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Abstract

We investigate in detail what one might call the canonical (automated) traffic problem: A long string of N + 1
cars (numbered from 0 to N) moves along a one-lane road “in formation” at a constant velocity and with a unit
distance between successive cars. Each car monitors the relative velocity and position of only its neighboring cars.
This information is then fed back to its own engine which decelerates (brakes) or accelerates according to the
information it receives. The question is: What happens when due to an external influence — a traffic light turning
green — the ‘zero’th’ car (the “leader”) accelerates?

As a first approximation, we analyze linear(ized) equations and show that in this scenario the traffic flow has
a tendency to be stop-and-go. We give approximate solutions for the global traffic as function of all the relevant
parameters (the feed back parameters as well as cruise velocity and so on). We discuss general design principles for
these algorithms, that is: how does the choice of parameters influence the performance.

1 Introduction

The movement of collections of agents (or ‘flocks’) with a single leader (and a directed path from it to every
agent) can be stabilized over time as has been shown before (for details see [6] and prior references therein, shorter
descriptions are given in [3, 9]). But for large flocks, even when this is the case, perturbations in the movement of the
leader nonetheless may grow to a considerable size as they propagate throughout the flock and before they die out
over time. This is due (in the setting of this study) to a curious resonance phenomenon which we discussed in [8] and
is related to the existence of an intrinsic response latency (or finite response time) over finite distances. We dubbed
this phenomenon the “finite size resonance” because it is caused by near cancelation of various terms of a denominator
and it occurs precisely when the number of agents is large but finite.

In this paper we apply these ideas to study in detail what one might call the canonical (automated) traffic
problem: A long string of N + 1 agents (numbered from 0 to N) moves along a one-lane road “in formation” (or
coherently, see [6]) at a constant velocity and with a prescribed distance between successive cars. Each car monitors
the relative velocity and position of its immediate neighbors (in front and behind it). This information is fed back to
its own engine which decelerates (brakes) or accelerates according to the information it receives (see Equation (2.1)).
The question is: What happens when due to an external influence — a traffic light turning green or red for example
— the ‘zero’th’ car (the “leader”) accelerates or decelerates? Traffic flow problems such as these have been studied
intensively using different methods. For example at a macroscopic level, one can express the conservation of number of
vehicles in terms of the vehicle density, leading to a Partial Differential Equation exhibiting shock waves (see [5]). In
this paper we are interested in a description at the so-called microscopic level where each car is modeled individually.
At this level cellular automata are sometimes used to study traffic (see [10]). However in this work the motion of each
car is modeled by a linear (second order) Ordinary Differential Equation coupled to the motion of certain nearby cars.

∗e-mail: veerman@pdx.edu
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Most models considered in the literature emphasize the coupling exclusively to the car directly in front ([7], [2], [11])
and are generally called Follow-the-Leader models.

As an example of this consider the following instance of a Follow-the-Leader model (see [7]):

x′′k = C
x′k−1 − x′k
xk−1 − xk

. (1.1)

(C is a constant.) Linearize around a solution where all agents travel at the same velocity and where the distance
between successive cars equals 1:

xk(t) = −k + v0 · t + εξk (1.2)

The in formation motion (ie: ε = 0) is a solution. Furthermore the first order expansion in ε gives a system that
corresponds to the look forward system discussed in Section 3 of [8] but with f = 0. This system is not stable since the
eigenvalue 0 has large multiplicity. This is related to the fact that Equation 1.2 for ε = 1 and ξk arbitrary constants,
is an N dimensional family of solutions of Equation (1.1). If in a dense traffic situation we want to insure that the
spacing between cars is indeed asymptotically equal to 1, we may choose f < 0. We are then in the situation of
Corollary 1 of [8], where oscillations grow exponentially as they propagate from one car to the next. If on the other
hand one decides to look at a model similar to Equation (2.1) but with the relative weight of the car in the back equal
to ρ and of the car in front equal to 1−ρ then any perturbation is also amplified exponentially as it propagates except
when ρ = 1/2, the case dealt with here. These assertions are not straightforward and will be shown in forthcoming
work.

