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1 Estimation of the Hausdorff Dimen-

sion

1.1 Statement of the problem

Consider and iterated function system Ψt given by three generators:

ψ0(x) =
x

3
,

ψ1(x) =
x + 1

3
,
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ψt(x) =
x + t

3

where t ∈ R is a fixed parameter.
By [1], for every t there is a unique compact set Zt which is in-

variant under Ψt and such that the orbit of any compact set under Ψt

converges to Zt in the Hausdorff metric. An elementary intepretation
of Zt is as the set of number which can be represented by generally
infinite expressions in base 3 which use digits 0, 1, t.

In this paper we are proving the following:

Theorem 1 For every t irrational, HD(Zt) ≥ 1 − log(5/3)
2 log 3

> 0.767.

Since the Hausdorff dimension in an affine invariant, from now we
will assume without loss of generality that |t| ≤ 1. Theorem 1 will
be derived from a technical Theorem 2 which is stated later.

Conjectures of Furstenberg. Let’s quote three related conjec-
tures of Furstenberg.

Conjecture 1 For every t irratonal, HD(Zt) = 1.

Let W be the limit set of the iterated function systems in R2

which is generated by x → x/3, x → [x + (1, 0)]/3 and x → [x +
(0, 1)]/3.

Conjecture 2 For every t irrational almost every β ∈ R the line

v = tu + β intersects W along a set with Hausdorff dimension 0.

Let T denote the operator

Tf(x) =
1

3
[f(x) + f(x − 1) + f(x − t)]

acting on the space of continuous functions with compact support.

Conjecture 3 For every t irrational the spectral radius of the ad-

joint T ∗ is equal to 1.

2



Historical remarks. Theorem 1 is a step towards proving Conjec-
ture 1. Conjecture 1 was the subject of work by several authors. One
should mention [3] where it was established that for almost every t,
both in the topological and category sense, HD(Zt) = 1, and that
|Zt| = 0 (Lebesgue measure) for every t irrational, see also [4]. In [2]
a study of the continuity properties of the function t → HD(Zt) was
undertaken, while [6] contains numerical data mostly in support of
Conjecture 1.

1.2 Energy estimate

Given a postive probablistic measure µ on R and α ≥ 0, we define
its energy integral

Iα(µ) :=
∫ dµ(x) dµ(y)

|x − y|α .

For a Borel set Z ⊂ R consider the set A(Z) which consists of
those α ≥ 0 for which there exists a Radon measure µα supported
on Z and Iα(µα) < ∞. It is known that HD(Z) = sup A(Z), see [5].
Hence, each time we get a measure µ supported on Z and Iα(µ) < ∞,
we have bounded the Hausdorff dimension of Z by α from below.

Natural measures. We will work with a concrete measure µt sup-
ported on Zt. Consider a sequence of measures

µt
0 = δ0 , µt

1 =
1

3
(δ0 + δ1 + δt)

and
µt

n = µt
1 ∗ (ψ0∗µ

t
1) ∗ · · · ∗ (ψn−1

0∗ µt
1)

for n > 0. The choice of equal weighting of the measures transfered
by all generators was of course arbitrary. One easily verifies that

µt
n = µt

k ∗ φk
0∗µ

t
n−k

for 0 ≤ k ≤ n. Hence, measures µt
n converge weakly to µt which is

supported on the interval [0, 1/2].
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Estimates. Let us begin to estimate the energy integral. Let 0 <
α < 1. For n ≥ 0 denote Ln := {(x, y) : 2 · 3−n < |x − y| ≤ 2 · 31−n.

Iα(µt) =
∫ dµt(x) dµt(y)

|x − y|α =
∞
∑

n=1

∫

Ln

dµt(x) dµt(y)

|x − y|α .

