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Coatings
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Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 92707, United States
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ABSTRACT: Nanoclays are small enough to appear optically
transparent, yet they have large surface-to-volume and high
aspect ratios that can significantly inhibit water diffusion when
incorporated into protective coatings. Clear coatings, which
minimally affect the aesthetics of metalworks, are commonly
applied to outdoor metalworks, such as sculptures, to prevent
and slow corrosion. In recent years, waterborne clear coatings,
rather than solvent-based clear coatings, are increasingly used in
many applications to reduce the quantity of volatile organic
components in the formulation, yet the performance of dry films
produced from waterborne colloidal suspensions is generally
poorer. In this work, we aim to improve the barrier properties of
a highly weatherable waterborne acrylic/polyvinylidene fluoride
emulsion by adding a synthetic nanoclay, Laponite, into the formulation. To improve clay−polymer compatibility, the clay was
covalently modified using an acetoxy or perfluoroalkyl silane monomer that is reactive with the hydroxyl groups at the edges of
the Laponite platelets. Cation exchange on the clay faces using phosphorylcholine was conducted to increase the stability in water
and characterized by zeta potential. Resulting changes in barrier properties of the polymer nanocomposite films were
characterized by gravimetry, colorimetry, and electrochemical impedance spectroscopy. Surface ablation after accelerated artificial
weathering was monitored by attenuated total internal reflectance Fourier transform infrared microspectroscopy and Raman
microspectroscopy, thin film X-ray diffraction (TF-XRD) and gloss and thickness measurements. The composite films showed
many improved properties: reduced water sensitivity and ultraviolet-induced polymer degradation, which increased the barrier
properties and reduced the diffusion constants over both short- and long-term weathering studies compared with films without
nanoclays. The diffusion constant measured for the highest performing composite film showed that the performance gap between
relevant water- and solvent-borne coatings used to protect outdoor metals was narrowed by half.

1. INTRODUCTION
With protective coatings, it is possible to minimize corrosion of
outdoor metalworks, such as bridges, architectural elements,
and sculptures, by preventing or slowing the passage of water
and ions into the metal substrate. Protective coatings are often
pigmented because pigment particles can act to further slow
mass transport of corrosives through films. However, the use of
optically transparent coatings is preferable when the ability to
see the substrate is a critical feature for aesthetic and
preventative maintenance reasons. Previous work by us and
others has shown that polymeric coatings containing
polyvinylidene fluoride (PVDF) have longer working lifetimes
than polyacrylics and other polymers because of excellent
chemical and thermal stability.1−4 Yet, it has also been shown
that water uptake into waterborne latex coatings is greater than
solvent-based coatings due to voids in the film caused by
spherical close-packing defects, resulting in both a measurable
decrease of barrier properties and visible water whitening of the
transparent film.5 In this work, we aim to reduce mass transport
into those films by incorporating optically transparent nano-

clays that have been chemically modified with acetoxy or
perfluoroalkylsilanes to lower their surface energies and
increase their dispersibility and compatibility within the coating.
Incorporation of nanoclays into the resulting dry film should
create a tortuous path that would slow diffusion of ions through
the coating to the metal substrate.6−8 Such composite films are
expected to have increased overall barrier properties, resulting
in prolonged working lifetimes and reduced corrosion of the
underlying metal substrate. To our knowledge, fluorinated
nanoclays have not been incorporated into waterborne PVDF/
acrylic coatings. Most previous studies involving Laponite
polymer nanocomposites (PNCs) used styrene and butyl
acrylate dispersions,9−11 which are not as suitable as PVDF for
long-term weatherability.
Incorporation of nanosized inorganics into thermoplastic

coatings should result in films having increased hydrophobicity,
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film hardness, and inhibited water diffusion, while retaining
optical clarity and easy spray application.12,13 Laponite is a
synthetic silicate nanoclay in the smectite family, depicted in
Figure 1A. The unique properties of clays come from their high
aspect ratios (25), specific surface area (350 m2/g), discoid
single crystals, and charged surfaces. They are often used as
rheology modifiers because the charged interfaces act to control
diffusion in wet suspensions and as such have been used to
create a range of phases from sols to gels and charged
glasses.14,15 Laponite and other smectite clays have a
concentration-dependent phase diagram, where the amount,
pH, and dielectric constant of the bulk solvent play an integral
role in inhibiting or facilitating particle interactions. These
factors also affect the electrostatic interactions when the clay is
added to a colloidal organic polymer suspension.16 The density
and organization of the charges around the particle and
thickness of the slipping plane can be measured by the zeta
potential, where high potentials (large in absolute magnitude)
lead to particle repulsion and low potentials (small in absolute
magnitude) lead to flocculation due to small slipping planes
that are overcome by attractive forces. At near-neutral pH
values, expansion of sodium cations out of the interlayer space
induces a negatively charged face and partial positive charge
along the edge of the platelet, as depicted in Figure 1B.17 The
mobile interlayer sodium cations encourage the clay to swell in
water producing exfoliated (individual) 3-layered (T−O−T)
inorganic sheets. Like many clays, Laponite is highly modifiable,
in that it has both accessible hydroxyl groups available for
silanation on the sheet’s broken edge and exchangeable cations
that balance the negative faces.18−21