In this work we exhibit the asymptotic (as the number of agents increases) solution of the canonical traffic
problem mentioned earlier. If the system is stabilized and the leader executes a harmonic motion eiωt, then the
motion of the last car can be written as aN (ω) eiωt. We calculate the response function aN (Lemma 3.2). The
response function is then approximated by a pole expansion (Theorem 4.2). This allows us to express the motion of
the trailing car in terms of the eigenvalues of the system given in equation (2.1) (see Corollary 4.3) as well as in terms
of those of the Laplacian operator given in Section 2 that describes the interaction between cars (see Equation 4.3). In
the last Section we discuss qualitative properties of the solution, and the influence of the parameters on the solution.

We expect the phenomena studied here also to be relevant in the case of movements of large flocks in two or three
dimensions (birds, for example). In these cases we expect higher dimensional versions of the wave-like phenomena
described here to occur in flocks that are close to ‘in formation’ flight (see for example [12]).

Acknowledgements

We thank Arturo Olvera and the referee for several useful remarks. JJPV gratefully acknowledges grants through the
Dip. Ing. Inf. & Mat. App., Univ. di Salerno, Salerno, Italy, and the Ist. ‘Mauro Piccone’ per le Applicazioni del
Calcolo, Rome, Italy, that made an extended stay at these institutions possible, as well as the generous hospitality
offered by these institutions.

2 The Model

While any likely algorithm for designing automated traffic would almost certainly be nonlinear, nonetheless the lin-
earization of the equations around an in formation solution would be a subject of study.

Let us suppose that the flock (ie: the collection of agents) is traveling along the line and that the individual
agents have positions xi in the real line where i ∈ {0, · · ·N}. Agent i adjusts its acceleration according to a pre-
programmed algorithm considering (with equal weight) the positions and velocities of its ‘neighbors’: one agent in
front and one agent behind him. The zeroth agent (or ‘leader’), however, does not pay attention to the agent behind it
( and no-one is in front) and simply accelerates or decelerates according, for example, to the traffic lights it encounters.
The model is given by:

∀i ∈ {1, · · ·N − 1} : ẋi = ui
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u̇i = f

{
(xi − hi)− 1

2
(xi−1 − hi−1 + xi+1 − hi+1)

}
+ g

{
ui − 1

2
(ui−1 + ui+1)

}

ẋN = uN

u̇N = f
{

(xN − hN )− (xN−1 − hN−1)
}

+ g
{

uN − uN−1

}

and x0 = x0(t) given (2.1)

The parameters hi determine the desired relative distances between agents i and i − 1 as hi − hi−1. These feedback
parameters f and g are independent of i and time.

It is advantageous to write these equations in a more compact form. Following [6], Section 6, we introduce
x ≡ (x1, u1, x2, u2, · · · , xN , uN )T . Now let h ≡ (h1, 0, h2, 0 · · · , hN , 0)T . Use the Kronecker product (⊗) to write the
equations of motion (2.1)) with a single independent leader more succinctly as a first order system:

ẋ = IN ⊗Ax + P ⊗K(x− h) + L0 ⊗
(

K

(
x0(t)− h0

u0(t)

))
. (2.2)

Here IN is the N -dimensional identity. The N dimensional matrix P and the N vector L0 are obtained from the
Directed Laplacian L given by

L =




0 0 0 0 · · · · · ·
−1/2 1 −1/2 0 · · · · · ·

0 −1/2 1 −1/2 · · · · · ·
...
· · · · · · · · · 0 −1 1




.

P is obtained by removing the first row and column (corresponding to the leader) from L:

P =




1 −1/2 0 0 · · · · · ·
−1/2 1 −1/2 0 · · · · · ·

0 −1/2 1 −1/2 · · · · · ·
...
· · · · · · · · · 0 −1 1




.

The vector L0 consists of the last N entries of the first (the leader’s) column of L, and A and K are given by

A ≡
(

0 1
0 0

)
and K ≡

(
0 0
f g

)
.

