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Dynamis of a granular partile on a roughsurfae with a stairase pro�leJ. J. P. VeermanMathematial Sienes, Portland State University, Portland, OR 97207, USA.F. V. Cunha, Jr., G. L. VasonelosLaborat�orio de F��sia Te�oria e Computaional, Departamento de F��sia,Universidade Federal de Pernambuo, 50670-901, Reife, Brazil.AbstratA simple model is presented for the motion of a grain down a rough inlined surfaewith a stairase pro�le. The model is an extension of an earlier model of ours wherewe now allow for bouning, i.e., we onsider a non-vanishing normal oeÆient ofrestitution. It is shown that in parameter spae there are three regions of interest: i)a region of smaller inlinations where the orbits are always bounded (and we arguethat the partile always stops); ii) a transition region where halting, periodi andunbounded orbits o-exist; and iii) a region of large inlinations where no haltingorbit exists (and we onjeture that the motion is always unbounded). Fixed pointsare also found at preisely the inlination separating regions i) and ii).Key words: Grain dynamis, Granular ow, Frition, Nonlinear dynamisPACS: 45.70.-nPACS: 83.70.-fPACS: 45.50.-j1 IntrodutionThe gravity-driven ow of granular materials is a topi of onsiderable interestbeause of its obvious pratial importane as well as for sienti� reasons.Here the interplay between the driving fore (gravity) and dissipation (inelastigrain ollisions) an lead to a range of omplex dynamial behaviors, suhas intermittent ow (i.e., avalanhes), and ontinuous steady and unsteadyows [1,2℄. A omplete understanding of the grain dynamis during suh owsremains a hallenge [3℄. Thus, the study of simple models for grain dynamisPreprint submitted to Elsevier Preprint 19 Otober 2001



is of great interest sine they might provide useful insights into the atualdynamis of granular ows. In this ontext, the motion of a single grain on arough inlined surfae has reently been studied both experimentally [4℄ andtheoretially [5{9℄.Motivated by some of these studies, we have reently introdued [10,11℄ a lassof models for the gravity-driven motion of a single grain down a rough inlinedsurfae, where some simplifying assumptions were made: (i) the rough surfaewas supposed to have a simple `stairase' pro�le; (ii) the grain was treatedas a point partile; and (iii) a simple restitution law was adopted, namely,v0t = C(vt; vn) and v0n = 0, where vt and vn are the veloity omponentstangential and normal to the ollision plane, with the prime denoting post-ollisional veloities, and C(x; y) is a homogeneous funtion of degree 1 [11℄.The no-bouning ondition (v0n = 0) was adopted so that the dynamis ofthe model ould be redued to a one-dimensional map. (To see this, notethat upon olliding with a step the partile slides to the end of this step, atwhih point it takes o�, and so on; hene we only need to keep trak of thetangential veloity at takeo�.) First we analyzed the simpler ase in whihC(vt; vn) = etvt, where et is the tangential oeÆient of restitution. Here itwas found that, as the surfae inlination inreases, there is a sharp transition(independent of initial onditions) from a regime of bounded veloities to aan aelerated regime. In the bounded regime itself, there is a transition fromsteady motion (orresponding to stable �xed points) to unsteady (haoti)behavior [10℄. Another important result was the fat shown in Ref. [11℄ thatthe qualitative nature of the phase diagram of the model is preserved for anyphysially reasonable hoie of the funtion C(vt; vn).In the present paper, we onsider an extension of our previous model wherewe now inlude the ase of a nonzero normal restitution oeÆient en. Morespei�ally, here we adopt the following ollision rule:v0t = etvt; (1)v0n=�envn; (2)where both et and en take values in the interval [0; 1). Regarding these ollisiononditions, it should be pointed out that in view of the disussion at the endof the preeding paragraph, the hoie (1) may not be as restritive as it mightseem at �rst. As for ondition (2), experiments on binary ollisions betweenspheres have shown that the normal restitution law is well desribed by asingle normal oeÆient of restitution [12℄. As it will be seen below, our modelis now desribed by a three-dimensional map whih displays a muh riherdynamis. One striking di�erene from our original model [10℄ is that in thepresent model the transition from bounded to unbounded orbits is no longersharp: there is an intermediate region where both bounded and unboundedorbits oexist. Moreover, in this transition region we also �nd in�nitely many2
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Fig. 1. Model for a single partile moving under gravity on an rough inlined surfae.periodi orbits. We onjeture (and give evidenes) that below this transitionregion, the partile always omes to a halt, whereas above it the partile alwaysaelerates.It is interesting to note that ertain dynamial features in the original model[10℄, most prominently the existene of unstable �xed points, are due to theondition of no-bouning and subsequent sliding. In the bouning model dis-ussed in the present paper only stable �xed points and periodi orbits anour. (In [13℄ we have presented a preliminary analysis of a hybrid modelthat ontains aspets of both models, where we allow sliding after the partilestops bouning.)The paper is organized as follows. In Se. 2 we desribe our model. In Se. 3we give onditions for whih unbounded orbits an exist, whereas in Se. 4 wedisuss when halting orbits our. The issue of existene of �xed points andperiodi orbits is then takled in Ses. 5 and 6, respetively. Se. 7 ontainsadditional disussion about our �ndings as well as our onlusions. We anti-ipate here, in partiular, that the main results of the paper are summarizedin the `phase diagram' shown in this last setion in Fig. 2.2 The ModelIn our model, whih is shown in Fig. 1, the rough surfae is onsidered tohave a simple stairase shape whose steps have height a and length b [10℄. Foronveniene, we hoose a system of oordinates suh that the step plateausare aligned with the x axis and the diretion of the aeleration of gravity gmakes an angle � with the y axis. A partile is then launhed on the top ofthe `stairase' with a given initial veloity, so that its subsequent motion willonsist of a sequene of ballisti ights and ollisions, as illustrated in Fig. 1.3