The relative strength of stacking (attractive) versus dispersive
(repulsive) forces must be carefully balanced to prevent
nanoclay agglomeration and promote exfoliation. To produce
aqueous dispersions, modification of the nanoclay was
accomplished by (1) covalent reactions with acetoxy or
perfluoroalkylsilanes to increase the chemical compatibility
between clay and latex particles and (2) cation exchange
reactions using phosphorylcholine (Pc) to charge-stabilize the
covalently functionalized nanoclays. With surface modification,

the balance of those attractive/repulsive forces is altered, so the
amount and type of surface coverage can have a significant
influence on the dispersibility. X-ray photoelectron spectrosco-
py (XPS) and Raman spectroscopy were used to verify surface
functionalization. Gallery spacing measurements were con-
ducted using wide-angle X-ray diffraction (WAXD). Particle−
particle interactions of wet suspensions of nanoclays and
polymer were characterized by zeta potential measurements.
If not well-formulated, mechanical strain in composite films

can result in cracking upon drying and/or weathering due to
increased hardness and latex packing defects that increase the
water volume fraction of the material.22,23 Other voids and
defects in films are produced over time from the loss or surface
migration of inorganic fillers (such as pigments or clays).
Although there are both environmental and cost motivations to
produce coatings from waterborne polymeric dispersions, the
resulting films are more permeable to water due to their
chemistry and film-formation mechanism.24 Adsorption of
water droplets in voids that are sufficiently large to scatter white
light will whiten transparent films.5 In this work, mass transport
was monitored using colorimetry, gravimetry, and impedance
spectroscopy.
To simulate the effects of weathering, the films were exposed

to ultraviolet (UV) light and condensation cycles in an
industry-standard accelerated weathering chamber (QUV).3

Electrochemical impedance spectroscopy (EIS) is a non-
destructive technique for monitoring dielectric properties of
materials5,24−26 and has been shown to produce similar or more
sensitive results as attenuated total internal reflectance Fourier
transform infrared spectroscopy (ATR-FTIR) or gravimetric
methods for detecting water uptake into polymers.27−30 Films
that enable facile passage of water and electrolytes (i.e.,
corrosives) are more poorly protective, and such films will have
larger capacitances and larger diffusion constants than those
that are highly protective. By fitting equivalent electrical circuits
(EECs) to the EIS spectral output, the data are dissected into
frequency ranges where different circuit elements are dominant.
In addition, the values of each element are monitored for
changes over time. Because temperature and humidity

Figure 1. Single unit cell formula for Laponite is Na0.7[(Si8Mg5.5Li0.3)O20(OH)4]. A typical 25 × 1.29 nm platelet, abbreviated as LNa (a), contains
approximately 1000 unit cells per discoid. Chemical modification of the clay surface (b) results in the covalent attachment of APTMS (LA) or
FOTES (LF) at the tetrahedral edge and ionic exchange on the face with Pc (resulting in Laponite-APTMS-phosphoryl choline (LAPc) or Laponite-
FOTES-phosphoryl choline (LFPc)).
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fluctuations during weathering eventually lead to coating failure
such as cracking, time-course EIS spectra of films are used to
prove insights into the electrochemical changes that occur
leading up to failure. Gloss and film thickness measurements
provided insights into bulk film changes.
During the lifetime of an outdoor coating, significant

chemical changes may also occur that have a deleterious effect
on its protective quality. The acrylic component of the PVDF
resin is chemically similar to the polymer used in the primer
coat of the PNCs. The acrylic polymer is a commonly used
solvent-based coating for the protection of bronzes (Paraloid B-
44).25,31−34 In previous work, we have observed that loss of the
ester functionality is the primary means of material loss and is
the pathway of the degradation for PMMA-co-PEA during
outdoor and accelerated weathering.35 Although solvent-based
acrylic coatings are commonly used as protective coatings, their
susceptibility to chemical degradation during weathering is a
notable reason to investigate more highly weatherable
substitutes that offer excellent corrosion protection at a lower
ultimate cost to society.

2. EXPERIMENTAL SECTION
2.1. Applied Coatings. Preparation of bronze and vinyl

substrates is detailed elsewhere.5 Base coat primers were resin-
dissolved in solvent [Paraloid B-44 resin, principally composed
of poly(methyl methacrylate-co-ethyl acrylate), in 20% (w/w)
toluene, Dow, Inc.]. The top coat used was waterborne Kynar
Aquatec FMA-12 latex [50:50, PVDF and poly(methyl
methacrylate) blend, Arkema, Inc.]. Substrates (bronze and
vinyl) were spray-coated with a Fuji HVLP Super 4 XPC for a
dry film thickness of approximately 10−15 μm for each layer
(i.e., primer base coats or PVDF top coat) for a total dry film
thickness of approximately 30 μm. Coatings were annealed in
an oven for 6 h at 60 °C. Accelerated weathering was
performed according to ASTM G154 Cycle B: 4 h of UV-B
exposure (60 °C, Ee = 0.71) and 4 h of condensation (50 °C,
recirculating distilled water). For whitening and mass uptake
values, films on vinyl were soaked in distilled water and
analyzed at 4 and 72 h, with three trials of each coating type.
Coating masses were taken as the average of three measure-
ments (N = 3, M = 3), and for grayscale measurements, the
films were illuminated for imaging according to ASTM D1729-
96. Images were taken using a Nikon D40 camera and
converted to grayscale in Adobe Photoshop CC, where the
average k value (N = 3, M = 9) of the chart was obtained. Gloss
and thickness measurements were acquired as an average of five
trials using a Gardco μ-Tri-Gloss meter.
2.2. Preparation of Nanoclays. Laponite RD and S482

