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Abstract 

Objective:  Traumatic brain injury (TBI) frequently results in poor outcome, suggesting that new 

approaches are needed. We hypothesized that a patient-specific in silico computer model of ICP 

dynamics may predict the ICP response to therapy. 

Design: In silico model analysis of prospective data. 

Stetting: 16-bed pediatric intensive care unit in a tertiary care academic hospital. 

Patients: 9 subjects with severe TBI undergoing ICP monitoring (7M/2F, age range 3 – 17 

years). 

Interventions: Random changes in head-of-bed (HOB)(00, 100, 200, 300, 400 ) elevation and 

respiratory rate (to achieve a ∆ETCO2 = ±3-4 mmHg) daily as long as an ICP monitor was in 

place. 

Methods and Main Outcome Measures: A 6-compartment dynamic ICP model was constructed 

based on data from the interventions and session-specific model parameters were estimated. The 

accuracy of session-specific model-calculated ICP was compared to the accuracy ICP calculated 

using non-session specific parameter values. To assess the prediction accuracy of the model, two 

analyses were performed:  a “within” session analysis of Segment A for model estimation and 

Segment B for prediction, and a “between” session analysis to predict later session ICP using 

parameters from > 1 earlier sessions.  A mean absolute error to mean absolute deviation ratio 

(MAE/MAD) of < 1 was considered favorable. 

Results: For non-session specific parameters, MAE/MAD was <1 in 2/24 (8%) sessions. For 

session-specific parameter values MAE/MAD was <1 in 21/24 (88%) sessions, and <0.5 in 9/24 

(38%) sessions. Sessions with low (<12 mm Hg) (N=8; 33%) or high (>18 mm Hg) (N=6; 25%) 

ICP had lower error than moderate ICP (12-18 mmHg) (N=10; 42%).  MAE/MAD was <1 for 

6/22 (27%) for within-session predictions and 3/31 (10%) for between-session predictions. 
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Conclusions: The protocol for collecting physiologic data in subjects with severe TBI was 

feasible and without undue risk.  The in silico ICP model with session-specific parameters 

accurately reproduced actual ICP response to changes in HOB and RR. We demonstrated modest 

success at predicting future ICP within a session and to a lesser extent between sessions. 

 

Keywords: Computer modeling, in silico, prediction, traumatic brain injury, intracranial 

pressure
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Introduction 

Traumatic brain injury (TBI) is the leading cause of death and disability in children under 

18 years old, causing more than 50% of all childhood deaths. Each year, more than 150,000 

pediatric brain injuries result in about 7,000 deaths and 29,000 children with new, permanent 

disabilities. The death rate for severe TBI (defined as a Glasgow Coma Scale score < 8) remains 

between 30%-45% at major children's hospitals (1, 2).  A published evidence-based medicine 

review reports that elevated pressure in the brain (ICP) is a main determinant of outcome 

following TBI and is strongly correlated with both death and disability (3).  The underlying 

mechanism is that persistent elevated ICP leads to reduced blood flow, which can results in 

insufficient tissue perfusion (ischemia), secondary injuries, and generally poor outcomes. 

Despite the availability of many treatment options for reducing elevated ICP (defined as 

> 20 mmHg)(3), poor outcomes frequently result, often due to elevated ICP that is unresponsive 

to therapy. Treatment options for severe TBI include: draining cerebral spinal fluid (CSF) via a 

ventriculostomy catheter, raising the head-of-bed (HOB) elevation to 30° to promote jugular 

venous drainage, and inducing mild hyperventilation (2, 4, 5).  The underlying pathophysiologic 

mechanisms governing ICP regulation and the mechanisms by which various treatments affect 

ICP remains only partially understood (6).  It is generally accepted that HOB directly impacts 

arterial and venous pressure by changing the elevation of the head relative to the heart.  The 

mechanism by which changes in respiration and PaCO2 affect ICP is more complex, invoking an 

autoregulatory reflex that reduces intracranial blood volume, which reduces pressure. These 

relationships are discussed further in the methods. 

We suggest that new approaches are needed to help improve diagnosis, treatment, and 

outcome following severe TBI.  One candidate approach is to develop and utilize patient-specific  

in silico computer models of ICP dynamics that “learn” from direct patient data and then may be 
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queried to predict the likely ICP response to a specific therapeutic intervention. Computer 

models of ICP dynamics have been reported in the literature whose behavior has been shown to 

match historical data almost exactly (7, 8).  However, to our knowledge there are no reports of 

using these models to predict an individual patient response. Furthermore, it is not known 

whether computer models are capable of doing this. But we believe that to do so would require 

annotated data indicating the exact timing of treatment changes as well as a robust model that 

incorporates a database of pathologic and treatment variables. 