Suppose that our partile starts a given ight with veloity (u; v) and thatthe launhing point is taken as the origin. The partile will undergo a ballistiight until it ollides with another plateau loated a ertain number n of stepsbelow the departure step|the integer n will thus be referred to as the jumpnumber for the ight. If the time of ight from departure to landing is denotedby t, then the veloity (u; v) at ollision and the orresponding ollision point(x; y) are determined by u = u+ gst;v = v � gt;x = ut+ 12gst2;y = vt� 12gt2 = �na: (3)
Here for ease of notation we have de�ned the parameters s � sin� and  �os�. Notie that u is positive whereas v is negative. The last equation anbe solved for the ight time t, whih in turn an be used to yield the partileveloity and position at ollision. Before doing this, however, it is best tosimplify the equations above by de�ning new variables.First, let z denote the distane from the starting point of the urrent ight tothe edge of the horizontal ramp where the ight started; see Fig. 1. Then theposition z0 at the beginning of next ight will bez0 = z + nb� x : (4)Note that we always have 0 � z < b : (5)In fat, this latter requirement determines the value of the disrete variablen, that is, n is the smallest integer suh that the ondition (5) holds for z0.Next, we de�ne dimensionless variables:X = xb ; Y = ya ; Z = zb ;U = s up2ga ; V = vp2ga ; T = rg2a t : (6)Subsequently we drop the apital notation with the understanding that weshall be working solely with dimensionless variables. In these new variables,4