Since µt = µt
n ∗ ψn

0∗µ
t and the support of ψn

0∗µ
t is contained in

[−3−n/2, 3−n/2], we can write

∫

Ln

dµt(x) dµt(y)

|x − y|α =
∫

Ln

|x − y|−α ∗ h(x) ∗ h(y) dµt
n(x) dµt

n(y)

where h is a non-negative function with total mass 1 and support
contained in [−3−2/2, 3−n/2]. Because of that, for (x, y) ∈ Ln we get

|x − y|−α ∗ h(x) ∗ h(y) ≤ 3na

and

Iα(µt) ≤
∞
∑

n=1

3nα
∫

Ln

dµt
n(x) dµt

n(y) . (1)

Denote

s(n, β) = 3n
∫

χ(−3−n/2,3−n/2](x − y − β) dµt
n(x) dµt

n(y) = (2)

3n
∫

χ(−3−n/2,3−n/2](z − a) d(µt
n ∗ (µt

n)′)(z)

where the apostrophe means the measure transported by the map
x → −x. Then

3nα
∫

Ln

dµt
n(x) dµt

n(y) ≤

s(n, 5
2
3−n) + · · · + s(n, 11

2
3−n) + s(n,−5

2
3−n) + · · · + s(n,−11

2
3−n)

3n(1−α)
.

If we write Sn = supβ∈R
s(n, β), then we get from estimate (1) that

Iα(µt) ≤ 8
∞
∑

n=1

3n(α−1)Sn . (3)

So the task is reduced to estimating the exponential rate of increase
for Sn.
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1.3 Projection measure

Consider a measure ν1 is R2 defined by

ν1 =
1

3
(δ(0,0) + δ(0,1/3) + δ(1/3,0)) .

If ψ denotes the homothety with scale 1/3, then we define

νn = ν1 ∗ (ψ∗ν1) · · · ∗ (ψn−1
∗ ν1) .

If πt : R2 → R denotes the linear projection given by πt(u, v) =
tu + v, then we have µt

n = πt∗νn. Hence

µt
n ∗ (µt

n)′ = πt∗

[

ν1 ∗ ν ′
1 ∗ ψ∗(ν1 ∗ ν ′

1) ∗ · · · ∗ ψn−1
∗ (ν1 ∗ ν ′

1)
]

.

Measure ν1 ∗ (ν1)
′ is obtained explicitly and equals

1

9

∑

k,ℓ=−1,0,1

b(k, ℓ)δ(k/3,ℓ/3) (4)

where b(k, ℓ) = 1 if k 6= ℓ, 3 if k = ℓ = 0 and 0 otherwise. Function
b extends to Z × Z by b(k1, ℓ1) = b(k, ℓ) where k, ℓ = −1, 0, 1 and
k − k1, ℓ − ℓ1 ∈ 3Z.

From the defining formula (2),

s(n, β) = 3n
∫

χ(−3−n/2,3−n/2](z − β) d(µt
n ∗ (µt

n)′)(z) =

= 3n
∑

k,ℓ∈Z

(νn ∗ ν ′
n)(k3−n, ℓ3−n)χ(−3−n/2,3−n/2](tk3−n + ℓ3−n − β) .

For every k ∈ Z and β, a non-zero contribution is obtained only when
ℓ = ℓn,β(k) := 〈3n(β − kt3−n)〉 where 〈x〉 is the integer characterized
by the condition −1/2 < x − 〈x〉 ≤ 1/2. If we also introduce the
notation kn(x) = 〈3nx〉, then we can write

s(n, β) = 3n
∑

k∈Z

(νn ∗ ν ′
n)(k3−n, ℓn,β(k)3−n) =

= 9n
∫ +∞

−∞
(νn ∗ ν ′

n)
(

kn(x)3−n, kn(β − tkn(x))3−n
)

dx .
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Define bi(u, v) = b(< 3iu >,< 3iv >). Then we can write for
−3n−1

2
≤ k, ℓ ≤ 3n−1

2
that

(νn ∗ ν ′
n)(k3−n, ℓ3−n) = 9−n

n
∏

i=1

bi(k3−n, ℓ3−n) .

If k, ℓ are outside that range, then (νn ∗ ν ′
n)(k3−n, ℓ3−n) = 0.

Hence we can write

s(n, β) =
∫ 1/2

−1/2

n
∏

i=1

Bi(x, β − tkn(x)) dx

where functions Bi : T 2 → R are defined below.

Definition 1 If (x, y) ∈ T 2 and i > 0, then

Bi(x, y) := b(ki(x), ki(y)) .

2 Averaging Estimates

We will denote T 1 := (−1/2, 1/2] and T 2 := T 1 × T 1 and think of
identifying pieces of the boundary so that tori are obtained. Let
π(x) := x′ where x′ ∈ T 1 and x − x′ ∈ Z. Recall that kn(x) = 〈3nx〉.