Therefore, we hypothesized that we could build a novel in silico computer model of 

dynamic ICP changes that could accurately reproduce historical changes from a physiologic 

database and that this model could be used to predict ICP changes in response to different 

treatments. The treatment options we studied are changes in the HOB and inducing mild 

hyperventilation by changing the respiration rate (RR).  This is because they are non-invasive, 

easily adjusted in terms of degree, and easily reversed if necessary for subject safety.  

 

Methods 

This study was approved by the Institutional Review Board of Oregon Health & Sciences 

University and the Institute of Child Health/Great Ormond Street Hospital (GOSH) Research 

Ethics Committee. A prospective clinical research protocol was used to create mild physiologic 

challenges for pediatric severe TBI patients who had ICP monitoring devices inserted as part of 

their clinical care was followed.   

 

Physiologic Signal Data Acquisition and Physiologic Challenge Protocol  

Physiologic signals and parametric data were recorded continuously, and precise 

annotations were captured regarding the exact timing of protocol events using the Physiologic 
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Data Acquisition System (PDAS) as previously described (9).  In many cases, multiple sessions 

were recorded on different days.  Signals recorded included electrocardiogram, respiration, 

arterial blood pressure, ICP, and arterial oxygen saturation.  The ICP signal was captured at 125 

Hz. Since the model sought to capture only the time behavior of mean ICP, the high-frequency 

components of the signal were ignored. Therefore, the data was decimated and a low-pass filter 

was applied, yielding smoothed data at a sample rate of 5 Hz, which removed most of the 

pulsatile component. This data was still noticeably more complex than the output of the model, 

but preliminary research showed that further simplification threatened to remove important 

features of the ICP signal. 

The response of the subject to the physiologic challenges was used to perturb the system 

from a resting or steady state and thus estimate patient-specific parameters to build a computer 

model of intracranial pressure dynamics (the “test” data set).  The patient-specific dynamic 

computer model was then used to predict the patient’s response to subsequent challenges, both at 

later time points within the same session, and also during subsequent sessions (the “validation” 

data sets). 

The two physiologic challenges listed below were randomly administered over a 2-3 hour 

period for as long as a subject had an ICP monitoring device in place and was clinically stable as 

determined by the attending ICU physician. The challenges included: 

1. Altering the head of the bed (HOB) elevation in random order between 0° to 40° in 

increments or decrements of 10° at 10-minute intervals. 

2. Increasing minute ventilation (hyperventilation) or decreasing minute ventilation 

(hypoventilation), in random order, while keeping the tidal volume fixed to achieve an 

end-tidal CO2 (ETCO2) of [+3 to +4] mmHg from baseline values. At each target ETCO2, 

PaCO2 was checked via arterial blood gas to ensure that the ETCO2 reflected accurate 
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changes in actual PaCO2. If not, then minute ventilation was further adjusted, and ETCO2 

and PaCO2 were rechecked at each target level of hyper- and hypoventilation was 

maintained for 15 minutes. 

 

ICP Dynamic Model 

The model of ICP dynamics used in this study was patterned after models previously 

reported by our research group (11-13).  Since the underlying physiology is very complex and 

not completely understood, the mathematical model is necessarily highly simplified.  The model 

consisted of six differential (rate) equations for three blood volume compartments plus the CSF 

fluid volume in aggregate, the brain tissue volume (which could be normal or edematous), and 

when appropriate, an intra- or extra-cranial hematoma volume.  The pressure in each 

compartment was calculated by the model based on its instantaneous volume and its compliance; 

and the calculated pressure can be easily compared to the recorded data from the patient. 

Regarding the impact of the protocol interventions, the model is consistent with the 

mechanisms described in Figure 1. 

 

 
 

Figure 1.  Impact of head of bed elevation and respiratory rate changes on intracranial pressure 
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Changing the angle, θ, of the HOB changes arterial pressure and ICP by an amount that is 

directly proportional to sin (∆θ). The effects of changing minute ventilation are much more 

complex. Minute ventilation is the product of the respiratory frequency (or respiratory rate, RR) 

and tidal volume. As tidal volume was held constant during all the physiologic challenge periods, 

we varied RR to produce a change in minute ventilation. Changes in RR directly affect PaCO2, 

which is a vital part of the cerebral autoregulation mechanism - another complex feedback loop 

in our model. An increase in RR causes a decrease in cerebral blood flow and a subsequent 

increase in capillary resistance via affecting smooth muscle tone. The increase in capillary 

resistance decreases the arterial-to-capillary flow to match the indicated flow, and thus affects 

cerebral arterial blood volume. 

The model was implemented in MATLAB Simulink® (The MathWorks, Inc., Natick, 

MA).  The Appendix contains additional information about the ICP dynamic model. 

 

Parameter Estimation 

Parameter estimation refers to the mathematical process of adjusting the parameters of 

the model in order to achieve an objective, i.e. to minimize the error between the actual data and 

the data generated by the model. The primary inputs to the ICP dynamic model were the random 

changes to the HOB and minute ventilation specified by the physiologic challenge protocol.  