the equations given in (3) beomeu = u+ t;v = v � t;x = 2�ut+ �t2;y = 2vt� t2 = �n; (7)
where we have introdued a new parameter � de�ned by� � tan�tan� = s ab :Note also that (4) simpli�es toz0 = z + n� x ; (8)with 0 � z < 1. The last equation in (7) an easily be solved for the re-saledtime of ight: t = v + (v2 + n)1=2: (9)Inserting (9) into the �rst three equations in (7) yields the veloity (u; v)and the position x at ollision as a funtion of u, v and z. Now, if we denoteby (u0; v0) the partile veloity immediately after the ollision, then aordingto the ollision law given in (1) and (2) we have u0 = etu and v0 = �env,whereas the orresponding oordinate z0 is obtained by plugging x into (8).Performing this alulation, one obtains that the dynamis of the model isdesribed by the following mapF : (u; v; z)! (u0; v0; z0); (10)where u0 = et �u+ v +pv2 + n� ;v0 = enpv2 + n ;z0 = z + n(1� �)� 2�(u+ v) �v +pv2 + n� : (11)
We note here for later use that the equation above for the variable z an be5



onveniently written as z0 = z + n� � u02e2t � u2! : (12)As already mentioned, the jump number n appearing in (11) is determined bythe requirements that n be the smallest non-negative integer suh that z0 � 0.Here there are two ases two onsider: either (i) the partile lands on the verysame step where the ight started, in whih ase n = 0, or (ii) it will jumpat least one step so that n > 0. First onsider ase (i). Solving the equationz0(n = 0) � 0 gives the following ondition:if z � 4�v(u+ v) then n = 0: (13)Otherwise, we have n > 0. In this ase, in order to determine the exat valueof n we �rst note that the equation for z0 in (11) an be written as a quadratiexpression in pv2 + n. A areful investigation of the roots of this equationshows that if the inequality in (13) fails, then the quadrati equation has twodistint roots, with preisely one of whih being greater than v. This meansthat n is the smallest positive integer suh that pv2 + n is greater than thislargest root. More spei�ally, one obtains that whenever inequality (13) failsthe jump number n is determined by the onditionpv2 + n � �(u+ v) +q(�u+ v)2 � (1� �)z1� � > pv2 + n� 1: (14)Solving this equation for n then yieldsn = &2�(u+ v)(1� �)2 ��u+ v +q(�u+ v)2 � (1� �)z�� z1� �' ;where dxe denotes the eiling funtion (i.e., the smallest integer greater thanx).3 Bounded vs. Unbounded OrbitsHere we investigate the onditions under whih the map F an have unboundedorbits, i.e., orbits for whih the veloity grows inde�nitely, or else when allorbits remain unbounded. Our main result is stated below.
6



Theorem 1 The map F de�ned in (10) and (11) admits unbounded orbits if� > �1, and all orbits are bounded if � < �1, where�1 = (1� et)(1� en)(1 + et)(1 + en) : (15)Proof. We �rst note that for given �, et, and en, it is lear that if at least oneof u or v is very large then under iteration of map (11) the new u0, v0, and n0will be large. Let us then de�ne the following quantity � pv2 + n� 2�u+ (1 + �)v1� � : (16)Using this de�nition, we an rewrite the equations for u0 and v0 given in (11)as u0 = et1� � [(1 + �)u+ 2v℄ + et; (17)v0 = en1� � [2�u+ (1 + �)v℄ + en: (18)Now, when u and v are suÆiently large, it is shown in the Appendix that beomes arbitrarily small and hene (u0; v0) will grow if and only if the lin-earized model (i.e., with  = 0) predits growth. As is well known, a linearmap will predit growth if its derivative matrix has at least one eigenvalue(Floquet multiplier) greater than unity. One an easily verify that the har-ateristi polynomial of the derivative matrix of the linear part of the mapis p(�) = �2 � (en + et)(1 + �)(1� �)�+ eten:One an now readily hek that this polynomial has a root greater than 1 ifand only if � > �1. �We remark that the ase � = �1 is left undeided by theorem above. We willsee shortly, however, that in this ase the map F has �xed points with anygiven jump number n and that the dynamis will always be attrated to oneof suh �xed points, so that for � = �1 the orbits stay bounded as well.A seond noteworthy remark is that a model reently studied by Bideau andValane [8℄ is a partiular ase of our map above with  = 0 and et = en = e.If we neglet the physial dimension of the steps in our map (11), then their7