(Southern Clay Products, Inc.) and silylating agents 3-
acetoxypropyltrimethoxysilane (APTMS, Gelest, Inc.) and
(tridecafluoro-1,1,2,2-tetrahydrooctyl) triethoxysilane
(FOTES, Gelest, Inc.) were used as supplied. To obtain
covalently modified clays, toluene was distilled directly into a
flask containing Laponite RD (1 g nanoclay/100 mL solvent)
under anhydrous conditions in a closed system (δ+ N2 flow).
After 30 min of heating with stirring at 35 °C, the silane was
added to the toluene clay mixture (1 mmol/g clay), and the
contents in the flask were left to stir for an additional 4 h at the
same temperature. The covalently modified Laponite was
isolated for diffraction analysis by vacuum filtration with a 0.2
μm nylon membrane, washed extensively with toluene and then
dioxane, and dried for 12 h at 65 °C. The aqueous dispersions
of the modified clay [Laponite−APTMS (LA) or Laponite−

FOTES (LF)] were obtained by quenching the grafting
reaction with 50 mL of water and isolating the water-stable
nanoclay by liquid−liquid extraction in a separatory funnel. For
cation exchange, aqueous dispersions of LA and LF were
diluted to 100 mL and heated to 50 °C after which 1 equiv
(CECLaponite = 0.75 mmol/g clay) of phosphocholine chloride
calcium salt tetrahydrate was added and stirred for 12 h. The
exchanged/grafted clay Laponite-APTMS-phosphoryl choline
(LAPc) or Laponite-FOTES-phosphoryl choline (LFPc) was
vacuum filtered, washed with cold ethanol, and immediately
redispersed in DI water. Aqueous dispersions (2.6% w/w) of
clays of LAPc, LFPc, or Laponite S482 (LNa: unmodified sodic
Laponite blended with peptizing agent tetrasodium pyrophos-
phate) were added with high shear to freshly prepared PVDF
latex immediately after the preparation, and no aging/gelation
of the clay was observed at the time of incorporation.

2.3. Surface Characterization. Zeta potentials were
measured on filtered aqueous clay dispersions using a Malvern
Zetasizer Nano and disposable plastic cells. Thermogravimetric
measurements were acquired in platinum crucibles at a
scanning rate of 20 °C/min from 50 to −750 °C using a
PerkinElmer TGA7.
All X-ray studies were acquired using a Rigaku Ultima IV

Multipurpose X-ray diffractometer with a Cu kα radiation
source (λ = 1.542 Å) and step size = 0.002° for 12 s. Powder
samples were ground finely using an agate mortar and pestle
and pressed into a random orientation on a mirrored slide.
Thin film spectra with or without a 0.5° grazing angle were
acquired in situ after alignment of the sample in the x, y, and z
directions. XPS measurements were performed on vacuum
dried clays using a Phi VersaProbe II with an Al Kα anode (10
μm spot size) and MultiPak software.
ATR-FTIR spectra were acquired using a Nicolet Con-

tinuμm FTIR microscope with a ThermoScientific iS10 infrared
spectrometer and a 50 μm MCT detector (4 cm−1 resolution)
operated with Omnic. Spectra were acquired using a diamond
ATR objective to enable in situ analysis of a roughly circular
area with a 250 μm diameter. Data were transformed using an
N−B strong apodization function and Mertz phase correction.
Raman spectra were measured with a Horiba LabRam
microscope using a 532 nm diode laser (22 mW), 50×
objective (200 μm confocal hole), 1800 g/mm grating, and
LabSpec six software. Cross sections for maps were sliced with
a scalpel, mounted on a carbon tape, and mapped in a 5 × 15
array with a 633 nm diode laser (16 mW).

2.4. Electrochemical Characterization. A working
electrode area of 14.6 cm2 was saturated with an electrolyte
(3% NaCl) for EIS analysis using a Gamry Reference 600
Potentiostat from 1 MHz to 0.1 Hz with AC voltage 20 mV rms
and DC voltage 0.0 V versus open circuit potential (0 ± 200
mV). EEC models were fit to area-normalized spectra with
ZView to extract values of individual circuit elements at each
time point. Errors in fit EEC models to the data were calculated
as the sum of the residual error where the fit differed from the
experimental data. Capacitance values (Ct) during the
immersion at time (t) for diffusion analysis were calculated at
10 kHz according to eq 1:

ω
= −

C
Z
1

t
i (1)

where ω is the radial frequency and Zi is the imaginary
component of the impedance. The rate of diffusion (D)
through the coatings by the most mobile species (water) was
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determined by fitting the linear portion of the relative uptake
profiles to eq 2:

π
= ⎜ ⎟⎛

⎝
⎞
⎠

C C
C C

D
L

t
log( / )
log( / )

4t 0

s 0
2

1/2
1/2

(2)

where C0 is the capacitance of the film before the electrolyte
immersion found by extrapolation to t = 0 s, Cs is the saturated
capacitance of the film, L is the thickness of the coating, and t1/2

is the square root of the immersion time.

