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Wind tunnel measurements for a 3� 3 canonical wind turbine array boundary layer

are obtained using hot-wire anemometer velocity signals. Two downstream locations

are considered, referring to the near- and far-wake, and 21 vertical points are

acquired per profile. Velocity increments and exit distances are used to quantify

inverse structure functions at both downstream locations. Inverse structure functions

in the near-wake show a similar profile for the main vertical locations, but diverge as

the moment is increased. In the far-wake, inverse structure functions converge

toward a single function for all vertical location and moments. The scaling exponents

for inverse structure functions are calculated directly and relatively, using extended

self similarity. Scaling exponents show strong dependence on vertical position along

the wind turbine profile in the near-wake and remain relatively constant in the far-

wake. Intermittency in the near-wake is indicated by the nonlinear behavior of the

direct and relative scaling exponents when plotted against their respective moments.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966228]

I. INTRODUCTION

Renewable energy will play an increasingly important role as population continues to

grow, with the U.S. department of energy projecting that by 2030 the United States will be

able to generate 20% of its electricity from wind energy.1 For wind farm power production, the

wake of a wind turbine influences the incoming flow for wind turbines behind or adjacent to it.

The characterization of the flow in the wake of the wind turbine aids in power production of

wind farms.2 Lignarolo et al.3 studied the near and transitional wake of a model turbine using

particle image velocimetry (PIV) and investigated wake flow structures taken directly behind

the hub of the turbine. Zhang et al.4 conducted wind tunnel measurements of the wake of a

model wind turbine using PIV and hot-wire anemometry velocity measurements. The presence

of localized regions of strong vorticity, spatial distributions of turbulence and Reynolds shear

stresses as well as changes in velocity due to blade rotation were observed.

With wind farms increasing in size, wakes behind turbine arrays have been further charac-

terized as these interact with the atmospheric boundary layer. Wu and Port�e-Agel5 studied the

interaction between the atmospheric boundary layer and wind farms, comparing aligned and

staggered configurations using large-eddy simulation (LES) and verified their results via wind

tunnel experiments. Aligned wind farm configurations resulted in higher turbulence intensities

behind each turbine at top tip level and less wake interaction with adjacent rows compared to

those observed in staggered configurations. Stevens et al.6 used field measurements to validate

the coupled wake boundary layer (CWBL) model. The CWBL model is in agreement with field

measurements, and furthermore, turbulence intensity changes due to thermal effects on wind

farm performance. The first and second order moments were used.5,6

For further understanding of the turbulent flow in the wake of the wind turbine, observa-

tions of higher order moments and characteristics of the signal were carried out by Ali et al.,7
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using extended self similarity (ESS) to obtain scaling exponents of the different orders of the

structure functions. Exponents varied in the near-wake as a result of the rotor passage, while in

the far-wake, scaling exponents remained fairly constant. Ali et al.7 compared results to scaling

exponents documented in previous studies,8–11 and found a tendency of ESS to underpredict the

exponents.

Statistical properties of canonical wind turbine array boundary layer flow are highly com-

plex and the relationship between the scaling exponents and the statistical moments is nonlin-

ear. The complexity of structure function exponents led Jensen12 to present an alternative

approach of describing and analyzing a turbulent velocity field. He proposed inverting the ordi-

nary structure function equation and averaging the moments of the distances as a function of a

fixed velocity increment. In this framework, a multiscaling spectrum was algebraically formu-

lated with a generated shell model. Because inverse structure functions cover the inertial range

to the dissipative range, Biferale et al.13 investigated and found a lack of scaling in the inverse

structure functions for a dataset measured in a wind tunnel with a Taylor microscale-based

Reynolds number, Rek, of 2000. In Pearson and van de Water,14 scaling with respect to

Reynolds number was expected, but algebraic behavior was not. Biferale et al. observed scaling

with respect to Reynolds number of a signal filtered by combining successive multiplications of

Langevin dynamics to obtain a synthetic multi-affine field.13 With experimental data for turbu-

lent wind tunnel flows with Rek¼ 400–1100, Pearson and van de Water14 established scaling

exponents of (relative) inverse structure functions agreeing with the shell model performed by

Jensen.12 An exact relation between the ordinary and inverse scaling exponents was proposed

by Jensen and Roux:15 �h(�f(p))¼ p, where h is the inverse scaling exponent, f is the ordinary

scaling exponent, and p is the moment. The relationship holds for a turbulent signal produced

by the Gledzer–Ohkitani–Yamada (GOY) shell model;15 however, it failed to hold with experi-

mental data from Ref. 14. Zhou et al.16 found that the scaling exponents obtained from ESS,

f(p, 2), are equal to p/2, for inverse structure functions. This relationship holds for moments

less than 3.5.