2.1 Partitions related to base 3 expansions

It will be useful to think of the circle T 1 with the Lebesgue measure
as a probabilistic space.

Definition 2 Say that an interval I ⊂ T 1 is a basic interval of order

n, n ≥ 0, if the transformation x → π(3nx) maps I onto T 1 with

degree 1.

For example, interval (−1
6
, 1

6
] is basic of order 1. Let Pn denote the

partition of T 1 into basic intervals of order n.
Now let φ : R → R. For a positive integer n, define φn : T 1 → T 1

by
φn(x) := φ(3−nkn(x)) . (5)

So, φn is a Pn-measurable approximation of φ.
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Lemma 1 Let q ≥ 0 and n > 0 and φ(x) = tx + t0. Then for every

x ∈ T 1

φn(π(3qx)) + T (x) − 3qφn+q(x)

is an integer, where T (x) = kq(x)t + (3q − 1)t0.

Proof:

The expression which is to be shown to yield an integer is mea-
surable with respect to Pn+q. It suffices to prove the claim for
x = (3nJ + j)3−n−q with integers J and j ranging over [−3q−1

2
, 3q−1

2
]

and [−3n−1
2

, 3n−1
2

], respectively. For x in such a form

3qφn+q(x) = 3q(xt + t0) = Jt + jt3−n + 3qt0 .

On the other hand,

φn(π(3qx)) = φn(π(J + j3−n)) = φn(j3−n) = π(jt3−n + t0) .

Finally, kq(x) = J and

T (x) = Jt + (3q − 1)t0

which implies the claim.

QED

Lemmas about circle rotations. Let Rt : T 1 → T 1 be defined
by Rt(x) = π(x + t).

Definition 3 Define the set U(t,K) ⊂ N by the following require-

ment: m ∈ U(t,K) if and only if for every x ∈ T 1 and every J which

is a sub-arc of T 1 with length 3−m, the set

{Rp
t (x) : p = 0, 1, · · · , 3m − 1} ∩ J

has no more than K elements.

Thus, for m ∈ U(t,K) the first 3m points of any orbit are uni-
formly spread out, in the sense that no “lumps” are formed.

Lemma 2 For every t irrational the set U(t, 6) is infinite.
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Proof:

Let q be a closest return time for the rotation x → x+ t mod 1. Then
the orbit x, · · · , Rq−1

t (x) cuts the circle into pieces of two sizes and
the shorter ones are never adjacent. Hence, any arc of length not
exceeding 1/q may contain at most two points of the orbit. If m is
chosen so that 3m−1 < q ≤ 3m, the the orbit x, · · · , R3m−1

t (x) can
be covered by three orbits of length q. Thus, no arc of length 3−m

contains more than 6 points.

QED

2.2 Averages along graphs

Definition 4 Suppose that F : T 2 → R and g : T 1 → R are given.

Then we can form a function Fg : T 1 → R by the following formula:

Fg(x) = F (x, g(x)).

The general type of the problem we will consider is as follows. We
wish to average Fg along basic intervals, which corresponds to taking
conditional expectations with respect to partitions Pn. The problem
is under what assumptions these averages can be estimated in terms
of the average of F over T 2.

Proposition 1 Consider φ(x) = tx + t0 and choose N > 0 and K
so that N ∈ U(t,K).

For every n ≥ 0 and every set A ⊂ T 2 which is measurable with

respect to PN × PN we consider the function F : T 2 → R given by

F (n)(x, y) = χA(π(3n+Nx), π(3n+Ny)).
Then,

E(F
(n)
φn+2N

|Pn)(x) ≤ K
∫

T 2

χA dλ2

for every x ∈ T 1, using the notation of Definition 4.

Proof:

Choose an interval I ∈ Pn. Observe first that without loss of general-
ity n = 0. Indeed, for n ≥ 0 the interval I can be parameterized by a
variable x′ = π(3nx) which runs over T 1. We get π(3N3nx) = π(3Nx′)
and, by Lemma 1,

π(3n+Nφn+2N(x)) = π(3N(φ + T (x))2N(x′))

8



with T (x) constant and equal to T (I) on I. Thus for every x ∈ I

E(F
(n)
φn+2N

|Pn)(x) = E(F
(0)
φ2N+T (I))

which leads to the initial problem with n = 0 and t0 increased by
T (I). Since the claim is supposed to be valid for every t0, the reduc-
tion is complete.