ontinuous map follows. The partile in this ase always lands on the liney = �x. Thus, in our notation, their model replaes the last equation of (7)by y = 2vt� t2 = �x : (19)Solving for the re-saled time of ight t yieldst = 2(u+ v)1� � :Substituting t bak into (7) gives us preisely the linear part of equations (17)and (18).4 Halting OrbitsOne partiularly interesting lass of bounded orbits in our model is what weterm halting orbits, where the partile will boune in�nitely many times onthe same step (i.e., n = 0), with ever smaller veloity, until oming eventuallyto a stop. By a non-trivial halting orbit we mean an orbit during whih thepartile jumps at least one with n > 0 before oming to a halt. Our goalin this setion is to establish the onditions for the existene of suh haltingorbits.We begin by onsidering the motion of our partile on a single tilted ramp, bywhih we mean a step of arbitrarily large size (i.e., b ! 1 in Fig. 1). Let usthen de�ne the stopping distane d as the distane (measured along the ramp)from the point of the �rst takeo� to the point where the partile �nally stops.Lemma 2 Let u and v be the veloity omponents at the beginning of the �rstight on a single ramp, then the stopping distane d is given byd = 4� (1 + eten)v2 + (1� e2n)uv(1� eten)(1� e2n) : (20)Proof. To obtain the equation of motion on a single ramp, set n = 0 in (11):u0= et(u+ 2v); (21)v0= env; (22)z0= z � 4�v(v + u): (23)8



Note that for the veloity we have a linear map. Thus, if we introdue matrixnotation and write the initial veloity vetor asV = 0B�uv 1CA ; (24)then the next iterate V 0 an be written as V 0 = AV , where the matrix A isA = 0B� et 2et0 en 1CA : (25)More generally, the veloity Vk after k iterations will be Vk = AkV , withAk = 0BB� ekt 2 kPi=1 eitek�in0 ekn 1CCA ; (26)Note also that the distane (measured along the ramp) advaned by the par-tile over one iteration an be written with the usual salar produt notation:z � z0 = (V;BV ); (27)where the matrix B is given byB = 2�0B� 0 11 21CA : (28)For the stopping distane d, we then get thatd = 1Xk=0(AkV;BAkV ) = (V; 1Xk=0(Ak)tBAkV ); (29)where the upper sript t denotes the transpose matrix. Using (26) and (28)we �nd that (Ak)tBAk = 2�0BB� 0 (eten)k(eten)k 2e2kn + 4 kPi=1 eite2k�in 1CCA : (30)9



Now inserting (30) into (29) then yieldsd = 4� "uv 1Xk=0(eten)k + v2 1Xk=0 e2kn + 2v2 1Xk=0 kXi=1 eite2k�in # : (31)The �rst two sums above are geometrial series, P1k=0(eten)k = 1=(1 � eten)and P1k=0 e2kn = 1=(1� e2n), while the double sum gives1Xk=0 kXi=1 eite2k�in = eten(1� e2n)(1� eten) : (32)Substituting these expressions into (31) and performing some simpli�ation,one arrives at formula (20). �We an now state and prove the following result onerning the existene ofnontrivial halting orbits.Theorem 3 The map F given in (10) and (11) has non-trivial halting orbitsif and only if � � �s , where�s � (1� eten)(1� e2n)1 + 3en(et + en) + ete3n : (33)Proof. Let the partile fall o� the edge of a step with zero initial veloity.The partile then hits the next step at z0 = 1� � and just after bouning hasveloity V = (et; en), as an be heked from (11). The stopping distane d0for this ase an be evaluated from the previous Lemma:d0 = 4�(en + et)en(1� eten)(1� e2n) : (34)The partile omes to a stop before it reahes the edge of the ramp providedthat d0 � 1��, whih means � < �s. This proves the `if' part. Next note thatwhenever a partile lands on a ramp, the value for u must be greater than etand the value for v must be greater than et (just after landing). Thus we havethat d is greater than d0. Sine also z at the landing point must be smallerthan 1� �, we see that if � > �s then d > 1� � and the partile annot ometo a stop. �One an easily verify that 0 < �1 < �s < 1. Thus for �1 < � � �s bothunbounded and halting orbits oexist. In fat, we will see in Se. 6 below10