Substituting z = x− h one obtains:

ż = (IN ⊗A + P ⊗K)z + Γ(t) := Mz + Γ(t) , (2.3)

where Γ(t) represents the forcing term in Equation (2.2). Since z = 0 corresponds to an in formation solution, the
(real part of the) eigenvalues of M determine whether this in formation motion is stable.

3 Preliminary Results

To insure that the in formation solution is stable, the eigenvalues of M must have negative real part. The
spectrum of the matrix P is given by (see for example the exercises on pages 216-218 of [13]):

⋃

`∈{0,···N−1}
{λ`} ≡

⋃

`∈{0,···N−1}

{
1− cos

(
2` + 1
2N

π

)}
. (3.1)
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According to [3, 6, 9] the eigenvalues of M are given by the solutions ν`± of

ν2 − λ`gν − λ`f = 0 =⇒ ν`± =
1
2

(
λ`g ±

√
(λ`g)2 + 4λ`f

)
, (3.2)

where λ` runs through the spectrum of P .

Lemma 3.1 i): The system is stabilized if and only if both f and g are strictly smaller than zero.
ii): Given K > 0 and f and g negative. Fix `0 is the largest integer less than KN1/2. For N large enough, the
eigenvalues with smallest (in modulus) real part are simple and given by:

` ≤ `0 and <ν`± = − (2` + 1)2π2|g|
16N2

+O(N−4) and =ν`± = ± (2` + 1)π
√
|f |

2
√

2N
+O(N−3) .

Proof: The first of these statements follows from λi > 0 and Equation (3.2).
For the second statement, note that if 2|f |

g2 ≥ 1, the argument of the root in Equation (3.2) is always negative.
The real part of ν`± equals 1

2λ`g and the imaginary part, ± 1
2

√
(λ`g)2 + 4λ`f .

If on the other hand 2|f |
g2 < 1, we proceed as follows. Note 0 < λ0 < · · ·λN−1 < 2. Define

`1 ≡ min
`∈{0,···N−1}

{
` | λ` >

4|f |
g2

}
.

By Equation (3.1), if N is large enough then

4|f |
g2

(
1−

√
1− 2|f |

g2

)
> λ`0 . (3.3)

Thus we have (if N is large enough):

` ≥ `1 : <ν`± ≤ 1
2
λ`g

(
1−

√
1− 4|f |

λ`g2

)
<

1
2
λ`1g

(
1−

√
1− 2|f |

g2

)
<

1
2
λ`0g

` < `0 : <ν`± =
1
2
λ`g >

1
2
λ`0g

Thus <ν{`±,`≥`1} < <ν{`±,`<`0} which implies the statement.

Suppose the leader sustains a harmonic motion eiωt and the asymptotic orbit of the k-th agent is ak(ω)eiωt. The
complex-valued function ak is called the frequency response (of the k-th agent).

Remark: We will from now on always assume that f and g are negative.

Lemma 3.2 The frequency response function of the k-th agent is given by

ak(f, g, ω) =
µN−k
− + µN−k

+

µN− + µN
+

where µ± ≡ γ ±
√

γ2 − 1 and γ =
f + iωg + ω2

f + iωg
.

Proof: The full details are in [8]. Assume the system of equations (2.3) is stabilized so that all eigenvalues of M have
negative real part. Let z0(t) be given by eiωt. Under these hypotheses the motion of the system is asymptotic (as
t →∞) to zk = ak · eiωt. This leads to a recursive equation on the ak,

ak−1 − 2γak + ak+1 = 0 .
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Let µ± be the roots of the associated characteristic polynomial P (x) = 1 − 2γx + x2. The boundary conditions are
given by:

a0 = 1 and − aN−1 + γaN = 0 .

The general solution is ak = c−µk
−+ c+µk

+. A convenient way to solve for c± is by setting d1 = c−µN
− and d2 = c+µN

+ .
The boundary conditions can be rewritten as

(
µ−N
− µ−N

+

γ − µ−1
− γ − µ−1

+

)(
d1

d2

)
=

(
1
0

)
.

Use the characteristic polynomial to show that

γ − µ−1
± =

µ± − µ−1
±

2
.