These changes entered the model as step functions at the times specified in the clinical 

annotations to the data.  There were no other time-based inputs to the model; all other parameters 

were either initial values or constants.  Although the protocol sessions provided multiple 

physiological signals for each subject, the only measurement used by the estimation process was 

the ICP signal, which was compared to the ICP computed by the model in order determine model 

fitness for specific sets of parameter values. 
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Besides the state variables (volumes) and inputs (the timing of the physiologic challenge 

events), the other dynamic quantities in the model were the parameters being adjusted during the 

model identification process.  These physiologic parameters were estimated for each subject 

based on the measured ICP response.  The estimation was done by varying the parameters with 

the objective being to minimize the sum of squared differences between the ICP response 

calculated by the model and the actual ICP data, ignoring some outliers (for example, at the very 

beginning of a simulation run when the system of equations has sometimes not yet stabilized, or 

where the actual ICP data showed likely measurement discrepancies).  MATLAB’s lsqcurvefit 

nonlinear optimization algorithm was specified to run either until the change in the sum of the 

squared errors fell below a certain tolerance, or until a certain number of iterations had been 

completed. The algorithm required many simulations of the model to be run, each with slightly 

different parameter values.  Since most model runs took a minute or longer to compute, the entire 

nonlinear optimization process often took one or more hours to complete for a given case 

(subject/session). 

The initial parameter values were derived from the medical literature of past reported ICP 

computer models (14).  The procedure for estimating parameter values that minimized the 

difference between the model-calculated ICP values over time and the actual ICP signal data 

(referred to as the “best fit”) is shown in Figure 2. In each case, the nonlinear optimization 

algorithm was configured to vary between 4 to 8 parameters. The parameters were chosen from 

the following group based on sensitivity testing and their applicability to the challenges 

prescribed in the challenge protocol: autoregulation factor (smooth muscle compliance effect), 

basal cranial volume, CSF drainage rate, hematoma increase rate, ∆ pressure time constant (a 

smoothing parameter associated with HOB elevation change), ETCO2 time constant 
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Figure 2. Parameter estimation process using an optimization algorithm to find the “best fit” 

parameter values. 

 

(a smoothing parameter associated with RR changes), smooth muscle gain (a multiplicative 

factor related to the impact of smooth muscle tension), systemic venous pressure, “baseline” ICP, 

and the pressure volume index (PVI). 

 

Statistical Analysis: Prediction Assessment 

To present the results from computer-generated predictions and compare them to actual 

data, we chose to use mean absolute deviation (MAD) and mean absolute error (MAE). MAD 

describes the degree to which data in a sample varies from it mean. As indicated in Equation 1 

MAD is the simple average of the individual absolute differences.  Standard deviation, another 

widely used measure of variation, takes the root-mean-square of the differences. Similar to 

MAD, MAE, as indicated in Equation 2, is the average absolute difference between the predicted 

values and the actual values. Besides being conceptually simpler, MAD and MAE do not give 

more “weight” to large discrepancies.  Note, however, that the parameter estimation process 

described earlier minimized the squared error as is typically done. 
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                       N                                                                                           N 
     MAD = (  Σ|xi-xbar| )/N         [1]                                            MAE = (  Σ|xi-yi| )/N         [2] 
                      i=1                                                                                         i=1 

 

Figure 3 portrays the methods used to assess the prediction capability of the computer 

model. First, session-specific parameters were estimated using the process described earlier in  

 

Figure 3.  Overview of methodology to assess model prediction capability. 
 

Figure 2, and the MAE for each session was computed to determine how accurately the model 

reproduced the actual ICP. The average parameter values for the model across subjects and 

sessions were determined by considering both the median and mean values for the parameter 

estimates from the parameter estimation runs for each session.  The average parameter values 

were then used to estimate the ICP trajectory for each session, and the errors in these estimates 
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were computed in order to determine the degree of improvement that was achieved by estimating 

session-specific parameters. 

To determine how well the model was able to predict ICP response, two analyses were 

performed.  First, the available subject data was reviewed to determine which sessions contained 

sufficient data to partition them into two segments, A and B, in order to conduct a “within” 

session analysis, such that Segment A could be used for estimation and Segment B for 

prediction. The criteria used for partitioning were that there were at least two protocol events in 

the session, with a sufficient stationary period between the events such that the events can be 

treated as separate occurrences (defined as > 8 minutes after the initial physiological challenge 

set).  For sessions that could be partitioned accordingly, the best fit model parameters for 

Segment A were estimated, the resulting session/segment-specific model was used to predict the 

ICP responses in Segment B, and the prediction MAE was computed. 

The second prediction analysis was a “between” session analysis for subjects with 

multiple sessions. This analysis used the session-specific parameter values from one or more 

early sessions to predict the ICP responses in later sessions and the MAEs were computed for 

these predictions.  Parameters from multiple sessions were aggregated by taking their simple 

mean. 