that in this ase there exist other types of bounded orbits, namely, periodiorbits. We onjeture that for � > �s, where no halting orbits exist, all orbitsare unbounded, whereas for � < �1, where no unbounded orbit is possible,all orbits are halting ones. (These onjetures are supported by our numeriswhere a bounded orbit was never found for � > �s nor a non-halting orbit wasever found for � < �1.)5 Fixed PointsWhen we try to solve for the �xed points of the map (11) by setting u0 = u,v0 = v, and z0 = z, we immediately enounter a urious fat, namely, that thevariable z immediately drops out of its �xed-point equation. As we will seebelow, this implies that for given et and en �xed points will exist only for aspei� value of the parameter �.Let us suppose that there exists a �xed point where the partile jumps msteps every iterate. Then setting n = m, u0 = u = u�m and v0 = v = v�m in (11)and solving for the �xed-point value of veloity omponents u�m and v�m, onereadily obtains u�m = et1� etsm(1 + en)1� en ; (35)v�m = ens m1� e2n : (36)Now onsider the equation for z0. Setting n = m and u0 = u = u�m in (12) andperforming some simpli�ation yieldz0 = z +m�1� ��1� ; (37)where �1 is as given in (15). From (37) it immediately follows that �xedpoints (i.e., z0 = z) an exist only if � = �1. It is also lear that the above�xed points will exist if and only if there are values of z 2 [0; 1) suh thatthe ondition (14) is satis�ed for � = �1, u = u�m, v = v�m, and n = m. Thefollowing alulation establishes that this indeed ours.Setting � = �1, u = u�m, v = v�m, and n = m in (14), we obtain after somesimpli�ation: 11



2pm� (1� en)pm+ (1 + en) "m� 2(1 + et)(1� en)et + en z#1=2 >> 2qm� 1 + e2n: (38)It is easy to see that the �rst inequality implies that z � 0, while the seondinequality yields z < zm, wherezm = 2(et + en)(1 + et)(1 + en)2 �1 + en �m +qm(m� 1 + e2n)� : (39)[Note that zm is an inreasing funtion ofm and that limm!1 zm = 12(1��1).℄Thus, for eah m > 0 there exists an interval ImIm � [0; zm); (40)suh that for z 2 Im the ondition (14) holds. We have thus established thefollowing result.Proposition 4 For every integer m > 0, the map F given in (10) and (11)has a segment Cm � f(u�m; v�m; z) j z 2 Img of �xed points with jump numberm if and only if � = �1.Next we turn to disuss the stability of the �xed points. Let us denote by DFthe Jaobian matrix of the map (11). Calulating DF and performing somesimpli�ation, one �nds that DF an be written in the following formDF = 0BBBBB� et en(u0 � etu)=v0 00 e2nv=v0 0�2�(u0=et � u) �2�u0(u0 � etu)=e2tv0 1
1CCCCCA : (41)

Setting � = �1, n = m, u0 = u = u�m, and v0 = v = v�m into (41), we readily�nd that the Jaobian matrix at the �xed point beomesDF jf:p: = 0BBBBB� et et(1 + en) 00 e2n 0�2 (1�et)(1+et)r (1�en)m(1+en) �2p(1�e2n)m1+et 11CCCCCA (42)
It is easy to see that the eigenvalues of this matrix are given by the diagonalentries: �1 = et, �2 = e2n, and �3 = 1. Although the �rst two eigenvalues(assoiated with the equations for u0 and v0, respetively) are positive and12



