specific subsets of the 
data. To these existing system components, we add four loosely coupled components: 
a metadata-creation component, a metadata repository, a scoring-and-ranking 
component and a user interface. 

 

Google Maps A
PI

Fig. 3. The combined system and deployment diagram shows existing components and the new 
components added as part of Data Near Here. 

 
The metadata-creation component extracts a minimal set of metadata from the 

contents of the observation repository to represent the source observations, and stores 
the extract into its own mini-repository.  The goal is to support fast query access by 
creating a simple abstraction over a far more complex data repository.  The IT staff 

 



can add new categories of observations (e.g., new types of mobile devices), change 
the number or grouping of hierarchical levels used to represent data, or change the 
representation of a category of observations (e.g., treating cruises solely as lines rather 
than as lines and bounding boxes at different levels of the hierarchy); this activity is a 
data curation process [13].  At present, these changes involve writing or modifying 
scripts; an informal set of patterns is emerging and could be formalized if desired. 

The scoring-and-ranking component receives query terms from the user interface 
and interacts with the metadata.  It scores each candidate metadata record, and returns 
to the user interface a set of ranked records.  The scoring and ranking algorithm is 
loosely coupled with the metadata and is independent of the user interface, allowing 
different algorithms to be easily tested without modifying the other components. 

The user interface is responsible for collecting the geospatial and temporal query 
terms from the user and presenting the search results; it also provides the user with 
some control over the presentation (e.g., the number of search results to return).  The 
user interface exploits Google Maps [3] for geospatial representation of the query and 
results.  The sole direct interaction between the user interface and the metadata is 
when the user interface requests metadata information to populate the query 
interface’s selections (for example, the ‘Category’ entry field in Figure 5).  The search 
results link to the datasets within the repository and optionally to analysis programs. 

The loosely coupled nature of the components allows maximum flexibility in 
altering the internal design or methods used by any component without altering the 
remaining components; the additive nature of the architecture minimizes changes to 
the existing infrastructure necessary to add this capability. 

5 “Data Near Here”: An Implementation 

The approaches described in this paper have been implemented in an internal 
prototype at the Center for Coastal Margin Observation and Prediction (CMOP).   
This center’s rich inventory of over 250 million observations is available for public 
download or direct analysis; additional data can be accessed internally via a variety of 
tools.  The observations and associated metadata are stored in a relational database: 
most datasets are also stored in NetCDF-formatted downloadable files.   

The observational sensors can be loosely grouped by their deployment on fixed or 
mobile platforms. Mobile sensors are deployed in a series of missions, each of which 
may span hours or days or weeks.  Observations may be captured many times a 
second, either continuously or according to some schedule; there may be a half 
million or more observations per mission.  Hierarchically nested metadata is created 
at multiple scales; for the Astoria Bridge query, a fixed station that is far distant can 
be recognized and ignored by looking at a single lifetime entry for the station. 

A fixed sensor has a single geographic location over time; its dataset can be 
geospatially characterized as a single point.  Its continuous observations are, for 
convenience, stored in multiple datasets, each containing a single time range such as a 
month or (for sparser observations) a year.  In addition to dataset leaf records, for 
each year’s worth of observations we create a parent record that summarizes that 
year’s data, plus a lifetime record for the overall time duration of the station. 
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Fig. 4.  Space metadata records for mobile stations (here, a multi-week cruise) are created by 
creating a line from point observations and simplifying it (middle hierarchy level, on line 2 of 
the table), then splitting the line into detailed line segments for the leaf records and extracting a 
bounding box for the parent record. 

 
Fig. 5. Map display of Data Near Here search results for the example query in this paper.  The 
map shows a section of the Columbia River near its mouth that includes Highway 101 crossing 
the Astoria Bridge between Oregon and Washington. The search center and radius are shown 
along with a set of markers and lines locating the highest-ranked datasets found for the search.  
The list below the map shows the four highest-ranked results, the first of which is a complete 
match; the next three are close either in time or space, but are not complete matches.  

As is shown in Figure 4, the track for a mobile-sensor mission can be a represented 
by a polyline.  In order to extract the polyline from the observations, we use the 
PostGIS makeline function to convert each day’s worth of observations into a 
polyline, then apply the PostGIS implementation of the Douglas-Peucker algorithm, 
simplify, to create a simplified polyline.  The simplified polyline, along with the day’s 
start and end time, is stored as a metadata record.  We create an additional metadata 
record for the lifetime of the mission; this record is simply the bounding box of the 
polylines with the begin and end times of the overall mission. We then 
programmatically extract each line segment from the simplified polyline, match the 

 



vertices to the time the mission was at that location, and store each line segment with 
its time range as a leaf metadata record.  This three-level hierarchy for mobile sensors 
can be created quickly, and provides multiple scales of metadata.  