 

Results 

We studied 9 subjects with severe TBI undergoing ICP monitoring (7 M/ 2 F, age range 3 

– 17 years). 

 

Table 1 shows specific information regarding each session, including its length, the 

various protocol events that occurred, the mean ICP, and the ICP MAD.  Also shown is the error 



  13 

Table 1. Results of parameter estimation process for average parameter values and for session-

specific parameter values. 

 
     Actual ICP Values 

(mmHg) 
Model Error 
w/avg. parameter 
values (mmHg) 

Model Error 
w/individually fit 
parameter values 
(mmHg) 

# Subje
ct 

Session Length   
min 

Challenges Mean 
ICP 

MAD MAE Ratio 
MAE / 
MAD 

MAE Ratio 
MAE/ 
MAD 

1 P004 S1 12 1 HOB 7.30 1.25 13.2 10.6 0.92 .73 
2  S3 18 1 HOB 11.61 4.87 13.2 2.71 0.89 .18 
3  S4 45 1 HOB, 3 RR 13.09 4.02 4.61 1.15 1.50 .37 
4  S5 68 3 HOB, 3 RR 19.35 3.86 9.27 2.40 2.81 .73 
    Weighted Avg. 15.4 3.82 8.36 2.26 2.01 .53 
5 P006 S1 55 4 HOB 5.90 1.38 16.7 12.1 0.69 .50 
6  S4 65 2 RR 6.89 2.26 10.1 4.47 0.80 .36 
7  S7 110 5 HOB, 4 RR 11.80 3.37 3.26 .97 2.29 .68 
8  S8 38 1 HOB 14.66 7.57 3.39 .45 1.89 .24 
9  S9 55 5 HOB 6.46 2.34 7.14 3.05 0.50 .21 
    Weighted Avg. 9.23 3.13 7.60 2.43 1.36 .43 
10 P007 S1 45 5 HOB 13.50 5.49 7.27 1.32 4.96 .90 
11  S3 70 6 HOB 17.28 3.55 6.68 1.88 3.04 .86 
12  S8 60 5 HOB 16.99 1.90 3.39 1.78 2.74 1.44 
    Weighted Avg. 16.2 3.48 5.70 1.64 3.43 .99 
13 P201 S1 125 3 HOB 22.83 1.37 12.3 8.99 2.41 1.76 
14  S2 50 3 HOB 18.25 2.16 7.76 3.59 1.21 .56 
15  S3 52 2 RR 18.80 2.78 5.90 2.12 2.05 .74 
16  S5 77 2 HOB, 1 RR 14.25 1.72 4.04 2.35 1.54 .89 
    Weighted Avg. 19.2 1.83 8.35 4.57 1.93 1.06 
17 P202 S1 90 2 HOB, 5 RR 16.53 1.53 3.23 2.11 1.00 .65 
18  S2 36 2 HOB 16.85 0.93 5.56 5.98 1.12 1.20 
19  S3 70 1 RR 19.35 1.35 8.89 6.59 0.63 .46 
20  S4 60 2 HOB, 2 RR 21.10 5.78 11.42 1.98 1.73 .30 
    Weighted Avg. 18.4 2.39 7.02 2.94 1.08 .45 
21 P204 S2 130 4 HOB, 4 RR 15.19 3.22 8.07 2.51 1.67 .52 
           
21 P205 S4 34 2 HOB 10.31 3.55 4.49 1.26 1.05 .30 
           
23 P206 S1 58 5 HOB 11.82 1.94 6.02 3.10 1.01 .52 
           
24 P207 S1 70 8 HOB 13.65 4.19 4.62 1.10 4.02 .96 

          
 Overall Weighted Avg. 15.1 2.87 7.30 2.55 1.86 .65 

 
in model-calculated ICP for two cases: (1) using the average parameter values and (2) using the 

session-specific parameter values.  Summary rows pertaining to multiple sessions were 
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computed as weighted means based on session length.  Table 1 indicates that using average 

parameter values does not provide accurate predictions, with an average MAE in excess of 7 

mmHg.  Since the average MAD for these sessions was about 3 mmHg, a naïve model which 

assumed that ICP would simply remain constant at its mean value for the entire session would be 

considerably more accurate.  The results when using patient-specific parameter values were 

much better, with a mean MAE of 1.86 mmHg.  The ratio of MAE to MAD for these models is 

less than one on average for 8 of 9 subjects, although 3 out of 24 sessions had an MAE/MAD >1.  

On the other hand, the weighted average MAE/MAD for six of the nine subjects was at or below 

0.5. 

Figure 4 provides a thumbnail picture for each session, showing the protocol 

interventions, and the model results using the session-specific parameters.  The modeled 

response is very close to the actual response in most cases.  Some notable exceptions were found 

in: subject Nos. 10,11 & 12, where there was a mechanical artifact in the actual ICP signal; 

subject No. 10 where the parameter estimation process found parameters that effectively 

neutralized the “normal” response logic, but the model was not capable [by design] of being 

calibrated to produce the opposite response; subject No. 3 where the predicted response at the 

end of the session was much greater than the actual response because the parameters were 

chosen to match an early and very pronounced response to a similar change in HOB; and, subject 

No. 24 where the predicted ICP variations were similar to actual variations in some respects, but 

not in others and were found to be a result of external stimulus from the subject’s parents.  