We will write F for F (0) and φ for φ + T (I).

Fφ2N
(x) = χA(π(3Nx), π(3Nφ2N(x))) =

= χA

[

π(3Nx), π(φN(π(3Nx)) + T (x))
]

by Lemma 1 used with n = q = N . If we write x = J3−N + j3−2N

with J, j both integers from the range [−3N−1
2

, 3N−1
2

], we get π(3Nx) =
j3−N and T (x) = Jt + T0 where T0 is a constant. We can then write

E(Fφ2N
) = E

[

χA(π(3Nx), π(φN(π(3Nx)) + T (x))
]

=

= 3−2N

3
N

−1

2
∑

j=− 3N
−1

2

3
N

−1

2
∑

J=− 3N
−1

2

χA(j3−N , π(Jt + φ(j3−n) + T0)) .

For j fixed, points π(Jt+φ(j3−n)+T0) form an orbit of the rotation
Rt of length 3N . By the hypothesis of the Lemma, each square of
the partition PN × PN contains no more than K points in the form
(j3−N , π(Jt + φ(j3−n) + T0))). Hence,

3−2N

3
N

−1

2
∑

J=− 3N
−1

2

3
N

−1

2
∑

j=− 3N
−1

2

χA(j3−N , π(Jt+φ(j3−n)+T0)) ≤ K
∫

T 2

χA dλ2.

QED

Lemma 3 For every t ∈ R, m ≥ n ≥ 0, if φ(x) = tx, t0 ∈ R, and

F : T 2 → [0,∞) is measurable with respect to Pn × Pn, then

F (π(x), π(φm(x) + t0)) ≤
∑

2|i|<|t|+2

F (π(x), π(φn(x) + t0 + i3−n))

where i runs through integer values only.

9



Proof:

Estimate |φm(x) − φn(x)| ≤ |t|3−n

2
. Thus, for every x we can choose

τ(x) in the form i3−n, where i is an integer and −|t|/2 − 1 < i <
|t|/2+1 so that π(φn(x)+ t0 + τ(x)) and π(φm(x)+ t0) belong to the
same element of Pn, and so

F (π(x), π(φm(x) + t0)) = F (π(x), π(φn(x) + t0 + τ(x))) .

Now τ(x) only takes values in the set i3−n with |i| < |t|/2+1 and so
the lemma follows.

QED

Proposition 2 Let t ∈ R, K > 0, n ≥ 0 and N ∈ U(t,K), see

Definition 3. Denote φ(x) = tx. Let F : T 2 → [0,∞) be measurable

with respect to Pn ×Pn. Suppose that for a fixed I and every t1 ∈ R,

∫

T 1

Fφn+t1(x) dx ≤ I ,

se Definition 4 for the explanation of the notation.

Now G : T 2 → [0,∞) is measurable with respect to PN × PN ,

N > 0. Define G̃(x, y) = G(π(3n+Nx), π(3n+Ny)).
Then, for every choice of t and K and every t0 ∈ R

∫

T 1

Fφn+2N+t0(x) G̃φn+2N+t0(x) dx ≤

K(|t| + 3)I
∫

T 2

Gdλ2 .

Proof:

Fix some t1 ∈ R. Function Fφn+t1 is measurable with respect to Pn.
By Proposition 1,

E(G̃φn+2N+t0|Pn)(x) ≤ KIG

for every x where IG :=
∫

T 2 Gdλ2. Now,

∫

T 1

Fφn+t1(x) G̃φn+2N+t0(x) dx =
∫

T 1

E(Fφn+t1 G̃φn+2N+t0|Pn)(x) dx ≤
(6)

10



≤ KIG

∫

T 1

Fφn+t1(x) dx ≤ KIGI

by the hypothesis of Proposition 2.
By Lemma 3

Fφn+2N+t0(x) = F (x, π(φn+2N(x) + t0)) ≤

≤
∑

j∈(−1−|t|/2,|t|/2+1)

Fφn+t0+j3−n(x) .

If we use estimate (6) for all t1 = t0 + j3−n, we get

∫

T 1

Fφn+2N+t0(x) G̃φn+2N+t0(x) dx ≤

≤ KIG(|t| + 3)I .