Since µ−1
± = µ∓, one obtains (after dividing the second row by a common factor):

(
µN

+ µN
−

1 −1

)(
d1

d2

)
=

(
1
0

)
.

Denote this last matrix by M ; the same matrix with the first row replaced by ones, by M∗. Then it is easy to see that

aN = d1 + d2 = det M∗/ detM ,

which gives the desired answer. The other ak are found from the general solution.

Near cancelation in the denominator of aN occurs when |µ±e±
iπ
2N | = O(N−2) causing aN to be large. This

indeed happens for certain ω close to zero, and this is called ‘near resonance’, or ‘resonance’ for short. We end the
section by quoting a last result from [8].

Theorem 3.3 For large flocks (near) resonance occurs at ω = ωN where

ωN =

√
|f |π

2
√

2N
+O(N−3) ,

and its peak size is given by

aN (ωN ) =
8
√

2|f |
π2|g| N +O(N−1) .

4 Main Results

The leader’s motion is given by:

z̈0(t) = a0

(
H(t)−H(

v0

a0
− t)

)
, ż0(0) = 0 , x0(0) = 0 ,

where H is the Heaviside function.
The fact that the Fourier transform of z0 diverges is a problem. To circumvent this, consider the second derivative

of the equations of motion (2.1). Set yi ≡ ẍi = z̈i. We have:

∀i ∈ {1, · · ·N − 1} : ÿi = f
{
yi − 1

2 (yi−1 + yi+1)
}

+ g
{
ẏi − 1

2 (ẏi−1 + ẏi+1)
}

ÿN = f {yN − yN−1}+ g {ẏN − ẏN−1}
and y0 = a0

(
H(t)−H( v0

a0
− t)

) (4.1)

5



The Fourier Transform q of z̈0(t) is:

q(ω) ≡ a0

∫ v0/a0

0

e−iωt dt where ẍ0(t) =
1
2π

∫
q(ω)eiωt dω .

The strategy is to solve this system and then integrate twice and add the appropiate Galilean motion. (In IR a
Galilean motion is a motion of the form x(t) = v0t + x0 where x0 and v0 are constants.)

Proposition 4.1 Let ak be as given in Lemma 3.2. Then

yk =
1
2π

∫

IR
ak(ω)q(ω)eiωt dω .

solves Equation (4.1) including boundary conditions.

Proof: The ak satisfy
ak−1 − 2γak + ak+1 = 0 ,

a0 = 1 and − aN−1 + γaN = 0 .

Using differentiation under the integral sign and linearity of the integral, one sees that this implies that the y =
(y1(t), ẏ1(t), y2(t), · · · , ẏN (t))T solves Equation (4.1) including boundary conditions.
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Figure 4.1: A close-up of the real and imaginary parts of aN (ω) for f = g = −1.

The graph of the function aN (ω) has a number of large O(N) peaks (see Figure 4.1). However, given some small
ε > 0, then for N large enough its modulus is greater than ε only when |ω| < LN−1/2 for some L (see Appendix). It
can be approximated using a pole expansion involving O(N−1/2) terms (see Figure 4.2).

Theorem 4.2 Let ν± as in `0 as in Lemma 3.1. Then for N large enough, the first `0 terms of the pole expansion of
aN (ω) are given by:

aN (ω) =

√
|f |

N
√

2

`0∑

`=0

(−1)`

(
1

ω + iν`−
− 1

ω + iν`+

)
.
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Figure 4.2: The parameters in this picture are N = 100, f = g = −1. Yellow: |aN |, red:∣∣∣a100 −
∑0

`=0

(
Res`−

ω+iν`−
+ Res`+

ω+iν`+

)∣∣∣, green:
∣∣∣a100 −

∑4
`=0

(
Res`−

ω+iν`−
+ Res`+

ω+iν`+

)∣∣∣, blue:
∣∣∣a100 −

∑6
`=0

(
Res`−

ω+iν`−
+ Res`+

ω+iν`+

)∣∣∣.

