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Dynami
s of a granular parti
le on a roughsurfa
e with a stair
ase pro�leJ. J. P. VeermanMathemati
al S
ien
es, Portland State University, Portland, OR 97207, USA.F. V. Cunha, Jr., G. L. Vas
on
elosLaborat�orio de F��si
a Te�ori
a e Computa
ional, Departamento de F��si
a,Universidade Federal de Pernambu
o, 50670-901, Re
ife, Brazil.Abstra
tA simple model is presented for the motion of a grain down a rough in
lined surfa
ewith a stair
ase pro�le. The model is an extension of an earlier model of ours wherewe now allow for boun
ing, i.e., we 
onsider a non-vanishing normal 
oeÆ
ient ofrestitution. It is shown that in parameter spa
e there are three regions of interest: i)a region of smaller in
linations where the orbits are always bounded (and we arguethat the parti
le always stops); ii) a transition region where halting, periodi
 andunbounded orbits 
o-exist; and iii) a region of large in
linations where no haltingorbit exists (and we 
onje
ture that the motion is always unbounded). Fixed pointsare also found at pre
isely the in
lination separating regions i) and ii).Key words: Grain dynami
s, Granular 
ow, Fri
tion, Nonlinear dynami
sPACS: 45.70.-nPACS: 83.70.-fPACS: 45.50.-j1 Introdu
tionThe gravity-driven 
ow of granular materials is a topi
 of 
onsiderable interestbe
ause of its obvious pra
ti
al importan
e as well as for s
ienti�
 reasons.Here the interplay between the driving for
e (gravity) and dissipation (inelasti
grain 
ollisions) 
an lead to a range of 
omplex dynami
al behaviors, su
has intermittent 
ow (i.e., avalan
hes), and 
ontinuous steady and unsteady
ows [1,2℄. A 
omplete understanding of the grain dynami
s during su
h 
owsremains a 
hallenge [3℄. Thus, the study of simple models for grain dynami
sPreprint submitted to Elsevier Preprint 19 O
tober 2001



is of great interest sin
e they might provide useful insights into the a
tualdynami
s of granular 
ows. In this 
ontext, the motion of a single grain on arough in
lined surfa
e has re
ently been studied both experimentally [4℄ andtheoreti
ally [5{9℄.Motivated by some of these studies, we have re
ently introdu
ed [10,11℄ a 
lassof models for the gravity-driven motion of a single grain down a rough in
linedsurfa
e, where some simplifying assumptions were made: (i) the rough surfa
ewas supposed to have a simple `stair
ase' pro�le; (ii) the grain was treatedas a point parti
le; and (iii) a simple restitution law was adopted, namely,v0t = C(vt; vn) and v0n = 0, where vt and vn are the velo
ity 
omponentstangential and normal to the 
ollision plane, with the prime denoting post-
ollisional velo
ities, and C(x; y) is a homogeneous fun
tion of degree 1 [11℄.The no-boun
ing 
ondition (v0n = 0) was adopted so that the dynami
s ofthe model 
ould be redu
ed to a one-dimensional map. (To see this, notethat upon 
olliding with a step the parti
le slides to the end of this step, atwhi
h point it takes o�, and so on; hen
e we only need to keep tra
k of thetangential velo
ity at takeo�.) First we analyzed the simpler 
ase in whi
hC(vt; vn) = etvt, where et is the tangential 
oeÆ
ient of restitution. Here itwas found that, as the surfa
e in
lination in
reases, there is a sharp transition(independent of initial 
onditions) from a regime of bounded velo
ities to aan a

elerated regime. In the bounded regime itself, there is a transition fromsteady motion (
orresponding to stable �xed points) to unsteady (
haoti
)behavior [10℄. Another important result was the fa
t shown in Ref. [11℄ thatthe qualitative nature of the phase diagram of the model is preserved for anyphysi
ally reasonable 
hoi
e of the fun
tion C(vt; vn).In the present paper, we 
onsider an extension of our previous model wherewe now in
lude the 
ase of a nonzero normal restitution 
oeÆ
ient en. Morespe
i�
ally, here we adopt the following 
ollision rule:v0t = etvt; (1)v0n=�envn; (2)where both et and en take values in the interval [0; 1). Regarding these 
ollision
onditions, it should be pointed out that in view of the dis
ussion at the endof the pre
eding paragraph, the 
hoi
e (1) may not be as restri
tive as it mightseem at �rst. As for 
ondition (2), experiments on binary 
ollisions betweenspheres have shown that the normal restitution law is well des
ribed by asingle normal 
oeÆ
ient of restitution [12℄. As it will be seen below, our modelis now des
ribed by a three-dimensional map whi
h displays a mu
h ri
herdynami
s. One striking di�eren
e from our original model [10℄ is that in thepresent model the transition from bounded to unbounded orbits is no longersharp: there is an intermediate region where both bounded and unboundedorbits 
oexist. Moreover, in this transition region we also �nd in�nitely many2
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Fig. 1. Model for a single parti
le moving under gravity on an rough in
lined surfa
e.periodi
 orbits. We 
onje
ture (and give eviden
es) that below this transitionregion, the parti
le always 
omes to a halt, whereas above it the parti
le alwaysa