In this study, the flow behind a wind turbine array is analyzed using inverse structure func-

tions to find the direct and relative scaling exponents at varying wall-normal and streamwise

locations. The framework and theoretical analysis are presented in Sec. II and the experimental

setup is described in Sec. III. The results and conclusions are discussed in Sec. IV, with a sum-

mary of the results in Sec. V.

II. THEORY

Kolmogorov suggested the structure of the turbulence cascade describes the transport of

turbulence kinetic energy between different scales of motion in a turbulent flow.8 The Taylor

microscale is defined as k ¼ huiðtÞ2i=hð@uiðtÞ=@tÞ2i, where ui is instantaneous velocity, and t is

time. In this study, the streamwise component is analyzed; therefore, ui¼ u and subscript i is

dropped in the following equations. Note that Taylor’s frozen field hypothesis is implemented

in order to relate spatial separation in streamwise direction and time difference.17

Structure function of the velocity field examines flow in a turbulent state by considering

the velocity difference between two points, raising their difference to the moment, p, and study-

ing the variation in space between the points. The kernel of the structure function, the velocity

difference, Du(x, r), is computed by subtracting the velocity observed at locations xþ r and x,

meaning Duðx; rÞ ¼ uðxþ rÞ � uðxÞ. The variation between the measured velocity differences

over the spatial separation, r, is described by the scaling exponent, dp, given by

h½DuðrÞ�pi � jrjdp : (1)

Kolmogorov8 suggested that the structure function for the velocity increments at high Reynolds

number turbulence has the following form:

h½DuðrÞ�pi � ðrÞp=3: (2)
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As mentioned in Section I, inverse structure function proposes an alternative approach to

study the relation between the physical separation and velocity increment by inverting the ordi-

nary structure function equation and averaging the moments of the distances as a function of

the velocity increment. The inverse structure function is defined as

h½rjDuj�pi � jDujnp ; (3)

where rjDuj is the minimal distance from x (the origin in space) that the velocity difference

exceeds the velocity increment, Du, and np is the scaling exponent for the inverse structure

function of moment p.12,27 It is suggested, from Kolmogorov,8 that the inverted scaling expo-

nent takes the form np¼ 3p. From hereon, (� � �) is used instead of j� � �j.
Moments are computed using conditional probability density functions (PDF), PDu(r), and

are defined by Pearson and van de Water14 as

r Duð Þ½ �p� �
¼

ð1
0

rpPDu rð Þdr
ð1

0

PDu rð Þdr

; (4)

using histograms of the length scales, r.

Scaling exponents for inverse structure functions are also calculated using ESS, introduced

by Benzi et al.,18 by taking the inverse structure function of one moment, p, with respect to the

inverse structure function of a base moment, p0, given by

½rðDuÞ�ph i � h½rðDuÞ�p
0
inðp;p

0Þ: (5)

In this study, p0 ¼ 2 was chosen to compare with the findings by Zhou et al.16 who used p0 ¼ 2

for inverse structure functions. A base moment of p0 ¼ 3 was also chosen to compare with the

inverted scaling exponent from Kolmogorov, np¼ 3p.

ESS scaling exponents are used to check for intermittency effects in inverse structure func-

tions. Equation (5) can be rearranged as

np ¼
log r Duð Þ½ �p
� �

log r Duð Þ½ �p0
� � : (6)

III. EXPERIMENTAL

The experiments were carried out in the Corrsin Wind Tunnel at the Johns Hopkins

University. The test section of the tunnel is 0.9 m high, 1.2 m wide, and 10 m long. The inflow

was conditioned using an active grid, strakes, and wall roughness in the form of sandpaper to

create atmospheric-like conditions. The overall layout of the experiment is shown in Figure 1.