smaller than 1, the third eigenvalue (from the equation for z0) is equal tounity, so that the �xed points are marginally stable. This property is learlya onsequene of the translational invariane in the z oordinate of the �xedpoints. Beause of this fat, the question of stability of the �xed points mustbe onsidered with some aution.Small perturbations in the veloity from the �xed point will derease expo-nentially fast beause the relevant eigenvalues �1 and �2 are both smaller than1. However, before the veloity onverges to the �xed point (u�m; v�m) the valueof z might beome outside the interval Jm, thus leading to a hange in jumpnumber. One an show that this annot happen if we pik an initial veloitysuÆiently lose to the �xed point and a value of z suÆiently far from theedge of the ramp. We thus have the following result, the formal proof of whihwill be published elsewhere.Proposition 5 The segment Cm of �xed points is an attrator for the map Fin the following sense: There is an open set Um of initial onditions suh thatif x 2 Um then limn!1 F n(x) 2 CmIt is worthwhile noting here that if one �nds a periodi orbit, then the previousresult will also hold for that periodi orbit. The most important observationneeded to establish this is that equation (41) implies that the eigenvaluesof the derivative along a q-periodi orbit an easily be alulated. Supposex = (u; v; z) is a point belonging to a q-periodi orbit of F . Then one aneasily hek that the derivative DF q of F q evaluated at x is of the formDF = 0BBBBB� eqt � 00 e2qn 0� � 11CCCCCA :
Here � stands for an arbitrary entry. For the same reasons as before the eigen-values of this matrix are eqt , e2qn and 1. Thus the ontration rates along theinvariant manifolds of a periodi orbit are the same as those for the �xedpoints, and hene the periodi orbits will be stable in the sense desribed inProposition 5. In the next setion we will onsider several periodi orbits forwhih expliit solutions an be found.6 Periodi OrbitsHere we onsider two lasses of periodi of orbits: i) orbits of arbitrary periodk+1, with k = 1; 2; :::, where the partile jumps k times with n = 0 and then13



one with n = 1; and ii) orbits of period 2 where the partile jumps m stepsone and then m + 1 steps in the next ight. For onveniene of notation weshall label the periodi orbits by juxtaposing the orresponding jump numberfor eah point of the orbit. For instane, orbits of lass i) above will be labelledby 000:::01 (meaning k zeros followed by 1). More ompatly, we shall refer tothese orbits as being orbits of type 0k1. Similarly, the periodi orbits in lassii) will be said to be of type m(m + 1).6.1 Periodi orbits of type 0k1In order to obtain an expliit solution for periodi orbits of type 0k1 a some-what tedious alulation is required, and here we give only its main steps.Sine in this ase the partile bounes k times with n = 0, we an use theresults of Se. 4: if V = (u; v)t denotes the vetor veloity at the beginning ofthe �rst ight, then the veloity Vk = (uk; vk)t after the next k ollisions willbe given by Vk = AkV , where Ak is as in (26). Upon performing the sum in(26) one �ndsuk = ekt u+ 2et(ekn � ekt )en � et v; (43)vk = eknv: (44)Similarly, the distane dk traversed after these k ights an be obtained fromthe same reasoning that lead to formula (31):dk = 4� 24uv k�1Xj=0(eten)j + v2 k�1Xj=0 e2jn + 2v2 k�1Xj=0 jXi=1 eite2j�in 35 : (45)After performing the sums above one getsdk = 4� ��kuv + �kv2� ; (46)where�k = 1� (enet)k1� enet ; �k = (en + et)(1� e2kn )(en � et)(1� e2n) � 2et(1� eknekt )(en � et)(1� enet) : (47)If we denote by z the partile position at the beginning of the �rst ight, thenthe position after k ights is simplyzk = z � dk: (48)14