elerates.It is interesting to note that 
ertain dynami
al features in the original model[10℄, most prominently the existen
e of unstable �xed points, are due to the
ondition of no-boun
ing and subsequent sliding. In the boun
ing model dis-
ussed in the present paper only stable �xed points and periodi
 orbits 
ano

ur. (In [13℄ we have presented a preliminary analysis of a hybrid modelthat 
ontains aspe
ts of both models, where we allow sliding after the parti
lestops boun
ing.)The paper is organized as follows. In Se
. 2 we des
ribe our model. In Se
. 3we give 
onditions for whi
h unbounded orbits 
an exist, whereas in Se
. 4 wedis
uss when halting orbits o

ur. The issue of existen
e of �xed points andperiodi
 orbits is then ta
kled in Se
s. 5 and 6, respe
tively. Se
. 7 
ontainsadditional dis
ussion about our �ndings as well as our 
on
lusions. We anti
-ipate here, in parti
ular, that the main results of the paper are summarizedin the `phase diagram' shown in this last se
tion in Fig. 2.2 The ModelIn our model, whi
h is shown in Fig. 1, the rough surfa
e is 
onsidered tohave a simple stair
ase shape whose steps have height a and length b [10℄. For
onvenien
e, we 
hoose a system of 
oordinates su
h that the step plateausare aligned with the x axis and the dire
tion of the a

eleration of gravity gmakes an angle � with the y axis. A parti
le is then laun
hed on the top ofthe `stair
ase' with a given initial velo
ity, so that its subsequent motion will
onsist of a sequen
e of ballisti
 
ights and 
ollisions, as illustrated in Fig. 1.3



Suppose that our parti
le starts a given 
ight with velo
ity (u; v) and thatthe laun
hing point is taken as the origin. The parti
le will undergo a ballisti

ight until it 
ollides with another plateau lo
ated a 
ertain number n of stepsbelow the departure step|the integer n will thus be referred to as the jumpnumber for the 
ight. If the time of 
ight from departure to landing is denotedby t, then the velo
ity (u
; v
) at 
ollision and the 
orresponding 
ollision point(x
; y
) are determined by u
 = u+ gst;v
 = v � g
t;x
 = ut+ 12gst2;y
 = vt� 12g
t2 = �na: (3)
Here for ease of notation we have de�ned the parameters s � sin� and 
 �
os�. Noti
e that u
 is positive whereas v
 is negative. The last equation 
anbe solved for the 
ight time t, whi
h in turn 
an be used to yield the parti
levelo
ity and position at 
ollision. Before doing this, however, it is best tosimplify the equations above by de�ning new variables.First, let z denote the distan
e from the starting point of the 
urrent 
ight tothe edge of the horizontal ramp where the 
ight started; see Fig. 1. Then theposition z0 at the beginning of next 
ight will bez0 = z + nb� x
 : (4)Note that we always have 0 � z < b : (5)In fa
t, this latter requirement determines the value of the dis
rete variablen, that is, n is the smallest integer su
h that the 
ondition (5) holds for z0.Next, we de�ne dimensionless variables:X = xb ; Y = ya ; Z = zb ;U = 
s up2g
a ; V = vp2g
a ; T = rg
2a t : (6)Subsequently we drop the 
apital notation with the understanding that weshall be working solely with dimensionless variables. In these new variables,4



the equations given in (3) be
omeu
 = u+ t;v
 = v � t;x
 = 2�ut+ �t2;y
 = 2vt� t2 = �n; (7)
where we have introdu
ed a new parameter � de�ned by� � tan�tan� = s
 ab :Note also that (4) simpli�es toz0 = z + n� x
 ; (8)with 0 � z < 1. The last equation in (7) 
an easily be solved for the re-s
aledtime of 
ight: t = v + (v2 + n)1=2: (9)Inserting (9) into the �rst three equations in (7) yields the velo
ity (u
; v
)and the position x
 at 
ollision as a fun
tion of u, v and z. Now, if we denoteby (u0; v0) the parti
le velo
ity immediately after the 
ollision, then a