The active grid was implemented to generate high levels of free-stream turbulence. The

design consists of seven vertical and five horizontal rotating aluminum tubes that contain square

10� 10 cm2 winglets of 3.18 mm thick aluminum plates with circular perforations. The 19 mm

square tubing aluminum shafts were independently actuated and controlled, and were each set to

vary direction and rotational speed randomly, changing every second within the range of 210 and

420 rpm. Further details about the control of the shafts and actuation process can be found by

Kang et al.19 Nine strakes, laser cut from acrylic plate, span the inlet of the wind tunnel aimed to

obtain a sheared mean velocity profile. The strakes were equally spaced from the sidewalls and

0.1 m from the leading edge of a 6.7 m long flat plate. The top of the plate had a layer of 24-grit

aluminum oxide sandpaper to contribute to the mean shear profile within the wind tunnel.

A 3� 3 array of wind turbines was placed 3 m from the leading edge of the rough plate as

seen in Figure 1. The distance between successive wind turbines was three diameters in
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crosswind (or spanwise) direction and seven diameters in downwind (or streamwise) direction.

The rotating model wind turbines had a 12 cm rotor diameter and the blades had a 15� and 10�

twist at the root and the tip, respectively. The ratio of the length scales, corresponding to a real-

life rotor diameter and hub height of 100 m, is 830. The model turbine blade angles were chosen

according to a desired angular velocity that corresponded to a field-scale turbine tip speed ratio.

Due to the complicated flow field of the experiment, the rotational speeds of the wind turbine

models were not uniform across all 9 turbines, differing by �5%. The utilization of rotating

blades in the experiment exhibits more realistic characteristics of turbulence intensity and inter-

mittency in the near-wake when compared with experiments performed using stationary disks.21

As generators, AC motors of 1/4 hp were used to support the rotors at the hub height of 12 cm,

cf. Cal et al.2

A cross hot-wire probe was used to obtain vertical velocity profiles behind the last turbine

along the centerline at a distance of one rotor diameter, representing the near-wake, and five

rotor diameters, representing the far-wake, as seen in Figure 2. Each profile consists of 21 verti-

cal locations spaced by increments of 1 cm beginning at 0.5 cm above the floor. The data were

recorded at a sampling frequency of 40 kHz for 100 s at each location.

The mean velocity, Reynolds stress, and power spectra were measured prior to the array to

characterize the inflow conditions. Earlier studies using the same dataset showed that there is

significant agreement between the streamwise spectra of the inflow and the Kolmogorov power

law.2,7,20,22 The mean velocity of the incoming flow was 9.4 m/s. This corresponded to a

Reynolds number based on the Taylor microscale, Rek ¼ urmsk=�, in the range of 250–1500

depending on the location of measurement. The Taylor microscale and rms velocities change

from the point to across the wind turbine array as seen in Figure 3. In the near-wake, Rek fluc-

tuates in the wall-normal direction showing dependence on the wake of the turbine array. The

far-wake shows a steady trend of continual increase as the wall-normal position increases, rang-

ing from roughly 500 to 1500.

Based on the local mean velocity at hub height and the rotor diameter, the Reynolds num-

ber for the wind tunnel experiments is 4.5� 104. This value is on the same order of magnitude

of the range where flow statistics in the wakes of wind turbines become independent of the

Reynolds number documented by Chamorro et al.23

FIG. 1. Experimental setup for the wind turbine array boundary layer. Reproduced with permission from J. Renewable

Sustainable Energy 6(2), 023121 (2014). Copyright 2014 AIP Publishing.20

FIG. 2. Measurements taken for the near-wake, x=D ¼ 1, and far-wake, x=D ¼ 5, at 21 vertical locations with � pertaining

to nearest wall, bottom tip, hub height, top tip, and above canopy.
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IV. RESULTS

In Figure 4, inverse structure functions of orders two, four, and six, p¼ 2, 4, and 6, are dis-

played as a function of velocity increments for the two downstream positions coinciding with

the near- and far-wake at x/D¼ 1 and x/D¼ 5, respectively. Five vertical positions are selected

for each downstream location. More specifically, these locations correspond to the position clos-

est to the wall at y/D¼ 0.04, bottom tip (y/D¼ 0.5), hub height (y/D¼ 1), top tip (y/D¼ 1.5),

and furthest measured wall-normal position at y/D¼ 1.7. An averaged profile of the far-wake

curves is taken and used in Figures 4(a), 4(c), and 4(e) for comparison with the near-wake data.