At the end of these processes, we have a consistent metadata format for both fixed 
and mobile sensor observations.  We also have the option of storing multiple sets of 
metadata representing the same (or similar) underlying data, if, for example, 
alternative groupings of the data are more appropriate for specific user groups (for 
example, partitioned by day or by tide).  A varying number of levels can be used for a 
subset of the collection or even a subset of sensors within a specific category; we may 
wish to, for example, add a daily metadata record for specific fixed sensors.  In other 
cases, such as water-sample data, we chose to only have one level in the hierarchy. 

Keeping the metadata up-to-date involves adding new metadata records as new 
missions occur or new datasets are created.  For each category of data, this update can 
occur automatically via a set of scripts and triggers that check for new datasets and 
execute the predefined steps.  The moment a new metadata record is created, it is 
available to be searched.  Setting up a new category of data requires deciding the 
number of hierarchical levels to be defined and the download granularities to support, 
and then setting up the appropriate scripts.  

Figure 5 shows the tool’s user interface.  The user interface combines three 
interacting elements: a set of text query entry fields, a Google map that can be used to 
locate the geospatial query and on which the geospatial locations of highly ranked 
results are drawn, and the query results: a table of highly scoring datasets ordered by 
score. All available categories of observational data can be searched, or the scientist 
can limit the search to a subset. Scientists can provide both time and location 
parameters; they can also search for all times in which observations were taken at a 
specific location by leaving the time fields blank, and vice versa.  The top-ranked 
results will be displayed on the map – the scientist can select how many results to 
return and to display.  Clicking on a displayed dataset pops up a summary. 

A “data location” field provides access to the data.   Where the data can be directly 
downloaded, this field contains a download link.  This link is built when the metadata 
is created and can contain parameters that subset the complete dataset to the relevant 
portion if the download mechanism allows.  In cases where direct download is not 
currently possible, this field provides the scientist with the dataset location and an 
extract command for the dataset’s access tool; for example, where the data is held 
only in a relational database, this field can contain a SQL Select statement to extract 
the relevant data.  A future version will allow scientists to directly open a selected 
dataset in a visualization and analysis tool. 

The technologies used to implement the shown architecture were selected based on 
existing technologies in use in the infrastructure, to allow for easy integration, 
extension and support.  Metadata creation is performed in a combination of SQL and 
scripts. The repository is a PostGIS/Postgres database and is accessed via dynamic 
SQL; the footprint data is stored in a PostGIS geometry column.  The scoring and 
ranking component is written in PHP.  Geometric functions are performed by PostGIS 
during data retrieval from the repository, with final scoring and ranking performed in 
the PHP module.  The user interface is implemented using Javascript, JQuery and the 
Google Maps API. Current experience leads us to believe these technologies will 
scale to support the observatory’s repository for some time.  For a much larger 

 



repository, other technology choices would provide greater speed.  The architecture 
allows us to easily make these choices per component as needed.  

6 Discussion 

Here we discuss the tradeoff between user performance and the design of the 
metadata hierarchy.  The response time seen by the user is driven by several main 
factors: data transfer times between the components (scoring component to user 
interface, metadata repository to scoring component); the number of hierarchical 
levels of metadata; the total number of metadata records to be scored; and the 
complexity of the scoring algorithm.   

The intent of the metadata hierarchy is to bridge the gap between the dataset 
granularity and the footprint of the dataset’s content, within the context of efficient 
real-time user search.  The more hierarchical levels, the more queries must be issued 
to process the children of interesting metadata records; however, the hierarchical 
design should allow fewer metadata records to be scored overall. An alternative is to 
score all metadata records in a single query; however, as many of the roots will have 
an increasing number of descendents over time (e.g., stations that continue to collect 
data month after month), we expect that ruling out descendents by examining only the 
parent record will balance the overhead of multiple queries and allow for greater 
scalability. We expect the user, after a successful search, to download or analyze 
selected datasets from the results presented.  Thus, there is an assumed alignment 
between a single metadata record and a single accessible or downloadable unit (such 
as a single dataset).  However, in many cases the capability exists to group multiple 
datasets into a single accessible unit (e.g., by appending them), or alternatively to 
access subsets of a dataset (e.g., by encoding parameters to limit the sections of the 
dataset to access).  The data curation process should consider the typical footprint and 
the likely utility to the scientist of different aggregations of that data.  

From a query-performance perspective, the number of leaf metadata records is 
optimal when each dataset is described by a single metadata record and thus there is 
only one record per dataset to score and rank.  Where a single dataset is geospatially 
and temporally relatively homogenous, this arrangement may be a practical choice.  
Where a dataset is geospatially or temporally very diverse or is too large to 
conveniently download, users are best served if a leaf metadata record exists for each 
subcomponent or segment they may wish to download.  The hierarchy provides a 
mechanism for mediating this mismatch; a single metadata record can be created for a 
larger dataset with children for the subcomponents.  The scoring component may be 
able to eliminate the dataset and its children from further consideration based on the 
parent, and only score the children when the parent appears interesting.  