ordingto the 
ollision law given in (1) and (2) we have u0 = etu
 and v0 = �env
,whereas the 
orresponding 
oordinate z0 is obtained by plugging x
 into (8).Performing this 
al
ulation, one obtains that the dynami
s of the model isdes
ribed by the following mapF : (u; v; z)! (u0; v0; z0); (10)where u0 = et �u+ v +pv2 + n� ;v0 = enpv2 + n ;z0 = z + n(1� �)� 2�(u+ v) �v +pv2 + n� : (11)
We note here for later use that the equation above for the variable z 
an be5




onveniently written as z0 = z + n� � u02e2t � u2! : (12)As already mentioned, the jump number n appearing in (11) is determined bythe requirements that n be the smallest non-negative integer su
h that z0 � 0.Here there are two 
ases two 
onsider: either (i) the parti
le lands on the verysame step where the 
ight started, in whi
h 
ase n = 0, or (ii) it will jumpat least one step so that n > 0. First 
onsider 
ase (i). Solving the equationz0(n = 0) � 0 gives the following 
ondition:if z � 4�v(u+ v) then n = 0: (13)Otherwise, we have n > 0. In this 
ase, in order to determine the exa
t valueof n we �rst note that the equation for z0 in (11) 
an be written as a quadrati
expression in pv2 + n. A 
areful investigation of the roots of this equationshows that if the inequality in (13) fails, then the quadrati
 equation has twodistin
t roots, with pre
isely one of whi
h being greater than v. This meansthat n is the smallest positive integer su
h that pv2 + n is greater than thislargest root. More spe
i�
ally, one obtains that whenever inequality (13) failsthe jump number n is determined by the 
onditionpv2 + n � �(u+ v) +q(�u+ v)2 � (1� �)z1� � > pv2 + n� 1: (14)Solving this equation for n then yieldsn = &2�(u+ v)(1� �)2 ��u+ v +q(�u+ v)2 � (1� �)z�� z1� �' ;where dxe denotes the 
eiling fun
tion (i.e., the smallest integer greater thanx).3 Bounded vs. Unbounded OrbitsHere we investigate the 
onditions under whi
h the map F 
an have unboundedorbits, i.e., orbits for whi
h the velo
ity grows inde�nitely, or else when allorbits remain unbounded. Our main result is stated below.
6



Theorem 1 The map F de�ned in (10) and (11) admits unbounded orbits if� > �1, and all orbits are bounded if � < �1, where�1 = (1� et)(1� en)(1 + et)(1 + en) : (15)Proof. We �rst note that for given �, et, and en, it is 
lear that if at least oneof u or v is very large then under iteration of map (11) the new u0, v0, and n0will be large. Let us then de�ne the following quantity
 � pv2 + n� 2�u+ (1 + �)v1� � : (16)Using this de�nition, we 
an rewrite the equations for u0 and v0 given in (11)as u0 = et1� � [(1 + �)u+ 2v℄ + et
; (17)v0 = en1� � [2�u+ (1 + �)v℄ + en
: (18)Now, when u and v are suÆ
iently large, it is shown in the Appendix that 
be
omes arbitrarily small and hen
e (u0; v0) will grow if and only if the lin-earized model (i.e., with 
 = 0) predi
ts growth. As is well known, a linearmap will predi
t growth if its derivative matrix has at least one eigenvalue(Floquet multiplier) greater than unity. One 
an easily verify that the 
har-a
teristi
 polynomial of the derivative matrix of the linear part of the mapis p(�) = �2 � (en + et)(1 + �)(1� �)�+ eten:One 
an now readily 
he
k that this polynomial has a root greater than 1 ifand only if � > �1. �We remark that the 
ase � = �1 is left unde
ided by theorem above. We willsee shortly, however, that in this 
ase the map F has �xed points with anygiven jump number n and that the dynami
s will always be attra
ted to oneof su
h �xed points, so that for � = �1 the orbits stay bounded as well.A se
ond noteworthy remark is that a model re
ently studied by Bideau andValan
e [8℄ is a parti
ular 
ase of our map above with 
 = 0 and et = en = e.If we negle
t the physi
al dimension of the steps in our map (11), then their7