The inverse structure functions are normalized by the local Taylor microscale, k, and the

Taylor microscale-based Reynolds number, Rek. Furthermore, the velocity increment, Du, is

normalized by r¼
ffiffiffiffiffiffiffiffiffiffiffi
2hu2i

p
, the square root of the large-scale limit of the second-order velocity

structure function.24 Inverse structure functions of the first, third, and fifth orders are not shown

as they follow the trends of the second, fourth, and six orders. Of note, the sixth moment is the

highest order that can be computed with good statistical convergence, which was earlier vali-

dated by Melius et al.25

Inverse structure functions, hrðDuÞpi, increase monotonically for all vertical locations in

both downstream locations with the exception of the hub height in the near-wake. In Figure

4(a), the near-wake region exhibits a similar trend in the five vertical locations with the excep-

tion of the hub height, showing slight variation in the curve around Du/r¼ 0.2, as well as the

location above the canopy, which increases more rapidly than other locations.

Figures 4(c) and 4(e) show similar trends to that of the second order, with increasing vari-

ance at the hub height location for small velocity increments in the near-wake. As the order

increases, p equaling three through six, the near-wake hub height continues to diverge from the

other curves. In addition, the profiles diverge as the velocity increment increases for locations

in the near-wake.

Figures 4(b), 4(d), and 4(f) show similar trends for all three orders in the far-wake. The

relative standard deviation (RSD), also known as the coefficient of variation, validates the col-

lapse of data in the far-wake for all moments. The highest RSD values occur around Du=r ¼
0:0325 for all three moments shown, with less variation around Du=r ¼ 0:325 for the second

moment and Du=r ¼ 0:1625 for the fourth and sixth moments. Furthermore, the RSD values

increase as the moment increases, with the mean values of RSD equaling 0.37–0.79.

The tower has a greater effect on the near-wake due to its physical proximity. The modula-

tion caused by the tower decreases with increasing distance behind the turbine. The bottom tip

profile in the near-wake diverges while keeping a similar shape due to the effects of mixing

FIG. 3. Streamwise Reynolds number based on the Taylor microscale for near-wake ( ) and far-wake ( ). Dashed lines

indicate the highest and lowest blade tip rotation positions ( ) and the hub height location ( ).
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from the tips of the rotating blades. The divergence of inverse structure functions with respect

to the order increase is greatest at the hub height. The deviation observed at hub height for the

near-wake is caused by the low Reynolds number and the anisotropy of turbulence at this loca-

tion being relatively small.22 The variation of Rek in the wall-normal direction for the near-

wake, shown in Figure 3, indicates the presence of low velocities and smaller length scales

from y=D ¼ 0:8 to y=D ¼ 1:2.20 The incoming flow from previous turbines in the array,

obstruction of the nacelle, and the mixing of the flow as it passes through the rotating blades

are all promoting the decreased velocity and isotropic behavior of the flow. It is also of note

that the location of highest anisotropy is the top tip as documented in Ref. 22, and corresponds

to the location with strong shearing components and large velocity gradients due to the passage

of the blades.

In the near-wake, the collapse of the profiles is less apparent indicating a dependence on

factors other than the Taylor microscale. The data varies between the vertical locations.