3. RESULTS AND DISCUSSION
3.1. Effects of Surface Modification on Nanoclay

Stability. Covalent modification of Laponite with APTMS or
FOTES silanes occurs via a reaction between the hydroxyl
groups on the edge of the clay sheet and a silane bond to
produce covalent siloxane bonds, as illustrated by the products
shown in Figure 1B. Initial grafting reactions produced
organophilic nanoclays that were not stable in water. To
promote the exfoliated state (aqueous isotropic), ionic
exchange with Pc tetrahydrate was carried out to create
covalently modified and cation-exchanged nanoclays, abbre-
viated as LAPc and LFPc. In addition to surface coverage and
grafting efficiency, the presence of chemical modifiers at each
step of modification was initially confirmed by ATR-FTIR35

and then investigated by XPS, WAXD, TGA, and Raman
spectroscopy; a summary of these data is presented in Table S1
and sections 1−3 of the Supporting Information (SI).
Having hydrophilic nanoclays is important to prevent

flocculation or gelation upon addition to the aqueous latex
coating dispersion. Both the polar tail of Pc and the occasional
exchange of monovalent sodium for a divalent calcium
counterion can increase the hydration sphere and water
sorption of the nanoclay particles. Characteristic Raman
peaks of the layered silicates are shown in Figure 2 and include
a number of O−H stretches from metal−hydroxyl complexes as
well as water adsorbed in various conformations: 3710−15
cm−1 (Mg/Li−OH), 3688 cm−1 (Si−OH), 3620 cm−1 (inner
sheet M−OH), 3425 cm−1 (amorphous H−OH, bulk water),
and 3200 cm−1 (in-phase H−OH with crystalline structure).

Hydrophilicity was determined by the intensity ratio of the
Raman shift of bulk water (at 3450 cm−1) to the silicon oxide
lattice of the nanoclay (Si-O4 at 683 cm−1, shown in Figure
S1).36 The hydroxyl stretching bands shown in Figure 2
indicate that the largest hydrophilicity ratio was observed for
the unmodified clay =‐I( 0.37)H O/Si O2 4

. Bulk water was
reduced significantly upon modification with organosilane and
subsequently increased after the cation exchange (LA = 0.18 to
LAPc = 0.29 and LF = 0.12 to LFPc = 0.19). Similar trends
were observed by TGA where the unmodified clay LNa had
twice as much total water adsorbed by mass than that of LA or
LF (Figure S3). The higher water content in the Pc-exchanged
clays is consistent with having successfully transitioned the
covalently modified nanoclays from organophilic to hydrophilic
after the cation exchange.
Clays are considered to be stable (i.e., unlikely to flocculate)

in dilute dispersions that have zeta potentials, ζ, more negative
than −30 mV.37 Unmodified LNa had a ζ = −42.9 mV when
dispersed in water at neutral pH. The grafted/exchanged clays
had slightly increased potentials of approximately −38 mV for
both LAPc and LFPc. We have previously used small-angle X-
ray scattering (SAXS) when formulating the latex-clay
suspensions to ensure adequate exfoliation in both aqueous
solutions and the polymer latex suspension.35 In that work, it
was noted that cation-exchanged clays (LAPc and LFPc) were
stable in water, whereas those that had not been exchanged (LA
and LF) were not stable in water without the addition of a
peptizing agent. From these combined data, we demonstrate
that such modifications to clays can result in aqueous stable
dispersions.

3.2. Barrier Properties of Waterborne PVDF−Clay
Nanocomposites. 3.2.1. Mass Transport of Fresh and
Annealed Coatings. The grayscale values of fresh and annealed
PNC films on a black substrate measured after water-soaking
for 4 and 72 hours are shown in Figure 3, where black = 0% for

a transparent film and white = 100% for a completely opaque
film. After soaking for 4 h, the values were similar across films.
However, sustained soaking for 72 h showed that water
whitening was decreased by 50−65% for films with modified
nanoclays compared with those without soaking. These data
suggest that the numbers and/or volumes of light-scattering
voids present in the final films were reduced by adding
modified nanoclays LAPc and LFPc into the wet suspensions
but not unmodified LNa.
Permeability tests of the fresh (dry but not weathered) films

were conducted by allowing each coated substrate to soak in
the electrolyte until saturation, and the capacitance was

Figure 2. Raman spectra of the hydroxyl and aliphatic regions of
unmodified and functionalized nanoclays, normalized to the Si-O4
band at 683 cm−1. There are typically 1.4 water molecules coordinated
to each Na+ and 4.4 water molecules coordinated to each Ca2+ (the
counterion for Pc used in the cation exchange). There are two
hydroxyl binding sites in the clay crystal structure, M−OH denotes
inner sheet hydroxyls attached to a silicon (Si−OH) or magnesium
(Mg−OH). The vibrations of external hydroxyls are at higher
frequencies as labeled.