ontinuous map follows. The parti
le in this 
ase always lands on the liney = �x. Thus, in our notation, their model repla
es the last equation of (7)by y = 2vt� t2 = �x : (19)Solving for the re-s
aled time of 
ight t yieldst = 2(u+ v)1� � :Substituting t ba
k into (7) gives us pre
isely the linear part of equations (17)and (18).4 Halting OrbitsOne parti
ularly interesting 
lass of bounded orbits in our model is what weterm halting orbits, where the parti
le will boun
e in�nitely many times onthe same step (i.e., n = 0), with ever smaller velo
ity, until 
oming eventuallyto a stop. By a non-trivial halting orbit we mean an orbit during whi
h theparti
le jumps at least on
e with n > 0 before 
oming to a halt. Our goalin this se
tion is to establish the 
onditions for the existen
e of su
h haltingorbits.We begin by 
onsidering the motion of our parti
le on a single tilted ramp, bywhi
h we mean a step of arbitrarily large size (i.e., b ! 1 in Fig. 1). Let usthen de�ne the stopping distan
e d as the distan
e (measured along the ramp)from the point of the �rst takeo� to the point where the parti
le �nally stops.Lemma 2 Let u and v be the velo
ity 
omponents at the beginning of the �rst
ight on a single ramp, then the stopping distan
e d is given byd = 4� (1 + eten)v2 + (1� e2n)uv(1� eten)(1� e2n) : (20)Proof. To obtain the equation of motion on a single ramp, set n = 0 in (11):u0= et(u+ 2v); (21)v0= env; (22)z0= z � 4�v(v + u): (23)8



Note that for the velo
ity we have a linear map. Thus, if we introdu
e matrixnotation and write the initial velo
ity ve
tor asV = 0B�uv 1CA ; (24)then the next iterate V 0 
an be written as V 0 = AV , where the matrix A isA = 0B� et 2et0 en 1CA : (25)More generally, the velo
ity Vk after k iterations will be Vk = AkV , withAk = 0BB� ekt 2 kPi=1 eitek�in0 ekn 1CCA ; (26)Note also that the distan
e (measured along the ramp) advan
ed by the par-ti
le over one iteration 
an be written with the usual s
alar produ
t notation:z � z0 = (V;BV ); (27)where the matrix B is given byB = 2�0B� 0 11 21CA : (28)For the stopping distan
e d, we then get thatd = 1Xk=0(AkV;BAkV ) = (V; 1Xk=0(Ak)tBAkV ); (29)where the upper s
ript t denotes the transpose matrix. Using (26) and (28)we �nd that (Ak)tBAk = 2�0BB� 0 (eten)k(eten)k 2e2kn + 4 kPi=1 eite2k�in 1CCA : (30)9



Now inserting (30) into (29) then yieldsd = 4� "uv 1Xk=0(eten)k + v2 1Xk=0 e2kn + 2v2 1Xk=0 kXi=1 eite2k�in # : (31)The �rst two sums above are geometri
al series, P1k=0(eten)k = 1=(1 � eten)and P1k=0 e2kn = 1=(1� e2n), while the double sum gives1Xk=0 kXi=1 eite2k�in = eten(1� e2n)(1� eten) : (32)Substituting these expressions into (31) and performing some simpli�
ation,one arrives at formula (20). �We 
an now state and prove the following result 
on
erning the existen
e ofnontrivial halting orbits.Theorem 3 The map F given in (10) and (11) has non-trivial halting orbitsif and only if � � �s , where�s � (1� eten)(1� e2n)1 + 3en(et + en) + ete3n : (33)Proof. Let the parti
le fall o� the edge of a step with zero initial velo
ity.The parti
le then hits the next step at z0 = 1� � and just after boun
ing hasvelo
ity V = (et; en), as 
an be 
he
ked from (11). The stopping distan
e d0for this 
ase 
an be evaluated from the previous Lemma:d0 = 4�(en + et)en(1� eten)(1� e2n) : (34)The parti
le 
omes to a stop before it rea
hes the edge of the ramp providedthat d0 � 1��, whi
h means � < �s. This proves the `if' part. Next note thatwhenever a parti
le lands on a ramp, the value for u must be greater than etand the value for v must be greater than et (just after landing). Thus we havethat d is greater than d0. Sin
e also z at the landing point must be smallerthan 1� �, we see that if � > �s then d > 1� � and the parti
le 
annot 
ometo a stop. �One 
an easily verify that 0 < �1 < �s < 1. Thus for �1 < � � �s bothunbounded and halting orbits 
oexist. In fa
t, we will see in Se
. 6 below10