Table 2 provides additional information regarding model fitness by patient, by type of 

challenge during the session, by the number of challenges, by the length of the session, and by 

the mean ICP for the session.  This table clearly shows the two patients whose responses were 

difficult to capture in the model, and also that the model error for the other seven patients was  
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Figure 4. Thumbnail images of each session and the predicted ICP using individually fit parameter values 
listed in Table 1. The individual plot numbers correspond to those in Table 1. The recorded ICP 
waveform is the green jagged trace. The modeled ICP is the non-jagged blue trace.  The red and black 
traces at the bottom show changes in the HOB and ventilation rate, respectively. 

1  2  3  4  

5  6  7  8  

9  10  11  12  

13  14  15  16  

17  18  19  20  

21  22  23  24  
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Table 2.  Mean model error by subject and for various subcategories 
 

 P004 P006 P007 P201 P202 P204 P205 P206 P207 All 

Mean 
MAE 2.01 1.36 3.43 1.93 1.08 1.67 1.05 1.01 4.02 1.86 

N 4 5 3 4 4 1 1 1 1 24 

 

 HOB Only 
Challenges 

RR Only 
Challenges 

HOB and 
RR  < 3 

Challenges
> 4  

Challenges 
Mean 
MAE 1.96 1.16 2.10  1.43 2.29 

N 14 3 7  10 14 
 

 Length of Session (minutes)  Mean ICP for Session (mmHg) 

 <=40 41-60 61-80 >80  Low  
(<12) 

Medium 
(12-18) 

High 
(>18) 

Mean 
MAE 1.18 1.82 2.14 2.21  1.00 2.36 1.81 

N 5 9 6 4  8 10 6 
 

considerably smaller.  Although the grouping of RR-only sessions indicated much lower error, 

there were only three sessions in this group, none of which involved the two “problematic” 

patients.  As might be expected, MAE was larger for sessions that were longer or contained more 

challenges.  MAE was higher when the mean ICP for the session was moderate rather than being 

either low or high.  

Table 3 describes the 22 situations that were amenable to predicting the response within 

a given session.  Of the 24 sessions included in this study, 19 contained sufficient data to use an 

early segment of the session (the parameter estimation segment, A) to estimate the ICP response 

to challenges in a later segment of the session (the predicted segment, B).  Three sessions could 

be further subdivided into an HOB segment and an RR segment, both of which contained 

sufficient data to be able to conduct a within-segment prediction test for the HOB response 
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separately from the RR response.  Thus there were 22 segments for testing within-session 

prediction.  The average ICP in Segment A and Segment B were nearly equal (~16 mmHg).  The 

overall MAD in both segments was also nearly the same (~2.5 mmHg).  MAE and the ratio  

Table 3. Results of within-session intracranial pressure prediction—by estimating model 
parameters from the patient response(s) during an initial segment of the session; then predicting 
the subsequent segment. 

 

 
MAE/MAD are shown for both the estimation (or training) segment and the predicted segment.  

The weighted average MAE for the predicted ICP in Segment B was 4.56 mmHg, despite the 

fact that the weighted average MAE for training segment was 2.11 mmHg, which is less than the 