Figure 3. Whitening of the fresh (F) or annealed (A) films on black
reference substrates after soaking in the electrolyte for 4 and 72 h. The
initial grayscale values of all films were approximately 8%.

ACS Omega Article

DOI: 10.1021/acsomega.6b00091
ACS Omega 2016, 1, 138−147

141

http://pubs.acs.org/doi/suppl/10.1021/acsomega.6b00091/suppl_file/ao6b00091_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.6b00091/suppl_file/ao6b00091_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.6b00091/suppl_file/ao6b00091_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.6b00091/suppl_file/ao6b00091_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.6b00091/suppl_file/ao6b00091_si_001.pdf
http://dx.doi.org/10.1021/acsomega.6b00091


monitored as an impedance measurement at 10 kHz, using the
imaginary part of the impedance as the capacitance. Relative
capacitance (C/C0) of annealed films versus √t is plotted in
Figure 4. The traces showed that diffusion through the films
occurred in two stages: initial linear uptake and then a slow
percolation until the films became saturated. The initial uptake
profiles (35−200 s1/2) of annealed PVDF and PVDF + LNa are
considered to be type II Fickian diffusion, meaning that the
pores are large enough that they do not restrict the movement
of ions. In contrast, the decreased slopes of the films with LFPc
and LAPc are indicative of a material having a more constrained
diffusion profile than for the other two films. The diffusivity of
each coating to water can be quantified by the time it takes to
saturate a film and the magnitude of the films’ capacitance.26−29

The diffusion coefficients of water D( )H O2
through the fresh

and annealed films are listed in Table 1. The fresh PVDF
coating with the unmodified clay LNa had the freest ion
transport, 5 × 10−9 cm2/s, and developed visible pores on the
coating surface upon extended soaking times. Fresh coatings
with LAPc and LFPc had diffusion rates that were
approximately 6 times slower than for fresh LNa- and PVDF-
only films. In annealed films, the incorporation of LFPc into the
PVDF coating halved its diffusion coefficient. The relatively free
diffusion observed in the LNa composite film compared to the
film without clay suggests that the high surface energy of the
clay resulted in aggregation in voids at the surface that are large
enough to scatter light,38 decreasing the film whitening (as
voids would be filled with the clay) and increasing the mass
uptake (as the unmodified clays are highly charged). For
comparison, diffusion through the best performing film (LFPc)
was larger than that of the industry-standard solvent-borne
acrylic coating by only a factor of 1.8. Calculations have
demonstrated that ion movement is restricted when pores are
narrowed to less than twice the diameter of the diffusing
species.26,39,40 For water, having a diameter of ∼0.3 nm, the size
when movement becomes restricted is approximately 0.6 nm;

therefore, the data suggest that any pores that exist in the LAPc
and LFPc films are approximately 0.6 nm or smaller.
Having gained an understanding of the presence of light-

scattering voids and permeability profiles of the composite
films, the entire water content within the soaked films was
measured by mass uptake studies. The data shown in Figure 4b
reveal that there is a much larger mass increase for the annealed
films of PVDF and PVDF + LNa than for those with modified
nanoclays after soaking for both 4 and 72 h. Aside from having
higher surface energy and clay-filled voids, LNa films absorbed
significantly more water than the other nanocomposite films
may be because of a nonreversible expansion of the mineral
structure of LNa upon heating (annealing) or soaking,41 which
is a response that should be reduced after the cation exchange
(i.e., as in LAPc and LFPc). It is also possible that unmodified
nanoclays are more easily washed out during soaking, resulting
in the production of voids formerly occupied by the clays.
It is likely that films containing modified nanoclays showed

improved barrier properties for two reasons. First, the nanoclay
itself provided a tortuous pathway for water. Second, the
covalently linked molecules have similar chemistry as the
polymer (with APTMS being similar to the acrylic portion and
FOTES being similar to the PVDF portion), reducing the
surface energy difference between the polymer and clay and
encouraging the formation of an interpenetrating network in
the composite, rather than clay aggregation in the interstitial
voids. From the very small increase in the whiteness value
observed after 72 h compared with 4 h soaking times of the
modified composite films, the data also suggest that annealing
after application is not necessary for those films contrary to
previous results for this latex binder.5 Although a significant
reduction in mass transport was shown in modified composite
films, remaining questions include differentiating the effective-
ness of the acrylic versus the perfluoroalkyl-modified clays in
corrosion prevention and evaluating the long-term performance
profiles of the composite films.

Figure 4. (a) Diffusion profiles of the electrolyte using a relative capacitance of the films over time, with the inset provided for visual clarity of the
two films. (b) Mass uptake percentage of various annealed coatings after soaking in water for 4 and 72 h. The shade of each bar represents the
grayscale value shown in Figure 3.