that in this 
ase there exist other types of bounded orbits, namely, periodi
orbits. We 
onje
ture that for � > �s, where no halting orbits exist, all orbitsare unbounded, whereas for � < �1, where no unbounded orbit is possible,all orbits are halting ones. (These 
onje
tures are supported by our numeri
swhere a bounded orbit was never found for � > �s nor a non-halting orbit wasever found for � < �1.)5 Fixed PointsWhen we try to solve for the �xed points of the map (11) by setting u0 = u,v0 = v, and z0 = z, we immediately en
ounter a 
urious fa
t, namely, that thevariable z immediately drops out of its �xed-point equation. As we will seebelow, this implies that for given et and en �xed points will exist only for aspe
i�
 value of the parameter �.Let us suppose that there exists a �xed point where the parti
le jumps msteps every iterate. Then setting n = m, u0 = u = u�m and v0 = v = v�m in (11)and solving for the �xed-point value of velo
ity 
omponents u�m and v�m, onereadily obtains u�m = et1� etsm(1 + en)1� en ; (35)v�m = ens m1� e2n : (36)Now 
onsider the equation for z0. Setting n = m and u0 = u = u�m in (12) andperforming some simpli�
ation yieldz0 = z +m�1� ��1� ; (37)where �1 is as given in (15). From (37) it immediately follows that �xedpoints (i.e., z0 = z) 
an exist only if � = �1. It is also 
lear that the above�xed points will exist if and only if there are values of z 2 [0; 1) su
h thatthe 
ondition (14) is satis�ed for � = �1, u = u�m, v = v�m, and n = m. Thefollowing 
al
ulation establishes that this indeed o

urs.Setting � = �1, u = u�m, v = v�m, and n = m in (14), we obtain after somesimpli�
ation: 11



2pm� (1� en)pm+ (1 + en) "m� 2(1 + et)(1� en)et + en z#1=2 >> 2qm� 1 + e2n: (38)It is easy to see that the �rst inequality implies that z � 0, while the se
ondinequality yields z < zm, wherezm = 2(et + en)(1 + et)(1 + en)2 �1 + en �m +qm(m� 1 + e2n)� : (39)[Note that zm is an in
reasing fun
tion ofm and that limm!1 zm = 12(1��1).℄Thus, for ea
h m > 0 there exists an interval ImIm � [0; zm); (40)su
h that for z 2 Im the 
ondition (14) holds. We have thus established thefollowing result.Proposition 4 For every integer m > 0, the map F given in (10) and (11)has a segment Cm � f(u�m; v�m; z) j z 2 Img of �xed points with jump numberm if and only if � = �1.Next we turn to dis
uss the stability of the �xed points. Let us denote by DFthe Ja
obian matrix of the map (11). Cal
ulating DF and performing somesimpli�
ation, one �nds that DF 
an be written in the following formDF = 0BBBBB� et en(u0 � etu)=v0 00 e2nv=v0 0�2�(u0=et � u) �2�u0(u0 � etu)=e2tv0 1
1CCCCCA : (41)

Setting � = �1, n = m, u0 = u = u�m, and v0 = v = v�m into (41), we readily�nd that the Ja
obian matrix at the �xed point be
omesDF jf:p: = 0BBBBB� et et(1 + en) 00 e2n 0�2 (1�et)(1+et)r (1�en)m(1+en) �2p(1�e2n)m1+et 11CCCCCA (42)
It is easy to see that the eigenvalues of this matrix are given by the diagonalentries: �1 = et, �2 = e2n, and �3 = 1. Although the �rst two eigenvalues(asso
iated with the equations for u0 and v0, respe
tively) are positive and12



smaller than 1, the third eigenvalue (from the equation for z0) is equal tounity, so that the �xed points are marginally stable. This property is 
learlya 
onsequen
e of the translational invarian
e in the z 
oordinate of the �xedpoints. Be
ause of this fa
t, the question of stability of the �xed points mustbe 
onsidered with some 
aution.Small perturbations in the velo
ity from the �xed point will de
rease expo-nentially fast be
ause the relevant eigenvalues �1 and �2 are both smaller than1. However, before the velo
ity 
onverges to the �xed point (u�m; v�m) the valueof z might be
ome outside the interval Jm, thus leading to a 
hange in jumpnumber. One 
an show that this 
annot happen if we pi
k an initial velo
itysuÆ
iently 
lose to the �xed point and a value of z suÆ
iently far from theedge of the ramp. We thus have the following result, the formal proof of whi
hwill be published elsewhere.Proposition 5 The segment Cm of �xed points is an attra
tor for the map Fin the following sense: There is an open set Um of initial 
onditions su
h thatif x 2 Um then limn!1 F n(x) 2 CmIt is worthwhile noting here that if one �nds a periodi
 orbit, then the previousresult will also hold for that periodi
 orbit. The most important observationneeded to establish this is that equation (41) implies that the eigenvaluesof the derivative along a q-periodi
 orbit 
an easily be 
al
ulated. Supposex = (u; v; z) is a point belonging to a q-periodi
 orbit of F . Then one 
aneasily 
he
k that the derivative DF q of F q evaluated at x is of the formDF = 0BBBBB� eqt � 00 e2qn 0� � 11CCCCCA :
Here � stands for an arbitrary entry. For the same reasons as before the eigen-values of this matrix are eqt , e2qn and 1. Thus the 
ontra
tion rates along theinvariant manifolds of a periodi
 orbit are the same as those for the �xedpoints, and hen
e the periodi
 orbits will be stable in the sense des
ribed inProposition 5. In the next se
tion we will 
onsider several periodi
 orbits forwhi
h expli
it solutions 
an be found.6 Periodi
 OrbitsHere we 
onsider two 
lasses of periodi
 of orbits: i) orbits of arbitrary periodk+1, with k = 1; 2; :::, where the parti
le jumps k times with n = 0 and then13