   Initial Segment (A) Predicted Segment (B) 
# Subject Session/ 

Subsession 
Len
gth 
min 

Mean 
ICP 
mmHg 

MAD 
mmHg 

Best fit 
ICP 
MAE 
mmHG 

Ratio
MAE/
MAD 

Len
gth 
min 

Mean 
ICP 
mmHg 

MAD 
mmHg 

Pred. 
ICP  
MAE 
mmHG 

Ratio
MAE/ 
MAD 

1 P004 S4 35 13.1 5.01 1.02 .20 10 12.9 .76 3.27 4.30 
2  S5 RR 35 17.3 1.41 1.29 .91 8 14.7 2.03 3.22 1.59 
3  S4 HOB 20 18.8 3.34 2.52 .75 16 25.6 3.22 3.61 1.12 
  Average  15.9 3.47 1.48 .43  16.6 1.77 3.34 1.88 
4 P006 S1 20 7.40 1.68 .57 .34 35 5.13 1.02 .66 .65 
5  S4 25 7.77 .97 .29 .30 40 6.36 2.77 1.22 .44 
6  S7 HOB 33 10.1 1.91 1.00 .52 22 9.64 2.98 1.27 .42 
7  S7 RR 35 13.8 3.44 2.38 .69 20 13.3 4.93 3.96 .80 
8  S9 24 5.1 2.35 .32 .14 31 7.33 2.38 .98 .41 
  Average  9.35 2.17 1.04 .48  8.91 3.05 1.81 .59 
9 P007 S1 30 12.8 7.39 6.04 .82 15 14.9 2.05 11.2 5.47 
10  S3 30 16.4 4.02 2.47 .61 40 18.0 3.50 5.26 1.50 
11  S8 30 16.6 2.24 2.81 1.25 30 17.4 1.53 8.24 5.37 
  Average  15.3 4.55 3.77 .83  16.7 2.36 8.23 3.49 
12 P201 S1 85 22.9 1.51 4.79 3.17 40 22.7 1.05 3.28 3.13 
13  S2 30 18.4 1.77 .99 .56 20 18.0 2.73 2.90 1.07 
14  S3 30 19.1 2.69 2.07 .77 22 18.4 2.87 3.37 1.17 
15  S5 20 15.9 .96 .57 .59 57 13.7 1.71 2.80 1.64 
  Average  20.5 1.71 3.09 1.81  20.0 1.77 3.17 1.79 
16 P202 S1 36 17.1 1.69 .41 .24 54 16.1 1.41 2.19 1.55 
17  S4 42 17.8 2.87 1.29 .45 18 28.5 2.76 12.0 4.37 
  Average  17.5 2.33 0.88 .38  22.8 2.14 7.47 3.50 
18 P204 S2 HOB 57 17.1 2.73 2.80 1.03 23 14.8 2.85 9.16 3.21 
19  S2 RR 20 15.4 3.37 1.02 .30 35 11.9 2.54 1.28 .51 
  Average  16.6 2.90 2.34 .81  14.0 2.77 7.11 2.57 
20 P205 S4 16 13.7 .68 .49 .76 18 7.31 2.20 3.14 1.43 
21 P206 S1 30 11.0 1.31 .81 .62 23 12.7 2.07 3.32 1.61 
22 P207 S1 32 14.6 3.12 2.94 .94 38 12.8 4.70 4.83 1.03 
Overall Average  15.6 2.58 2.11 .82  15.8 2.40 4.56 1.90 
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weighted average MAD of 2.58 mmHg.  The high weighted average prediction MAE was 

influenced by four segments with MAE > 8 mmHg.  Offsetting these high values was five  

segments with MAE ~ 1 mmHg, and the MAE for most of the remaining 13 segments was 

between 2 and 4 mmHg.  

Table 4 shows the results of using the estimated parameters from one or more prior  

Table 4. Results of using parameters estimated from prior sessions to estimate intracranial 
pressure response in subsequent sessions. 

 
# Subje

ct 
 Predicted Session 

  Parameters from 
Session(s) 

Session
No. 

Length   
min 

Mean 
ICP 
mmHg 

MAD 
ICP 
mmHg 

MAE 
Predicted 
ICP  
mmHG 

Ratio 
MAE/MAD 

1 P004 S1 S3 18 11.6 4.87 2.95 .6 
2  S1 S4 45 13.1 4.02 5.37 1.34 
3  S1&S3     6.91 1.72 
4  S1 S5 68 19.4 3.86 7.81 2.02 
5  S1&S3     9.68 2.51 
6  S1&S3&S4     8.36 2.17 
7 P006 S1 S4 65 6.89 2.26 5.10 2.25 
8  S1 S7 110 11.8 3.37 10.53 3.13 
9  S1&S4     8.90 2.64 
10  S1 S8 38 1456 7.57 13.20 1.74 
11  S1&S4     10.46 1.38 
12  S1&S4&S7     8.07 1.07 
13  S1 S9 55 6.46 2.34 5.54 2.37 
14  S1&S4     3.87 1.66 
15  S1&S4&S7     2.01 .86 
16  S1&S4&S7&S8     .90 .39 
17 P007 S1 S3 70 17.3 3.55 6.02 1.70 
18  S1 S8 60 17.0 1.90 5.43 2.86 
19  S1+S3     4.88 2.57 
20 P201 S1 S2 50 18.3 2.16 4.78 2.21 
21  S1 S3 52 18.8 2.78 11.37 4.09 
22  S1&S2     12.21 4.40 
23  S1 S5 77 4.25 1.72 5.72 3.33 
24  S1&S2     3.89 2.26 
25  S1&S2&S3     3.72 2.17 
26 P202 S1 S2 36 16.9 .93 3.20 3.45 
27  S1 S3 70 19.4 1.35 6.31 4.66 
28  S1&S2     7.04 5.12 
29  S1 S4 69 21.2 5.78 9.12 1.58 
30  S1&S2     9.92 1.72 
31  S1&S2&S3     5.78 1.00 
  Weighted Avg.   14.3 3.10 6.74 2.23 
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sessions to predict the patient’s ICP response during subsequent sessions.  A total of 31 cases 

were tested.  The average MAE for this test was 6.74 mmHg.  For five of the 10 predicted 

sessions that were estimated by more than one parameter set, the prediction error was reduced 

when parameter estimates from multiple sessions were incorporated.  However, for four other 

sessions, prediction error increased when parameter estimates from multiple sessions were 

aggregated. 