Table 1. Barrier Properties of the Films before and after 4500 h QUV-Ba

DH2O (cm2/s) fresh DH2O (cm2/s) annealed |Z|0.1 Hz (MΩ·cm2) initial |Z|0.1 Hz (MΩ·cm2) QUV 4.5k h electrochemical stress index

PVDF 2.4 × 10−9 4.8 × 10−10 536 34.8 2.66
PVDF + LNa 5.0 × 10−9 5.3 × 10−10 2910 417 1.48
PVDF + LAPc 8.6 × 10−10 3.7 × 10−10 3490 1530 0.993
PVDF + LFPc 7.6 × 10−10 2.6 × 10−10 4210 2390 0.987

aFor comparison, diffusion constants (DH2O) for other types of annealed coatings: wax = 1.31 × 10−9 cm2/s, solvent-based acrylic = 1.46 × 10−10

cm2/s, and waterborne PVDF 70:30 = 3.95 × 10−10 cm2/s.
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3.2.2. Impedance and Circuit Values as Metrics of
Protective Quality during Weathering. To address these
questions, weathering of the films with characterization by EIS
was carried out to gain greater insight into the transport of
electrolytes through the films over time. Aggressive weathering
conditions were used to determine if either chemical-
modification scheme provided a significant improvement in
long-term performance.
Total impedance at low frequencies (|Z|0.1 Hz) is usually

dominated by the coating resistance (Rcoat) or charge transfer
(Rct) resistance when the |Z| is large. Decreases in the value of
the impedance at 0.1 Hz are correlated with decreases in film
barrier properties, where 10 MΩ is the minimum acceptable
value of protective films42 (or in our cell setup, 146 MΩ·cm2).
Impedance values for the nanocomposite and control films are
listed in Table 1 and plotted for more than 4500 h of
weathering in Figure 5. Low-frequency impedance increased for

all films upon QUV weathering, likely because of annealing and
other film morphological/chemical changes, before it decreased
from its maximum value after 1500 h of exposure. By this
metric, the LFPc film was the best protective coating as it
retained a high initial impedance of 4210 MΩ·cm2 at 0.1 Hz
during weathering with a final value of 2390 MΩ·cm2 after
weathering (−43%). The nanoclay-free PVDF control film was
the least protective with an initial impedance of 536 MΩ·cm2

and the most drastic decrease to 34.8 MΩ·cm2 (−93%), below
the minimum acceptable value. The film with added LNa had
an initial impedance of 2910 MΩ·cm2, which showed
improvement over PVDF without the nanoclay and retained
overall barrier properties during weathering. Although a final
impedance of 417 MΩ·cm2, a decrease of −86% approached
the minimum protective impedance value for coatings. The
coating with LAPc showed a similar performance to LFPc films
with a high initial impedance of 3490 MΩ·cm2 and a relatively
small (−53%) decrease in barrier properties yielding a final
impedance of 1530 MΩ·cm2. As predicted by the small mass
transport values, this EIS data shows that coatings with
chemically modified nanoclays retained their protective
qualities the most during weathering.
It is also useful to consider changes in key EEC elements

compared with their initial values over time. From model-fit
values of the pore resistance and coating capacitance in Figure
5b,c, a similar trend to impedance values is observed and is
discussed in more detail in section 4 of the SI. The polymer-
only film showed the smallest relative pore resistance and
largest relative coating capacitance, whereas the polymer with
added LFPc showed the largest relative pore resistance and
smallest relative coating capacitance. With the exception of the
LFPc film, small spots of corrosion appeared on the other
coated substrates at the indicated time points (dashed lines) in
Figure 5b. Notably, the LNa film showed corrosion at the
earliest time point (1500 h), possibly because of the loss of the
clay from that film. In addition, each increase in the impedance
of the LNa film (2000 and 3500 h) was accompanied by an
increase in Rct, which indicated that growth of a passivating
layer of corrosion was filling in pores. Similar observations were
made for LAPc at a much longer exposure time of 4500 h.
Small layers of corrosion at the bottom of pore channels offered
limited protection, as their resistance was eventually overcome
during soaking studies. By all of these EIS measures, LFPc was
the only coating that did not develop visible corrosion and had
a significantly better performance than the other films during
accelerated weathering.
Another measure of a film’s ability to prevent corrosion is the

time constant (Tcoat = CcoatRpore), which is discussed for each
film in section 4.1.3 of the SI. Both initially and throughout
weathering, the resin-only control film performed the poorest
with respect to each circuit element and had the lowest overall
barrier properties. Addition of any clay increased the time
constant to 5−45 times that of the polymer-only coating.

3.2.3. Electrochemical Stress Index Changes after Weath-
ering. Using maximum and minimum values from the time-
course EIS spectra of key elements in the EEC in Figure 5d,
mechanical stress within a film can be estimated by an
electrochemical stress (ES) index43 shown in eq 3:

Figure 5. Impedance analysis of the films with and without nanoclays.
Plots of (a) total impedance at low frequency 0.1 Hz as measured for
more than 4500 h of QUV-B weathering, where the asterisk (*) marks
the transition to a more complex EEC, when percolation through the
top layer of the coating became measurable. Coating resistance (b)
and capacitance (c) are plotted using the “Before Weathering” model
in (d) until 3000 h for PVDF and 4000 h for PVDF + LNa; thereafter,
the “Failure after Weathering” model in (d) was used. Dashed vertical
lines in (b) mark the time point when corrosion on the substrate
became visible as small circular brownish dots on the samples.
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In this calculation, a resulting value close to zero indicates low
stress, whereas a value of 3 is the theoretical maximum. By this
metric, the PVDF resin (control film without the nanoclay) had
an ES = 2.66 after 4500 h of weathering, which was the highest
stress index in the study and makes this coating the least
weatherable. Incorporation of the nanoclay had positive effects
on reducing the stress index of the material: the unmodified
clay LNa had an ES = 1.48 and films with modified clays
showed even smaller changes where ES = 0.993 for LAPc and
ES = 0.987 for LFPc. From these data, incorporation of
nanoclays reduces the stress index of this PVDF coating, while
the magnitude of that change was dependent on the chemical
modification of the nanoclay.
3.3. Photochemical Changes of Nanoclay Composites