To provide a tangible example of this tradeoff, Table 1 shows summary counts for 
our currently existing metadata records, representing a subset of CMOP’s repository.  
The breakdown by category in Table 2 highlights the different curation choices made 
for different observation categories.  At one extreme, the 22 fixed stations have an 
average of 8.2 million observations each, and here a three-level hierarchy has been 
created.  At the other extreme is the water-sample collection, with two observations 

 



taken per location and time.  The same “cast” data is represented in two forms: one is 
the unprocessed, or “raw”, collection of observations; the same data has also been 
binned to specific depths and averaged into a much smaller collection of 
measurements.  Variation in geometric representation is also shown; in cruises, for 
example, the most detailed level is most commonly represented by line segments 
representing specific cruise transects, but is sometimes represented by points when 
the cruise vessel was anchored in a single location for a longer period of time.  These 
different representations are easily discerned programmatically from the data but are 
difficult for a user to identify from the source data without significant effort. 

Table 1.  Characterization of Data Near Here Metadata.  This table summarizes characteristics 
of the metadata records representing the 225 million observations currently searchable. 

Metadata records 15,516 
Number of observation categories 7 
Records at each hierarchy level  
 Roots without children 6,564 
 Roots with children 60 
 Children with children 800 
 Children with no children 8,092 
Observations represented 225,627,211 

Average observations per metadata 
record 14,541 

 Table 2.  Characterization of Existing Metadata Records by Category. 

Category Hierarchy 
Level Geometry 

Number 
of 

Records 

Number 
with 

Children 

Total 
Observations 
Represented 

Average 
Observations 

per Record 

1 Polygon, 
Line 22 11 225,757 10,261 AUV 

2 Line 29 0 134,841 4,649 
Cast-
Binned 1 Point 3,066 0 370,967 120 

Cast-Raw 1 Point 2,908 0 33,908,614 11,660 
1 Polygon 20 20 8,064,259 403,212 
2 Line 607 607 8,064,259 13,285 Cruise 

3 Line, Point 7,125 0 7,615,222 1,068 
1 Polygon 7 7 2,237,628 319,661 
2 Line 128 128 2,237,628 17,481 Glider 
3 Line 357 0 1,670,470 4,679 
1 Point 22 22 180,818,279 8,219,012 
2 Point 65 65 171,903,806 2,644,673 Fixed 

Stations 
3 Point 581 0 180,818,239 311,219 

Water 
Samples 1 Point 579 0 1,707 2 

 

 



The spatial scoring equations were designed to provide a reasonable approximation 
of distance for the three primary cases – polygon, polyline and point – while 
minimizing the number and complexity of spatial calculations needed; the current 
approach uses a total of two spatial calculations (maximum distance and minimum 
distance between two geometries) for each metadata record scored.  Spatial functions 
can be slow, so minimizing the number and complexity of geometries handled is 
beneficial.  A more complex spatial scoring system can easily be devised; what is less 
clear is whether, given the uncertainties in people’s views of distance [24], the 
additional complexity provides a better distance score as perceived by the user.  What 
is clear is that the additional complexity will add to the computation time.   

7 Related Work 

Adapting a definition from Information Retrieval (IR) [20], a dataset is relevant if the 
scientist perceives that it contains data relevant to his or her information need.  In IR 
systems, the user provides query terms, usually a list of words, to be searched for 
against an index representing a library of items (where each item may be, for 
example, a web page).  Each item is summarized as index entries of the words found 
in the document, created prior to receiving the user’s query.  In almost all cases, the 
searches are performed against metadata, which itself varies in source and form. In 
ranked retrieval, each item is given a score representing an estimate of the item's 
relevance to the query.  The list of items is then ranked by ordering items from 
highest to lowest score.  There is much research (e.g., [4, 20, 21]) into ranked 
relevance of unstructured text documents against text queries.  We adapt these ideas 
to searching contents of scientific datasets with a query consisting of geospatial-
temporal search terms which are themselves ranges.  The metadata we extract from 
the datasets performs the role of the index.          

Hill et al. [15] present a system for describing and searching a library's digital 
collection of geographic items. They apply widely accepted collection concepts from 
paper-based archives that are based on a textual description of a map series 
(publisher, title, number in series, etc.) to digital map collections.  A single collection 
may contain a set of maps where each map has a different geographic coverage; 
however, the specific map's geographic coverage is an access or index key to that 
map.  The challenge is how to represent these collections by searchable metadata. 
They differentiate contextual metadata, which is externally provided (e.g., publisher), 
from inherent metadata, derived from automated analysis of the data (e.g., count of 
items included in a collection). This automatic data analysis adds to the metadata but 
does not allow the content itself to be searched.  They do not provide hierarchical 
metadata, nor do they discuss methods for ranked search results. 