on
e with n = 1; and ii) orbits of period 2 where the parti
le jumps m stepson
e and then m + 1 steps in the next 
ight. For 
onvenien
e of notation weshall label the periodi
 orbits by juxtaposing the 
orresponding jump numberfor ea
h point of the orbit. For instan
e, orbits of 
lass i) above will be labelledby 000:::01 (meaning k zeros followed by 1). More 
ompa
tly, we shall refer tothese orbits as being orbits of type 0k1. Similarly, the periodi
 orbits in 
lassii) will be said to be of type m(m + 1).6.1 Periodi
 orbits of type 0k1In order to obtain an expli
it solution for periodi
 orbits of type 0k1 a some-what tedious 
al
ulation is required, and here we give only its main steps.Sin
e in this 
ase the parti
le boun
es k times with n = 0, we 
an use theresults of Se
. 4: if V = (u; v)t denotes the ve
tor velo
ity at the beginning ofthe �rst 
ight, then the velo
ity Vk = (uk; vk)t after the next k 
ollisions willbe given by Vk = AkV , where Ak is as in (26). Upon performing the sum in(26) one �ndsuk = ekt u+ 2et(ekn � ekt )en � et v; (43)vk = eknv: (44)Similarly, the distan
e dk traversed after these k 
ights 
an be obtained fromthe same reasoning that lead to formula (31):dk = 4� 24uv k�1Xj=0(eten)j + v2 k�1Xj=0 e2jn + 2v2 k�1Xj=0 jXi=1 eite2j�in 35 : (45)After performing the sums above one getsdk = 4� ��kuv + �kv2� ; (46)where�k = 1� (enet)k1� enet ; �k = (en + et)(1� e2kn )(en � et)(1� e2n) � 2et(1� eknekt )(en � et)(1� enet) : (47)If we denote by z the parti
le position at the beginning of the �rst 
ight, thenthe position after k 
ights is simplyzk = z � dk: (48)14



The parti
le now jumps on
e with n = 1, so that a

ording to (11) the velo
ity(uk+1; vk+1) at the beginning of next 
ight is given byuk+1= et �uk + vk +qv2k + 1� ; (49)vk+1= enqv2k + 1: (50)One then has to solve the �xed-point equations, namely, uk+1 = u = u0 andvk+1 = v = v0. Here we omit the details and simply quote the �nal resultu0= en � et + (en + et)ek+1n � 2enek+1t(en � et)(1� ek+1t ) etq1� e2(k+1)n ; (51)v0= enq1� e2(k+1)n : (52)Now 
onsider the equation for the parti
le position zk+1. From (12) one haszk+1 = zk + 1� � u2k+1e2t � u2k! : (53)Setting uk+1 = u = u0 in this equation and using (43), (46), and (48), one 
anshow after some algebra that zk+1 
an be written in the following formzk+1 = z + 1� ��0k1 ; (54)where �0k1 = 14 haku20 + bku0v0 + 
kv20i�1 : (55)Here u0 and v0 are as in (51) and (52), and the 
onstants ak, bk and 
k aregiven byak = 1� e2(k+1)t4e2t ; bk = �k � ek+1t (ekn � ekt )en � et ; 
k = �k � "et(ekn � ekt )en � et #2 :(56)We thus see from (54) that, just as in the 
ase of �xed points, periodi
 orbitsof type 0k1 
an exist only at spe
i�
 values of �, namely, for � = �0k1. Inorder to show that these periodi
 orbits do indeed exist we need to verifythat there are values of z su
h that 
ondition (13) is satis�ed at � = �0k1 foru = u0 and v = v0. This 
ondition immediately yields a minimum value for z:15