during Weathering. The data presented thus far showed that
addition of chemically modified nanoclays significantly
improves the short- and long-term barrier properties of an
already highly weatherable coating. In an ATR-FTIR study, we
observed that acrylic side groups from the polymer were lost
with weathering, as shown by the subtraction spectra of PVDF/
acrylic films in Figure 6, and that the losses were not equal
across all films. It is useful to note that many of the degradation
products of acrylic polymers are volatile and thus are not
detected, especially near the surface. In the IR subtraction
spectra, each negative peak is associated with the acrylic portion
of the resin, whereas nearly all positive peaks are attributed to
the PVDF portion. Specifically, loss of acrylic groups is readily
observed by a large negative peak at 1731 cm−1 associated with
the carbonyl in the acrylate (a functional group not present in
PVDF). Additional loss of aliphatic methyl character was
observed at 2989 cm−1 (CH3 νas), 2877 cm−1 (CH3 νs), and
1472/1435 cm−1 (CH3 δas), whereas a loss of aliphatic
methylene character was observed at 2958 cm−1 (CH2 νas),
2847 cm−1 (CH2 νs), and 1450 cm−1 (CH2 δ scissor). The
largest change in aliphatic groups occurred with a negative peak
at 2926 cm−1 and was assigned as a methylene stretching band.
A variety of C−F2 stretching vibrations were present from 1300
to 800 cm−1, all positive in the subtraction spectra. Large
positive peaks associated with the PVDF backbone were

assigned to the CH2 scissor mode (1400 cm−1), CF2/CH2
twisting (882 cm−1), and CF2/CH2 skeletal-β twisting (840
cm−1). The increase in the PVDF vibrational modes indicates
that the component exists in greater proportions at the surface
of the coating. In fact, after 4000 h, the ATR-FTIR spectrum
indicated that the surfaces of the films without nanoclays were
nearly devoid of any acrylic character in the polymer and were
nearly purely PVDF. The smallest difference peaks were
observed for the perfluoroalkyl clay composites using ATR-
FTIR spectroscopy. It has been hypothesized that smectites can
act as free radical quenchers during UV exposure,44 which
could also explain the reduction in photodegradation observed
when the nanoclays were incorporated.
Surface ablation of the coatings was confirmed by thin film

X-ray diffraction (TF-XRD) (data shown in Figure S5), where
the spectra show two important features: (1) a loss of film
thickness and (2) surface enrichment of crystalline PVDF. The
film that thinned most and showed the greatest increase in
PVDF crystallinity after weathering was the polymer-only film.
TF-XRD data also showed that addition of nanoclays reduced
the film loss and changes in polymer crystallinity. Material loss
can also be monitored by relative changes in the film thickness
and gloss measurements, data for which are listed in Table 2 for

each coating after weathering by QUV. Contrary to what was
predicted, addition of the LNa clay did not appreciably affect
gloss of the PVDF coating before or after weathering but
slightly prevented the film loss over time. LFPc films had the
lowest initial gloss compared with all of the other films (having
a more matte appearance is often considered to be an aesthetic
improvement for coatings, to reduce glare). LFPc films also
showed the least change in gloss and the smallest change in the
film thickness (<30%) after weathering. Because the chemical
functionality of the APTMS silane is more similar to that of the
ester pendant groups in the acrylic resin, modified LAPc clays

Figure 6. FTIR-ATR spectra of coated bronze panels before and after 4000 h of weathering by QUV. The subtraction results were produced from
the weathered minus the initial (before weathering) spectrum and are vertically offset by −0.1 a.u. for visual clarity.

Table 2. Gloss and Thickness of the Films before and after
4000 h QUV-B

gloss (% R)
initial

gloss (% ΔR)
QUV 4k h

thickness (% ΔD)
QUV 4k h

PVDF 12.6 ± 1.1 −33.3 ± 2.9 −36.5 ± 9.8
PVDF + LNa 12.6 ± 0.3 −35.7 ± 0.96 −29.4 ± 8.5
PVDF + LAPc 13.2 ± 0.4 −37.9 ± 1.2 −43.3 ± 7.5
PVDF + LFPc 9.1 ± 0.2 −13.2 ± 0.44 −23.1 ± 2.1
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may be more susceptible to chemical degradation than clays of
LFPc. If LAPc loses chemical functionality, the clay could be
washed out from the coating matrix, resulting in a loss of the
film due to the loss of radical quenchers in the clay.
Structural changes in the polymer that result in an increase in