 

Discussion 

Our main findings were that a protocol for collecting physiologic challenge data in 

subjects with severe TBI is feasible and without undue risk.  Our in silico dynamic ICP model 

was able to consistently and accurately reproduce the subject’s ICP response to changes in RR 

and HOB, with a few noted exceptions. Finally, we demonstrated modest success at predicting 

future ICP changes within a session and, to a lesser extent, between sessions. 

The potential advantages for such an approach are many. Essentially all therapies for 

increased ICP have risks as well as benefits, and some of the risks are substantial including 

cerebral ischemia and worsening ICP. Therefore, the ability to test a specific subject’s best 

response to different therapies before they are administered and determine which would be 

optimal (i.e. best therapeutic response with lowest adverse effect) would be ideal. 

Over the past 30 years, a variety of computer models for calculating ICP dynamics have 

been published in the biomedical engineering literature (15, 16).  These models use differential 

equations to calculate the pressure at different points within the system, taking into account the 

blood vessel and anatomic compartment volumes and compliances. Although interesting 

mathematical results and pathophysiologic insights have been gained from these models, their 

impact on clinical practice has been limited. Reasons for this limited impact may include the 
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complexity of the models and the limited range of bedside in vivo clinical scenarios represented. 

Researchers have attempted to address these limitations by simplifying their models (17) and by 

adding clinically meaningful functionality. Some parameter estimates derived from the 

laboratory data and/or clinical data have been reported, but much of the necessary data remains 

difficult to obtain.  Models have been calibrated to fit data recorded for specific patients (7, 8, 

11-13, 17-21) and excellent results have been reported in some cases (8, 21).  However, to our 

knowledge actual prediction of patient-specific ICP response to therapies or other interventions 

has not been reported. Thus, we suggest that use of an approach similar to ours that incorporates 

detailed and lengthy data recordings plus clinically annotated information (e.g. including the 

exact timing for medications, CSF drainage, ventilator adjustments, etc.) will be required for any 

ICP model to be clinically useful, and will most certainly be needed if models are to be used to 

predict response to therapy. 

The model used in the present research is similar in many ways to previously reported 

dynamic ICP models by our research group in that it considers the cranial vault to contain the 

brain parenchyma plus several fluid “compartments” that together are constrained not to exceed 

the total cranial volume (11-13).  The fluid compartments include the arterial blood volume, 

capillary blood volume, venous blood volume, CSF volume, the brain volume, and “other” 

volume that may or may not be present in a particular patient (e.g. epidural or subdural 

hematoma, intraparenchymal hemorrhage).  The brain volume can be either constant or variable, 

based on the presence and degree of cerebral edema. 

Consistent with prior investigators (15, 17), autoregulation is modeled as a feedback loop 

that causes the cerebral vasculature to dilate or constrict, taking into account control limits that 

are non-linear and asymmetric.  The control logic in our model acts only on the flow of blood 

from the arterial compartment to the capillary bed.  The control logic is proportional and has 
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enough “gain” that it can easily maintain the required flow under normal conditions. However, if 

the venous or arterial volumes are severely reduced, as is often the case with severe TBI, the 

associated nonlinear increases in resistance can “overwhelm” the model’s simplified control 

logic in an unrealistic fashion. 

The main difference between our ICP dynamic model and other models reported in the 

literature is that the state variables are modeled as volumes rather than pressures, and the fluid 

flows into and out of each compartment are clearly identified and represented.  This approach is 

more intuitive, and may facilitate the representation of in vivo pathophysiologic processes.  

Blood pressures are computed from the volumes of the blood compartments and their associated 

compliances.  ICP is computed using the total intracranial volume and the pressure volume index 

(11-13). 

Our model incorporates logic associated with severe TBI pathophysiology, including the 

“other” volume mentioned above, ongoing intracranial bleeding, and focal or generalized 

cerebral edema.  The model also incorporates common therapeutic interventions such as 

elevation of the HOB and changing the minute ventilation to induce mild hyperventilation 

(decreasing PaCO2 to 33-35 mmHg).  We have previously shown that the behavior of our model 

was qualitatively correct (11, 12), and we were able to manually calibrate the model so that it 

replicated retrospective clinical data from two prior subject-specific cases (13).  Preliminary 

parameter estimation results were reported in (12).  Further details regarding the model are 

provided in the Appendix. 

 

Study Limitations 

The ICP dynamic model employed in this study may be too simplified to be able to 

accomplish the task of prediction of future therapeutic response.  More complex models have 
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been reported in the literature, and such models have been shown to be able to match clinical 

data even better than the results shown in Figure 4.  Ursino et al (8) showed model-calculated 

ICP dynamics that are nearly identical to the data.  Still, the results shown in Figure 4 indicate 

that our model is capable of repeatedly generating ICP responses very similar to those seen in the 

actual clinical data. 