The partile now jumps one with n = 1, so that aording to (11) the veloity(uk+1; vk+1) at the beginning of next ight is given byuk+1= et �uk + vk +qv2k + 1� ; (49)vk+1= enqv2k + 1: (50)One then has to solve the �xed-point equations, namely, uk+1 = u = u0 andvk+1 = v = v0. Here we omit the details and simply quote the �nal resultu0= en � et + (en + et)ek+1n � 2enek+1t(en � et)(1� ek+1t ) etq1� e2(k+1)n ; (51)v0= enq1� e2(k+1)n : (52)Now onsider the equation for the partile position zk+1. From (12) one haszk+1 = zk + 1� � u2k+1e2t � u2k! : (53)Setting uk+1 = u = u0 in this equation and using (43), (46), and (48), one anshow after some algebra that zk+1 an be written in the following formzk+1 = z + 1� ��0k1 ; (54)where �0k1 = 14 haku20 + bku0v0 + kv20i�1 : (55)Here u0 and v0 are as in (51) and (52), and the onstants ak, bk and k aregiven byak = 1� e2(k+1)t4e2t ; bk = �k � ek+1t (ekn � ekt )en � et ; k = �k � "et(ekn � ekt )en � et #2 :(56)We thus see from (54) that, just as in the ase of �xed points, periodi orbitsof type 0k1 an exist only at spei� values of �, namely, for � = �0k1. Inorder to show that these periodi orbits do indeed exist we need to verifythat there are values of z suh that ondition (13) is satis�ed at � = �0k1 foru = u0 and v = v0. This ondition immediately yields a minimum value for z:15



z � zkmin � 4�0k1v0(u0+v0). Now note that we must have zk < 4�0k1vk(uk+vk)sine the (k+1)th ight has n = 1. In view of (48) this last inequality impliesz < zkmax � dk+4�0k1vk(uk+vk). One an also verify that 0 < zkmin < zkmax < 1.Thus for z in the interval Jk � [zkmin; zkmax) the ondition (13) will be satis�edand the periodi orbits do exist. We have thus proven the following result.Proposition 6 For every integer k > 0, the map F given in (10) and (11)has periodi orbits of type 0k1 if and only if � = �0k1. Moreover, the �rstpoint with n = 0 in these orbits an be arbitrarily hosen from the segmentCk � f(u0; v0; z) j z 2 Jkg, with u0 and v0 being given by (51) and (52),respetively.One an verify that �0k1 < �0l1 for k < l and that limk!1 �0k1 = �s. Wethus have the seemingly ounterintuitive fat `slower orbits' our for largerinlinations. We also remark that the proedure above ould, in priniple, beextended to other lasses of periodi orbits, for example, orbits of type 0k10l1.(The alulation, of ourse, beomes exeedingly ompliated and will notbe attempted here.) In fat, we onjeture that to eah sequene in f0; 1gNompatible with rotations on the irle by a rational angle, we an assoiatean orbit whose jump numbers form that sequene. Periodi orbits with jumpnumbers other 0 and 1 also exist as we show next.6.2 Periodi orbits of type m(m + 1)Now we onsider a periodi orbit of period 2 with jump numbers n1 = m andn2 = m + 1. Here we only need to onsider the ase m > 0, sine m = 0orresponds to the orbit 01 whih belongs to the lass of orbits studied above.Let us denote the two points of the periodi orbit by x1 = (u1; v1; z1) andx2 = (u2; v2; z2), respetively, where F (x1) = x2 and F (x2) = x1. In order to�nd suh an orbit let us iterate the map (11) twie, �rst with n = m and thenwith n = m+ 1. For the seond iterates of u and v we respetively �ndu00= et �et(u+ v) + (et + en)pv2 +m +qe2nv2 +m(1 + e2n) + 1� ; (57)v00= enqe2nv2 +m(1 + e2n) + 1: (58)We now solve for the �xed points of these equations. First note that the seondequation above an be written as a linear equation in v2, and so it has a uniquepositive solution: v1 = envuut1 +m(1 + e2n)1� e4n ; (59)16