Proof: We assume that N is large enough so that Lemma 3.1 holds.
First note that (see Lemma 3.2) aN (ω) = 2

µN
+ +µN

−
. Substitute the appropriate expression in γ for µ± and use

the binomial theorem to see that all odd powers of
√

γ2 − 1 cancel. Thus aN is a rational function of γ and therefore
also of ω. The same considerations show that the denominator of this rational function has lower degree than the
numerator.

The poles of aN are given exactly by −iν`± where ν`± are the eigenvalues of M — see Equations (2.3) and (3.2).
It is clear from these equations that the eigenvalues are simple. Thus

aN (ω) =
N∑

`=0

(
Res`−(aN (ω))

ω + iν`−
+

Res`+(aN (ω))
ω + iν`+

)
,

where Res`−aN (ω) are the residues of aN (ω). Approximate aN using `0 poles associated to the eigenvalues with the
smallest real part (see Lemma 3.1):

aN (ω) ≈
`0∑

`=0

(
Res`−aN (ω)

ω + iν`−
+

Res`+aN (ω)
ω + iν`+

)
,

To calculate the residues, note that aN (ω) is the composition of

aN (µ+) =
2µN

+

µ2N
+ + 1

(4.2)

with µ+ = µ+(ω). We will drop the subscript ‘+’ from µ+ for the remainder of this proof. aN (µ) has 2N poles at
µ`± ≡ ei 2`+1

2N π for ` in {0, · · · , N − 1}. Thus these poles are in 1-1 correspondence to another. From the expansion of
µ (see [8]): µ(ω) = 1 + i

√
2√
|f | ω and the order 1/N expansion of −iν`± (see Lemma 3.1), one sees that:

µ(−iν`±) = e±i 2`+1
2N π .

Note that at a pole −iν`±, the residue is given by

Res`±aN (µ) = lim
µ→µ`±

(µ− µ`±) aN (µ) = µ′(−iν`±) lim
ω→−iν`±

(ω + iν`±) aN (µ(ω)) = µ′(−iν`±) Res`±aN (ω) .
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On the other hand, the residues of Equation (4.2) can be calculated as the numerator divided by the derivative of the
denominator evaluated at the pole:

Res`±aN (µ) =
2µN

`±
2Nµ2N−1

`±
=

1
N

µ1−N
`± .

From the Taylor expansion of µ(ω):

µ′(−iν`±) = i

√
2√
|f | +O(ν`) = i

√
2√
|f |µ`± +O(ν`) .

Putting all this together gives:

Res`±aN (ω) =

√
|f |

N
√

2

µ−N
`±
i

= ∓(−1)`

√
|f |

N
√

2
which proves the result.

For the motion of the last car we now obtain the following corollary.

Corollary 4.3 Given a0 and v0 and taking into account only low frequency (high amplitude) contributions of aN (ω)
(see Appendix), then as N tends to infinity, the orbit of the trailing agent tends to:

xN (t) = c0 + v0t− iv0

`0∑

`=0

Res`−aN (ω)
(=ν`−)2

(
eν`−t − eν`+t

)
.

where xN (0) and v0 are integration constants determined by the motion of the leader.

Proof: From Proposition 4.1:

ẍN (t) =
1
2π

∫

IR
ak(ω)q(ω)eiωt dω .

Theorem 4.2 allows us to replace this with

ẍN (t) =
1
2π

`0∑

`=0

Res`−aN (ω)
∫

IR

(
1

ω + iν`−
− 1

ω + iν`+

)
q(ω)eiωt dω .

The function q is defined just prior to Proposition 4.1 and satisfies

q(ω) = v0(1 +O(ωv0/a0)) .

Since we take |ω| < LN−1/2 we can replace q by the constant v0. Now <ν`± < 0 implies

1
2π

∫

IR

eiωt

ω + iν`±
dω = iH(t)eν`±t .

substituting this into the expression for ẍN , one obtains:

ẍN (t) = iv0

`0∑

`=0

Res`−aN (ω)
(
eν`− t − eν`+ t

)
.

From Lemma 3.1 we recall that up to order N−1, ν−2
`± equals − (=ν`−)−2. Twice integrating the expression for ẍN

then yields the result (the two constants of integration give rise to the Galilean motion c0 + v0t).