Additionally, we may not have collected all pertinent clinically annotated data nor 

accurately incorporated it into the model. Clearly, in a clinical situation all factors that influence 

ICP cannot be controlled (e.g. bedside visitors to the ICU, coughing, administration of scheduled 

medications, etc.).  Incorporating additional data about cerebral edema or intra- or extracranial 

hematoma or hemorrhage from computed tomograpghy or magnetic resonance imaging scans 

may also be of value. And using data from other organ systems (e.g. blood pressure, heart rate, 

arterial oxygen saturation, etc.) and other methods for neuromonitoring (e.g. near infrared 

spectroscopy, brain tissue oxygenation, etc.) may also improve either the model or the predictive 

capabilities. However, while deleting data that does not improve the model may improve the 

overall prediction accuracy, if there is any hope of simulating a real clinical scenario this type of 

“unclean” data needs to be incorporated into the model 

 

Conclusions 

The complexity of the underlying physiologic processes and the dynamic characteristics 

of the ICU environment make it difficult for a computer model to reliably predict ICP responses.  

Nevertheless, we have demonstrated a novel method for data collection, a new dynamic ICP 

model, and an initial attempt to use the model to predict a subject’s response to therapy. We 

suggest that this area of research should be explored in the future with an emphasis on building 
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models that more completely reflect the underlying physiology and that incorporate even finer 

and more granular clinical data. 
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Figure Legends 

 

Figure 1.  Impact of head of bed elevation (HOB) and respiratory rate (RR) changes on 

intracranial pressure (ICP). 

 

Figure 2. Parameter estimation process using an optimization algorithm to find the “best fit” 

parameter values. 

 

Figure 3.  Overview of methodology to assess model prediction capability. 

 

Figure 4.  Thumbnail images of each session and the predicted ICP using individually fit 

parameter values listed in Table 1. The individual plot numbers correspond to those in Table 1. 

The recorded ICP waveform is the green jagged trace. The modeled ICP is the non-jagged blue 

trace.  The red and black traces at the bottom show changes in the HOB and ventilation rate, 

respectively. 

 

Figure 5: Fluid flow concept diagram for ICP Dynamic model 
 
 
Figure 6: Simulink implementation of ICP dynamic model. The primary state variables are the 

six volumes (arterial, brain, capillary, CSF, hematoma, and venous), represented by the green 

shadowed “flowchart” icons. Each of the flowchart icons in this figure represents a masked 

subsystem containing additional model logic. 
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Appendix.  Details regarding the ICP dynamic model 
 

Figure 5 shows the primary volumes and flows, except brain volume, which must be accounted 
for, but does not participate in the flow processes. 

 
 

Figure 5: Fluid flow concept diagram for ICP Dynamic model 
 
Basic Pressure Logic 
• Intracranial Pressure (ICP) = Base ICP × 10^(Total Cranial Volume–Base Cranial 

Volume)/PVI 
 Total Cranial Volume = ABV+CBV+VBV+CSF+BV+HV 
 PVI (pressure-volume index) is the amount of added fluid that would cause 

pressure to increase by a factor of 10 
• Arterial, capillary, and venous pressures  

 Pab = ICP + (ABV)/(Arterial Compliance) 
 Pcb = ICP + (CBV)/(Capillary Compliance) 
 Pvb = ICP + (VBV)/(Venous Compliance) 

Basic Autoregulation (AR) Logic 
• Arteriolar to capillary resistance changes in order to maintain needed blood flow rate 

 Higher resistance = constriction 
 Lower resistance = dilation 
 A time constant characterizes the adjustment process 

• Typically 2-3 minutes (estimated from patient response data) 
 Resistance is asymmetrically bounded by minimum and maximum values 

• Cerebrovasular AR responds to multiple stimuli 
 Changing Metabolic needs (e.g., asleep vs. awake) 
 Changing the HOB, changing RR, etc.  
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Figure 6 shows the model, as implemented in Simulink.  The state variables in the model are 
the volumes of the various fluid compartments. Changes in these volumes cause changes in 
pressure. Pressure changes affect the flows, which in turn impact the volumes. These feedback 
loops dominate the behavior of the model, and the most influential of them is the ICP loop itself. 
ICP is a function of the sum of the six volumes in the model. ICP also directly influences four of 
those volumes: arterial blood, capillary blood, CSF, and venous blood. The other two volumes, 
representing the brain parenchyma and hematoma, influence ICP but are not influenced by ICP 
in our model. The inputs from the physiologic challenge protocol are each simulated in the 
model by specific blocks for that purpose. 
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Figure 6: Simulink implementation of ICP dynamic model. The primary state variables are the six volumes (arterial, brain, capillary, CSF, hematoma, and 
venous), represented by the green shadowed “flowchart” icons. Each of the flowchart icons in this figure represents a masked subsystem containing additional 
model logic. 
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