the crystallinity should give rise to a film that has excellent
barrier properties. It has been observed in the literature that
irradiation is capable of inducing conformational changes in
semicrystalline fluoropolymers.45,46 On the basis of our ATR-
FTIR data, the percentage of PVDF at the surface increased to
near purity during weathering, and on the basis of TF-XRD
data, the films became more crystalline. The EIS stability of
particularly the LFPc film during weathering suggests that the
films weather in two phases: (1) microcrystalline PVDF-
enriched domains and (2) nanocrystalline-modified clays, with
both phases having electrolyte/corrosive impenetrable crystal-
line domains. It is also likely that the nanoclays might (1) as
suggested by others44 both absorb and scatter incoming UV
radiation, thus minimizing the amount penetrating the coating,
and (2) reduce photodegradation-induced mass transport out
of the film. Raman microscopy was used to investigate these
claims and produce cross-section maps of a polymer-only film
and a polymer + LNa film after weathering, both of which are

shown in Figure 7. The polymer-only film showed a higher
intensity (concentration) and a thicker enriched layer of PVDF
in the film (or, conversely, the acrylic-depleted layer was
thicker) compared with the nanocomposite film after weath-
ering for 4500 h. The acrylic base coat was significantly
degraded and embrittled when a polymer-only top coat was
used as can be observed by the cracks in the lower portion of
the cross section in Figure 7c and by the accompanying heat
map of the ratio of key PVDF/acrylic Raman peaks.

4. CONCLUSIONS
We have demonstrated that by incorporating chemically
modified nanoclays, the barrier properties of films produced
from aqueous dispersions of acrylic/PVDF lattices can be
significantly improved over both the short and long term. XPS
and Raman data showed that (1) Laponite clay was covalently
modified with FOTES and cation exchanged with Pc; (2)
grafting efficiency was more than 100%, suggesting that each
accessible hydroxyl along the clay rim was covalently bound to
one FOTES molecule; (3) approximately more than 50%
silanes remaining after washing were covalently cross-linked to
other FOTES molecules; and (4) cation exchange with Pc
increased the hydrophilicity of the covalently modified clay.

Figure 7. Raman spectra before weathering of the PVDF/acrylic top coat (a) and acrylic PMMA/PEA primer coat (b) normalized to the band at 602
cm−1 (δ C−C). Cross sections of weathered PVDF (c) and PVDF + LNa (f) were mapped by Raman spectroscopy, and the intensity ratios of key
PVDF/acrylic stretching bands are plotted (I885/I1730) in (e) and (h). For comparison, the Raman maps were superimposed over white light images
in (d) and (g). After normalization, the maximum intensity ratio was 3.0 and the minimum was 0.5. Measured intensities were smoothed in both x
and y directions to create a cohesive map; the blue fringes at the top and bottom are artifacts of smoothing to zero.
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Covalently modified nanoclay particles were dispersible in
aqueous colloidal suspensions of a highly weatherable resin and
with a much smaller loading weight (0.6% of a dry film) than
other studies have reported.10,11,21

The weathering performance of the nanocomposite films was
better in every measured parameter than in the films without
the clay. All composite films studied retained their high-
performance barrier properties, as measured by EIS and the
stress index, after a substantial loss of acrylic functionality near
the surface and a loss of 10−40% of the film thickness.
However, the performance characteristics of each differed
considerably. Although the PVDF/acrylic waterborne resin is
an exceptional barrier top coat with long-term weatherability,
its performance can be substantially improved by the inclusion
of chemically compatible nanoclays.
What accounts for the better EIS barrier performance of

LFPc compared with LAPc composite films during weathering?
It seems likely that the interaction between the polymer resin
and the organofunctionalized clays may play a substantial role.
The latex polymer used in these studies was synthesized in a
core−shell synthesis, with the core and the shell having both
acrylic and PVDF components but in differing amounts.2,3 To
enable dispersion in aqueous media, the shell has a greater
percentage of acrylic (hydrophilic) than the core does. Given
that the best barrier properties were observed in films with
added LFPc, it is possible that the LFPc clays facilitate the
formation of an interpenetrating polymer network better than
those with LAPc.
Good stability (both chemical and mechanical) was observed

by the low stress index of chemically modified clays in the
PVDF/acrylic films. The LNa and LFPc clays had the highest
degree of exfoliation and the longest time constants for much of
the weathering time. However, the unmodified LNa composite
film had a lower film resistance and higher coating capacitance
than the LFPc composite film. One explanation for the LNa
composite film’s diminished barrier properties despite having a
longer time constant may arise from the microstructural
arrangement of the clays in the interstitial spaces of the wet
resin during the film formation. Evidence suggests that
although LNa was exfoliated completely in water, there was
little chemical compatibility with the latex particles in the film,
which can disrupt coalescence of latex particles during drying.
The result would be larger voids between latex particles where
migrating ion species are retained, as was indeed suggested by
the mass-transport studies. Chemical modification of clays
resulted in particles that retained their ability to be exfoliated
and improved their dispersibility in this highly weatherable
resin. The combination of the microstructural arrangement of
clay particles, the chemical compatibility between the
perfluoroalkyl-modified clays and the PVDF portion of the
resin, and the excellent weatherability of both perfluoroalkyl
and PVDF functionalities likely accounts for the superior
corrosion resistance of the LFPc composite films throughout
weathering.
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