Therefore we can express the motion almost completely in terms of the eigenvalues of the Laplacian L (where
H is the Heaviside function):

xN (t) =

(
c0 + v0t + 2v0

`0∑

`=0

Res`−aN (ω)
λ2

`g
2 + 4λ`f

e−
λ`g

2 sin
(√

(λ2
`g

2 + 4λ`f) t

))
H(t) . (4.3)
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5 Discussion of Results

We begin by expressing the motion given in Corollary 4.3 in terms of the parameters (dropping the Heaviside
H(t) from the notation).

xN (t) = − 8
√

2
π2|f |1/2

Nv0

`0∑

`=0

(−1)`e−
(2`+1)2π2|g|

16N2 t sin
(
(2` + 1)π|f |1/2

2
√

2 N
t
)

(2` + 1)2
+ Galilean. (5.1)

In continuation we discuss some particulars of this solution (see Figure 5.1).
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Figure 5.1: The `0 = 6 approximation in Equation (5.1) (with f = g = −1, N = 100, v0 = 0.1, and a0 = 10) coincides
almost perfectly with the numerics. We have plotted xN (t)− x0(t) in the case. The right figure is a magnification of
the left.

After the leader starts moving, there is a response time Tr (entirely due to inertia). More precisely: the response
time Tr =

√
2

|f |1/2 N is a quarter of the fundamental period 2π
ωN

. Car k will have a response time that equals k/N times
that of the last car. The wave velocity or signal velocity vsig is equal to N/Tr. In this situation, after t = Tr the last
car moves faster than the leader. It gets ahead of its desired position and then tends to stand still again(or move very
slowly). This ‘stop-and-go’ behavior continues until attenuation due to global stability sets in. The signal velocity is
in terms of the number of cars per unit time. In the case that distances between successive cars are all equal to, say,
∆, this is related to vs, speed of sound, by vs = ∆vsig.

This stop-and-go behavior can be seen from the above solution by neglecting the exponential decay. The motion
of the trailing car then becomes (recall that a Galilean motion is of the form x(t) = v0t + x0 where x0 and v0 are
constants.):

xN (t) ≈ Galilean +
4v0

πωN

∞∑

`=0

(−1)`+1 sin((2` + 1)ωN t)
(2` + 1)2

.

The periodic part of this motion is the sawtooth function (see Figure 5.2). The amplitude A can be determined as
follows: at t = π

2ωN
each term (−1)`+1 sin((2` + 1)ωN t is minimized and equal to -1. Using that

∞∑

`=0

−1
(2` + 1)2

=
−π2

8
,

one obtains that A =
√

2v0
|f |1/2 N . The velocity of xN (t) relative to the leader equals:

ẋN (t)− v0 ≈ 4v0

π

∞∑

`=0

(−1)`+1 cos((2` + 1)ωN t)
(2` + 1)

.

This expression has an extremum at t = 0 and so, since
∞∑

`=0

(−1)`+1

(2` + 1)
=
−4
π

,

9



one obtains ẋN (0) − v0 = −v0. Thus before attenuation kicks in, the last car will have a velocity that alternates
between the values 0 and 2v0, explaining the tendency for traffic to be stop-and-go, even though the leader happily
sails along at constant velocity v0, blissfully unaware — as (s)he receives no information — of the troubles others are
having. This limit is not altogether physically reasonable, as clearly accelerations tend to become very large in the
regions of the velocity changes.
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Figure 5.2: −∑6
`∈IN

(−1)` sin((2`+1)ωN t)
(2`+1)2 and its derivative.