z � zkmin � 4�0k1v0(u0+v0). Now note that we must have zk < 4�0k1vk(uk+vk)sin
e the (k+1)th 
ight has n = 1. In view of (48) this last inequality impliesz < zkmax � dk+4�0k1vk(uk+vk). One 
an also verify that 0 < zkmin < zkmax < 1.Thus for z in the interval Jk � [zkmin; zkmax) the 
ondition (13) will be satis�edand the periodi
 orbits do exist. We have thus proven the following result.Proposition 6 For every integer k > 0, the map F given in (10) and (11)has periodi
 orbits of type 0k1 if and only if � = �0k1. Moreover, the �rstpoint with n = 0 in these orbits 
an be arbitrarily 
hosen from the segmentCk � f(u0; v0; z) j z 2 Jkg, with u0 and v0 being given by (51) and (52),respe
tively.One 
an verify that �0k1 < �0l1 for k < l and that limk!1 �0k1 = �s. Wethus have the seemingly 
ounterintuitive fa
t `slower orbits' o

ur for largerin
linations. We also remark that the pro
edure above 
ould, in prin
iple, beextended to other 
lasses of periodi
 orbits, for example, orbits of type 0k10l1.(The 
al
ulation, of 
ourse, be
omes ex
eedingly 
ompli
ated and will notbe attempted here.) In fa
t, we 
onje
ture that to ea
h sequen
e in f0; 1gN
ompatible with rotations on the 
ir
le by a rational angle, we 
an asso
iatean orbit whose jump numbers form that sequen
e. Periodi
 orbits with jumpnumbers other 0 and 1 also exist as we show next.6.2 Periodi
 orbits of type m(m + 1)Now we 
onsider a periodi
 orbit of period 2 with jump numbers n1 = m andn2 = m + 1. Here we only need to 
onsider the 
ase m > 0, sin
e m = 0
orresponds to the orbit 01 whi
h belongs to the 
lass of orbits studied above.Let us denote the two points of the periodi
 orbit by x1 = (u1; v1; z1) andx2 = (u2; v2; z2), respe
tively, where F (x1) = x2 and F (x2) = x1. In order to�nd su
h an orbit let us iterate the map (11) twi
e, �rst with n = m and thenwith n = m+ 1. For the se
ond iterates of u and v we respe
tively �ndu00= et �et(u+ v) + (et + en)pv2 +m +qe2nv2 +m(1 + e2n) + 1� ; (57)v00= enqe2nv2 +m(1 + e2n) + 1: (58)We now solve for the �xed points of these equations. First note that the se
ondequation above 
an be written as a linear equation in v2, and so it has a uniquepositive solution: v1 = envuut1 +m(1 + e2n)1� e4n ; (59)16



whi
h upon substitution ba
k into (58) givesv2 = envuute2n +m(1 + e2n)1� e4n : (60)Performing a similar 
al
ulation for the �xed point of (57), one then �nds thefollowing values:u1 = eten(1� e2t ) [(1 + eten)v1 + (et + en)v2℄ ; (61)u2 = eten(1� e2t ) [(et + en)v1 + (1 + eten)v2℄ ; (62)with v1 and v2 as given in (59) and (60), respe
tively.Let us now 
onsider the se
ond iterate of the variable z. Using (12) it 
an bereadily veri�ed that z00 
an be written asz00 = z + 2m+ 1� �e�2t hu002 + (1� e2t )u02 � e2tu2i ; (63)whi
h for u00 = u = u1 and u0 = u2 be
omesz00 = z + 2m+ 1� �(e�2t � 1) �u21 + u22� : (64)Inserting (61) and (62) into (64) and performing some simpli�
ation, one �ndsz00 = z + (2m+ 1) "1� ��m(m+1) # ; (65)where�m(m+1) = "4eten + (1 + e2t )(1 + e2n)(1� e2t )(1� e2n) ++ 4(et + en)(1 + eten)(1� e2t )(1� e4n) qe2n + (1 + e2n)2m(m+ 1)(2m+ 1) 35�1 : (66)Note that �m(m+1) > �m0(m0+1) for m < m0 and that limm!1 �m(m+1) = �1,with �1 as given in (15). [One 
an also verify that for m = 0 the expressionabove for �01 yields the same value as obtained by setting k = 1 in (55).℄From (65) it is 
lear that periodi
 orbits of period 2 (i.e., z00 = z) 
an existonly if � = �m(m+1). As before, in order to ensure that these periodi
 orbits17
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Fig. 2. Phase diagram for the map F : (a) in the plane et = 0:2 and (b) in theplane en = 0:2. The lower and upper solid 
urves represent �1 and �s, respe
tively;the three dashed lines give �01, �001 and �0001 (from the bottom up); whereas thedot-dashed line 
orresponds to �12.do indeed exist we need to verify that the 
ondition (14) holds at � = �m(m+1)for n = m, u = u1, v = v1 and for some 0 � z < 1. (Re
all that we only needto 
he
k for m > 0.) Su
h 
al
ulation is similar to that performed earlier forthe 
ase of the �xed points, only mu
h more awkward and so it will not bepresented here. The result is that there will be an interval Jm � [0; 1) su
hthat for z 2 Jm the 
ondition (14) holds. We thus haveProposition 7 For every m � 0, the map F has periodi
 orbits of period 2with jump numbers n1 = m and n2 = m + 1 if and only if � = �m(m+1).Moreover the velo
ities (u1; v1) and (u2; v2) are uniquely given by (59){(62).7 Dis
ussion and Con
lusionsThe analysis presented above 
an be summarized in the `phase diagram' shownin Fig. 2, whi
h we now pro
eed to dis
uss. In this �gure the lowermost anduppermost 
urves represent, respe
tively, the surfa
es �1(en; et) and �s(en; et)
ut at the planes et = 0:2 (Fig. 2a) and en = 0:2 (Fig. 2b). These two sur-fa
es separate the parameter spa
e (en; et; �) into three distin
t regions. We
onje
ture (and have veri�ed numeri
ally) that in the region � > �s(en; et),where no halting orbits exist, only unbounded orbits 
an o