Because the flow above the canopy is above the top tip of the blade, it is relatively undisturbed

by the passage of the blades, indicated by the similarity between furthest wall-normal location

in the near-wake and the collapsing far-wake data. The collapse of all vertical locations in the

FIG. 4. Inverse structure functions of the second, fourth, and sixth order at wall-normal locations in the near-wake (left col-

umn) and far-wake (right-column). An averaged far-wake profile (-) is shown in (a), (c), and (e) for comparison of down-

stream location.
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far-wake indicates the influence of the local Reynolds number and the Taylor microscale on

inverse structure functions. In observing the collapse, the ratio of the inverse structure function

to these parameters is similar. For the far-wake, all vertical locations show similar behavior

as well. More specifically, the far-wake is inhibited from the complexities introduced by the

turbine as the flow recovers.

Figures 5(a) and 5(b) show the ESS scaling exponents of the third, fourth, and six order

inverse structure functions with respect to the second order, p0 ¼ 2, at all vertical locations in

the near- and far-wake regions, respectively. Figures 5(c) and 5(d) depict the ESS scaling expo-

nents of the second, fourth, and six order inverse structure functions with respect to the third

order, p0 ¼ 3. In Figure 5(a), the scaling exponent decreases as the vertical location increases

until the hub height location where the scaling exponent is lowest. The scaling exponent then

increases as it approaches the above canopy location. In Figure 5(c), the fourth and sixth order

curves follow the same trend with the second order showing the opposite tendency. The expo-

nent curves are mirrored about the vertical line of np¼ 1. Variations of the curves in the near-

and far-wake occur in the same vertical positions, with the magnitude of the variation amplified

in the near-wake. For example, the scaling exponent taken at the hub height location differs

between the near- and far-wake as well as with the base moment but the general pattern of the

variations remains the same. In Figures 5(b) and 5(d), scaling exponents for each order vary

within a small range, approximately 5%–15% for p0 ¼ 2 and 3%–9% for p0 ¼ 3, indicating an

agreement between the scaling exponents in the far-wake for p0 ¼ 2 and findings by Zhou16 of

fðp; 2Þ ¼ p=2 for p< 3.5. The scaling exponents for the base moment of three, p0 ¼ 3, although

consistent in the far-wake region, do not agree with the theoretical values of the Kolmogorov

theory of np ¼ 3p, obtained from inverting the ordinary structure function scaling exponent. In

FIG. 5. Scaling exponents for second ( ), third ( ), fourth ( ), and six (�) orders (p¼ 2, p¼ 3, p¼ 4, and p¼ 6) plotted

against the second and third order base moments (p0 ¼ 2 and p0 ¼ 3).
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the near-wake, the effect of the wake is prominent, shown by the dependency of the scaling

exponents on their vertical position along the turbine. Furthermore, there is greater variation in

the ESS scaling exponents for the near-wake. Far-wake scaling exponents are approximately

constant and are not dependent on their vertical location as the variation about the mean is

more uniform compared to the near-wake. This agrees with the observations of the inverse

structure functions in Figure 4, where the far-wake profiles collapse for higher orders and the

near-wake profiles become less compact as the order increases.

In Figures 6(a) and 6(b), the direct and relative scaling exponents are plotted for the near-

and far-wake, respectively. For both downstream locations, the direct scaling exponents, calcu-

lated from the inverse structure function using Equation (3), are significantly larger and increase

more rapidly than the relative scaling exponents, calculated using Equation (6). Ali et al.7

observed the same trend, determining that the method of ESS underpredicts the scaling expo-

nents. The direct and relative scaling exponents follow the same profile for each vertical and

downstream location, independent of the method. More specifically, the scaling exponents

obtained at the bottom tip and hub height are nonlinear in the near-wake for all methods.

Figure 6(a) indicates the effect of intermittency at the bottom tip and hub height locations in

the near-wake by the nonlinear profile of the scaling exponents. In understanding intermittency

found in the near-wake, dynamic loading on turbines can be better identified and consequently

the fatigue life and overall performance of a wind farm can be improved.24–26 The advanced

knowledge of intermittency effects can also aid in placement of turbines within a wind farm,

which will also enhance the performance of the wind farm.7 In Figure 6(b), a lack of intermit-

tency effects in the far-wake region is validated by the linear profiles of all scaling exponents.

The nearest wall and above canopy vertical locations are not shown in Figure 6 for clarity,

both profiles in the near- and far-wake are linear. The scaling exponent with respect to the third

moment is also not shown in Figure 6, but it follows the same trend as the relative scaling

exponent with respect to the second moment.