Exactly the same phenomena will occur when the flock travels at constant velocity and the leader decides to
decelerate to a lower velocity from v0 to v0− v1. Assume again that the distance between successive cars equals ∆. It
is easy to see that our model will then give rise to a wave of increasing amplitude traveling backwards from the leader
with speed vs relative to the cars traveling at velocity v0. The velocity of cars will tend to oscillate between v0 − 2v1

and v0. (If v0 − 2v1 is negative, this prediction becomes unrealistic for actual traffic because cars will not acquire
negative velocities.) If the distance between cars (in formation) is ∆, the speed at which the perturbation propagates

equals v0 −∆
√
|f |√
2

.
If in the above scenario v1 = v0 — the leader stops — and one imposes that the cars will stop as soon as their

velocity has reached zero (and don’t go in reverse), we get an estimate for the safe distance cars need to be traveling
at, so that the leader can stop without causing collisions. Assume the cars were traveling in formation and thus that
the distance between leader and N-th car was given by (see Equation (2.1)) h0 − hN . Now suppose the leader starts
breaking at t = 0. Every-one has stopped at t = Tr and

x0(Tr)− xN (Tr) = h0 − hN −A = h0 − hN −
√

2v0√
|f | N . (5.2)

If this number is positive, collisions can be avoided.
We summarize the main dynamical characteristics of this model in the Table below and comment on the design

of an algorithm for the automated pilot. The symbols are explained in the text. Note that in Equation (2.1) we can
rescale time so that the parameters f and g are replaced by −1 and −|g|/|f |1/2.
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Quantity Symbol Value Expressed in Parameters Other Relations

Resonance Freq. ωN
π
√
|f |

2
√

2
N−1 ωN = =ν0

Freq. Resp. Fn. (for last car) aN — Peaks of Size ∝ N at ω ∝ 1
N

Exp. (in N) Small elsewhere

Peak Ampl of 1st Res aN (ωN ) 8
√

2|f |
π2|g| N See Theorem 3.3

Peak Ampl. Canon. Traffic Probl. A
√

2v0√
|f | N A = πv0

2ωN

Leading Lyapunov Expon. <ν0 −π2|g|
16 N−2 See Lemma 3.1

Response Time Tr

√
2√
|f | N Tr = A

v0
= π

2ωN

Signal Velocity vsig

√
|f |√
2

vsig = N
Tr

Speed of Sound vs (hk−1 − hk)
√
|f |√
2

vs = vsig·(inter-car dist.)

The design of the algorithm consists in choosing the parameters. Note that the most obvious way to implement
Equation (5.2) is to keep the desired distances hi−hi+1 (see Equation (2.1) between cars constant (∆) and to require
that this distance satisfies

∆ = hi − hi+1 >

√
2v0√
|f | .

In the ideal design one would also want A and aN (ωN ) to be small (see Table). The role of |f | here is rather
complicated and the choice of its value might depend on what kind of perturbations the systems is expected to suffer.
The role of g is less complicated: it appears twice in the table and in both cases giving it a large value decreases
oscillations.

By far the worst drawback of our linear design is the weak attenuation (for large N) of the oscillation due to
the (leading) Lyapunov exponent <ν0 which is ∝ |g|N−2 (see Figure 5.3). This is ultimately due to the nature of the
spectrum of P or L: the exponent equals the real part of the smallest eigenvalue of P .

6 Appendix

Lemma 6.1 For all ε > 0, there is L > 0 so that, for large enough N , if |ω| > LN−1/2, then |aN (ω)| < ε.

Proof: We need only check this for positive ω. For small ω we have (see [8]) that there is C > 0 such that

|µ+(ω)| = 1 + Cω2 +O(ω4) .

We first prove that |µ+(ω)| is increasing for positive ω. Since

∂ω µ+(ω) =
∂ωγ√
γ2 − 1

(
γ +

√
γ2 − 1

)
,

one obtains
∂ω ln µ+(ω) =

1
f2 + ω2g2

1√
2f + ω2 + 2iωg

(2f2 + ω2g2 − iωgf) .

The argument of the left hand side can be seen to be in (−π
2 , π

2 ). This implies that <∂ω ln µ+(ω) > 0, and thus |µ+(ω)|
is increasing. Now set ω > LN−1/2 and thus Lemma 3.2 implies that for an appropriate choice of L,

|aN (ω)| < 2
eCL − e−CL

< ε .
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Figure 5.3: Calculation of the decay rate of the oscillation. The value converges to the predicted one <ν0 = 6.2 · 10−5

(here f = g = −1).
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