ur, whereas inthe region � < �1(en; et), where no unbounded orbit is possible, only haltingorbits o

ur. In the middle region, �1(en; et) < � < �s(en; et), not only haltingand unbounded orbits 
oexist but there are also periodi
 orbits of arbitraryperiod. Shown in Fig. 2 as dashed lines are the 
orresponding surfa
es �01,18



�001, and �0001 at whi
h periodi
 orbits of types 01, 001, and 0001 exist. Alsoshown as a dot-dashed line is the surfa
e �12 at whi
h a periodi
 orbit of type12 appears. We have argued above that many other periodi
 orbits shouldexist for �1(en; et) < � < �s(en; et). In fa
t we 
onje
ture that periodi
 orbitsare dense in this region.It is interesting to 
ompare the 
on
lusions above with what was found inour earlier model [10℄, where en = 0 and the parti
le was allowed to slidefri
tionlessly. We shall refer to this previous model as model 1, while the modeldis
ussed in the present paper will be 
alledmodel 2. Model 1 was 
onsiderablysimpler to analyze sin
e its dynami
s is des
ribed by a one-dimensional map[10℄. Its phase diagram 
ontains a 
urve �1(et) su
h that if � < �1(et) thenall orbits are bounded, whereas if � > �1(et) all orbits are unbounded. Inthis sense, the transition between bounded and unbounded motion is `sharp'in model 1. Comparing the phase diagram of the two models, we thus see thatit is as if the 
urve �1(et) of model 1 has `opened up' in model 2 into a region,namely, �1(et; en) < � < �s(en; et), where one now has 
oexisten
e of halting,unbounded and periodi
 orbits.In a separate paper [13℄ we have 
ombined these two models by allowing theparti
le to slide, on the a

ount of gravity, after it has 
ome to a halt. Inthis 
ase, upon sliding until the end of the step the parti
le then embarkson a ballisti
 
ight, at whi
h point we resume iteration of the boun
ing mapF . Preliminary results on this hybrid model were given in Ref. [13℄ and amore detailed analysis of its dynami
s will be the subje
t of a forth
omingpubli
ation [14℄. Here however we wish emphasize, as a 
on
luding remark,that no matter how one 
hooses to restart the motion after the parti
le 
omesto a halt, the parti
le velo
ity remains always bounded in the region � <�1(et; en).This work was supported in part by FINEP, CNPq, and PRONEX under grantnumber 76.97.1004.00.
A AppendixHere we show that the quantity 
 de�ned in (16) be
omes vanishingly smallas the velo
ity (u; v) be
omes arbitrarily large. First we note that 
 
an berewritten as 
 = pv2 + n� 24�(u+ v)1� � + q(�u+ v)21� � 35 :19



In what follows we will use the fa
t thatjpx�px� 1j � 1px ; 8x � 1;and that 0 � z < 1 � �. (This last relation follows from the fa
t that thelargest z is obtained when the parti
le falls o� the edge of a step with zeroinitial velo
ity.) If n � 1, the 
ondition (14) together with the inequalities justmentioned imply that0 � pv2 + n�  �(u+ v)1� � + [(�u+ v)2 � z(1� �)℄1=21� � ! =
 + " [(�u+ v)2(1� �)2 #1=2 � "(�u+ v)2(1� �)2 � z(1� �)#1=2 � 
 + 1� ��u+ v :Furthermore, again by equation (14) we have1pv2 + n � pv2 + n�pv2 + n� 1 >pv2 + n�  �(u+ v)1� � + [(�u+ v)2 � z(1� �)℄1=21� � ! > 
 :Putting these equations together, we obtain that 
 is inversely proportionalto the velo
ity in the following sense� 1� ��u+ v � 
 < 1pv2 + n :Referen
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