The scaled conditional probability density functions (PDF), a � PðrÞ, of the length scales

are shown for the near- and far-wake in Figures 7(a) and 7(b), respectively, where a2 ¼ hr2i.
Three velocity increments, Du¼ 0.05 m/s, Du¼ 0.1 m/s, and Du¼ 0.5 m/s, are displayed, which

translate to approximately Du=r ¼ 0:0325; Du=r ¼ 0:065, and Du=r ¼ 0:325, respectively.

Furthermore, three vertical locations are shown for each downstream location, namely, bottom

tip, hub height, and top tip. Figures 7(c)–7(h) depict a � PðrÞ � ðr=aÞp for p¼ 2, 4, and 6 for the

near- and far-wake. Figures 7(c)–7(h) are included to verify the statistical confidence of the

orders shown. The convergence of the integrand of a � PðrÞ � ðr=aÞp, as also investigated by

Zhou et al.,16 indicates that the 6th moment, p¼ 6, is not valid for analysis, especially at higher

velocity increments. In Figure 7(a), the PDF for the near-wake shows a strong dependence on

vertical location for the two lower velocity increments. The top tip, for all velocity increments,

FIG. 6. Direct (–) and relative (– –) scaling exponents for the 2nd moment at the bottom tip ( ), hub height ( ), and top

tip (�) as a function of the moments at (a) near-wake and (b) far-wake.
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collapses with the largest velocity increments for all locations. The PDF for the far-wake,

Figure 7(b), shows minor dependence on the velocity increment with the Du¼ 0.5 m/s curves

diverging slightly from the collapsing profiles for the two lower velocity increments. The suc-

ceeding plots of a � PðrÞ � ðr=aÞp for the near- and far-wake follow similar trends, with the two

lowest velocity increments for the hub height and bottom tip locations diverging for a given

vertical location as well as the collapse of all the remaining curves in the near-wake. For the

far-wake, the curves of the PDF continue to show a moderate collapse and a small variation for

FIG. 7. Scaled probability density function of exit distances, a � PDF and a � ðr=aÞp � PDF for p ¼ 2; 4 ; and 6 and for

velocity increments Du¼ 0.05 m/s (�), 0.1 m/s (�), and 0.5 m/s (�); vertical locations include bottom tip ( ), hub height

( ), and top tip (–) in near-wake (left column) and far-wake (right column), where a2 ¼ hr2i.
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the Du¼ 0.5 m/s velocity increment curves, which have a slightly higher probability of the

given length scale. It is noted that the PDFs shown have a non-Gaussian distribution due to the

velocity increment being only positive.

V. CONCLUSION

The relationship between velocity increments and the length scales within a wake initiated

by a wind turbine array were studied using inverse structure functions. Inverse structure func-

tions for the near-wake show dependence on parameters introduced by the wind turbine array

other than Rek. Inverse structure functions in the far-wake collapse for all vertical locations,

indicating independence of vertical position along the wind turbine profile. The scaling expo-

nents were found directly from the inverse structure functions. The direct and ESS scaling

exponents were compared to one another for the bottom tip, hub height, and top tip with respect

to the moment. Scaling exponents in the near-wake for both methods were found to be nonlin-

ear at bottom tip and hub height locations. The scaling exponents in the far-wake were found

to be linear, showing a lack of intermittency in the far-wake region. Nonlinear scaling expo-

nents of inverse structure functions indicate that intermittency is present in the near-wake of

wind turbine and can be considered for dynamic loading analysis to improve the overall perfor-

mance of a wind turbine and its fatigue life. Scaled probability density functions of the length

scales with respect to r/a in the near-wake diverge in a manner that is dependent on the veloc-

ity increment as well as the vertical position while in the far-wake PDF curves for the three

vertical positions and velocity increments display moderate collapse. The scaling exponents of

inverse structure functions were not inverted quantities of the scaling exponents for ordinary

structure functions in this setting. Inverse structure functions are another method to understand

the probability of length scales present within the varying velocity increments as larger length

scales contain greater amounts of energy.
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