QED

2.3 Averages of products

Theorem 2 Fix t irrational and let φ(x) = tx + t0. Then for every

λ >
√

5/3 and t0 ∈ R we have

lim
m→∞

[

λ−m
∫

T 1

m
∏

i=1

Bi(x, φm(x)) dx

]

= 0 .

Recall that functions Bi are given by Definition 1. Since

s(m,β) =
∫

T 1

m
∏

i=1

Bi(x, φm(x))

with φ(x) = β − tx, Theorem 2 implies that λ−mSm → 0. By esti-

mate (3), Iα(µt) < ∞ provided that 31−α >
√

5/3 and Theorem 1
follows.
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Hölder estimate. From Lemma 2, see that U(t, 6) is infinite and
choose N ∈ U(t, 6). Let Jk,0 denote the set of integers i which be-
long to (2(j − 1)N, (2j − 1)N ] for some j = 1, · · · , k and Jk,1 be
the complement of Jk,0 in the set 1, 2, · · · , 2kN . Define Pk,0(x, y) =
∏

i∈Jk,0
Bi(x, y) and Pk,1(x, y) =

∏

i∈Jk,1
Bi(x, y). Then

2kN
∏

i=1

Bi(x, φ2kN(x)) = Pk,0(x, φ2kN(x))Pk,1(x, φ2kN(x)) .

Our approach is to apply the Hölder inequality to this product.
It is easier to estimate the second norm of Pk,1(x, (φ + t1)2kN) with
t1 ∈ R. Using Proposition 2 with n = 2(k − 1)N + N , F := P 2

k−1,1

and G(x, y) =
∏N

i=1 B2
i (x, y), we get

‖Pk,1(x, (φ + t1)2kN)‖ ≤ 6(|t| + 3)I
∫

T 2

Gdλ2

where I is an upper estimate for ‖Pk−1,1(x, (φ+t1)2(k−1)N‖ for any t1 ∈
R. Note that

∫

T 2 Gdλ2 = (5/3)N and hence one gets by induction
starting with P0,1 ≡ 1 that

‖Pk,1(x, φ2kN(x))‖2
2 ≤ Kk

1 (5/3)kN .

The same method is used to estimate the second norm of

Pk,0(x, (φ + t1)(2k−1)N(x)) .

This time, the induction starts with ‖P1,0(x, (φ + t1)N(x))‖2
2 ≤ 3N

since 3N is the maximum. Thus,

‖Pk,0(x, (φ + t1)(2k−1)N(x))‖2
2 ≤ 3NKk−1

1 (5/3)(k−1)N .

Using Lemma 3 and applying the previous estimate for

t1 = j3−2(k−1)N , 2|j| < |t| ,

we get

‖Pk,0(x, φ2kN(x))‖2
2 ≤ (|t| + 3)‖Pk,0(x, φ2(k−1)N(x))‖2

2 ≤

≤ (|t| + 1)3NKk−1
1 (5/3)2(k−1)N .

12



By Hölder’s inequality,

λ−2kN
∫

T 1

2kN
∏

i=1

Bi(x, φ2kN(x)) dx ≤
√

3N(|t| + 3)

[

5

3

N
√

K1

λ2

]kN

.

If λ >
√

5/3 then N can be chosen so large that

5

3

N
√

K1

λ2
< 1 .

Then

lim
k→∞

[

λ−2kN
∫

T 1

2kN
∏

i=1

Bi(x, φ2kN(x)) dx

]

= 0 . (7)

Any j > 0 can be represented as 2kjN + j0 with j0 < 2N . Then

j
∏

i=1

Bi(x, φj(x)) ≤ 3j0

2kjN
∏

i=1

Bi(x, φj(x)) .

Again using Lemma 3 and the fact that we estimate

∫

T 1

2kjN
∏

i=1

Bi(x, φj(x)) dx ≤ (|t| + 1)
∫

T 1

2kjN
∏

i=1

Bi(x, (φ + t1)2kjN(x)) dx

where t1 was chosen to attain the supremum of the integral on the
rihgt-hand side. Hence, for any j > 0,

∫

T 1

j
∏

i=1

Bi(x, φj(x)) dx ≤ 9N(|t| + 1)
∫

T 1

2kjN
∏

i=1

Bi(x, (φ + t1)2kjN(x)) dx

and Theorem 2 follows from this together with assertion (7). Notice
that (7) holds for any t0, in particular one can set t0 := t0 + t1 in
that estimate.
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