Grossner et al. [11] provide a summary of progress in the last decade in developing 
a “Digital Earth”, and identify gaps in efforts so far.  They note that current 
geographic and temporal search responses provide matches only on one level of 
metadata; the contents of cataloged digital objects are not exposed and are not 
searchable.  Goodchild [8] notes that most geographic search systems score items 
based on word matches against metadata without considering the temporal span or 

 



geographic content of the items returned, and recognizes [9] the issue of containment 
as an open research question.  That is, a map may be cataloged by the extent of its 
coverage (e.g., “Alaska”) but the search mechanism has no method with which to 
recognize that this map is a match for an item contained within it, (e.g., a search for 
“Fairbanks”).  Goodchild et al. [10] expand on these concerns in the 2007 review of 
Geospatial One-Stop (GOS) [1], a state-of-the-art government portal to geographic 
information.  GOS and similar portals such as the Global Change Master Directory’s 
Map/Date Search [2] now allow searches using both geographic and temporal criteria; 
three spatial tests are supported (the map view intersects, mostly contains, or 
completely contains the dataset), and temporal search appears binary – if items do not 
match the criteria they are not returned.  Only one level of metadata is considered; if a 
relevant item is embedded within a larger item (Fairbanks within Alaska), the relevant 
item is not returned. In contrast, we explicitly rank returned items based on both the 
temporal and geographic “distance” of the dataset contents from the query, and 
address the containment issue with multiple levels of metadata.   

One widely-used geospatial search system is Google Maps [22], which searches for 
a place name or a specified latitude and longitude, and provides nearby points of 
interest (“restaurants near here”).  They do not currently expose a temporal search 
capability.  It is possible for a site to explicitly link a dataset to a specific location 
using KML, but it is not currently possible to search ranges within linked datasets. 
Egenhofer [6] describes some desired geographic request semantics but does not 
propose an implementation.    

Addressing a different kind of geographic search problem, Sharifzadeh and 
Shahabi [26] compare a set of data points with a set of query points where both sets 
potentially contain geographic attributes, and identify a set of points that are not 
dominated by any other points. They do not specifically address time, but could 
presumably treat it as another attribute.  Their approach develops the database query 
and algorithm to return the best points, but, unlike our approach, they do not return 
ranked results nor place the queries within the context of a larger application.  

Several researchers [16, 25, 27] have addressed the difficulty scientists have in 
finding “interesting” data — data relevant to the scientist’s research question — 
within the exploding quantity of data now being recorded by sensors by focusing on 
visualization techniques for a specified set of data.  The scientist specifies the dataset 
and range of data within the dataset.  The system then presents a visualization of the 
specified numeric data. The question of how the scientist finds interesting datasets 
and ranges to visualize is not addressed; that question is the subject of this research.  

8 Conclusion 

The rapid expansion of deployed observational sensors has led to collection of more 
observational data than ever before available.  The sheer volume of data is creating 
new problems for scientists trying to identify subsets of data relevant to their research.  
Techniques to help scientists navigate this sudden plethora of data are a fruitful area 
for research.  This work is one such contribution, focusing on the problem of finding 
sets of observations “near” an existing location in both time and geospace. 

 



This paper presents a novel approach to providing compound geospatial-temporal 
queries across a collection of datasets containing geospatial and temporal data; search 
results consist of datasets ranked by relevance and presented in real time.  The 
approach combines hierarchical metadata extracted from the datasets with a method 
for comparing distances from a query across geospatial and temporal extents.  This 
approach complements existing visualization techniques by allowing scientists to 
quickly identify which subset of a large collection of datasets they should review or 
analyze.  The combination of data represented by its geospatial and temporal 
footprint, using the metadata for search, the metadata hierarchical design and overall 
loosely-coupled architecture allows for scalability and growth across large, complex 
data repositories. The prototype described already supports over quarter of a billion 
observations and more are being added.  User response has been very positive.   

We plan to extend this work in several directions, including characterizing the 
observed environmental variables and supporting more expressive queries.  The third 
geospatial dimension, depth, is currently being added.  Contextual metadata [15] – 
ownership, terms and conditions, etc. – will be added as the tool gains wider use.  The 
eventual goal is to combine geospatial-temporal search terms with terms such as 
“with oxygen below 3 mg/liter, where Myrionecta Rubra are present”.  

Finding relevant data is key to scientific discovery.  Helping scientists identify the 
“haystacks most likely to contain needles” out of the vast quantities of data being 
collected today is a key component of reducing their time to discovery. 
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