whih upon substitution bak into (58) givesv2 = envuute2n +m(1 + e2n)1� e4n : (60)Performing a similar alulation for the �xed point of (57), one then �nds thefollowing values:u1 = eten(1� e2t ) [(1 + eten)v1 + (et + en)v2℄ ; (61)u2 = eten(1� e2t ) [(et + en)v1 + (1 + eten)v2℄ ; (62)with v1 and v2 as given in (59) and (60), respetively.Let us now onsider the seond iterate of the variable z. Using (12) it an bereadily veri�ed that z00 an be written asz00 = z + 2m+ 1� �e�2t hu002 + (1� e2t )u02 � e2tu2i ; (63)whih for u00 = u = u1 and u0 = u2 beomesz00 = z + 2m+ 1� �(e�2t � 1) �u21 + u22� : (64)Inserting (61) and (62) into (64) and performing some simpli�ation, one �ndsz00 = z + (2m+ 1) "1� ��m(m+1) # ; (65)where�m(m+1) = "4eten + (1 + e2t )(1 + e2n)(1� e2t )(1� e2n) ++ 4(et + en)(1 + eten)(1� e2t )(1� e4n) qe2n + (1 + e2n)2m(m+ 1)(2m+ 1) 35�1 : (66)Note that �m(m+1) > �m0(m0+1) for m < m0 and that limm!1 �m(m+1) = �1,with �1 as given in (15). [One an also verify that for m = 0 the expressionabove for �01 yields the same value as obtained by setting k = 1 in (55).℄From (65) it is lear that periodi orbits of period 2 (i.e., z00 = z) an existonly if � = �m(m+1). As before, in order to ensure that these periodi orbits17
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Fig. 2. Phase diagram for the map F : (a) in the plane et = 0:2 and (b) in theplane en = 0:2. The lower and upper solid urves represent �1 and �s, respetively;the three dashed lines give �01, �001 and �0001 (from the bottom up); whereas thedot-dashed line orresponds to �12.do indeed exist we need to verify that the ondition (14) holds at � = �m(m+1)for n = m, u = u1, v = v1 and for some 0 � z < 1. (Reall that we only needto hek for m > 0.) Suh alulation is similar to that performed earlier forthe ase of the �xed points, only muh more awkward and so it will not bepresented here. The result is that there will be an interval Jm � [0; 1) suhthat for z 2 Jm the ondition (14) holds. We thus haveProposition 7 For every m � 0, the map F has periodi orbits of period 2with jump numbers n1 = m and n2 = m + 1 if and only if � = �m(m+1).Moreover the veloities (u1; v1) and (u2; v2) are uniquely given by (59){(62).7 Disussion and ConlusionsThe analysis presented above an be summarized in the `phase diagram' shownin Fig. 2, whih we now proeed to disuss. In this �gure the lowermost anduppermost urves represent, respetively, the surfaes �1(en; et) and �s(en; et)ut at the planes et = 0:2 (Fig. 2a) and en = 0:2 (Fig. 2b). These two sur-faes separate the parameter spae (en; et; �) into three distint regions. Weonjeture (and have veri�ed numerially) that in the region � > �s(en; et),where no halting orbits exist, only unbounded orbits an our, whereas inthe region � < �1(en; et), where no unbounded orbit is possible, only haltingorbits our. In the middle region, �1(en; et) < � < �s(en; et), not only haltingand unbounded orbits oexist but there are also periodi orbits of arbitraryperiod. Shown in Fig. 2 as dashed lines are the orresponding surfaes �01,18



�001, and �0001 at whih periodi orbits of types 01, 001, and 0001 exist. Alsoshown as a dot-dashed line is the surfae �12 at whih a periodi orbit of type12 appears. We have argued above that many other periodi orbits shouldexist for �1(en; et) < � < �s(en; et). In fat we onjeture that periodi orbitsare dense in this region.It is interesting to ompare the onlusions above with what was found inour earlier model [10℄, where en = 0 and the partile was allowed to slidefritionlessly. We shall refer to this previous model as model 1, while the modeldisussed in the present paper will be alledmodel 2. Model 1 was onsiderablysimpler to analyze sine its dynamis is desribed by a one-dimensional map[10℄. Its phase diagram ontains a urve �1(et) suh that if � < �1(et) thenall orbits are bounded, whereas if � > �1(et) all orbits are unbounded. Inthis sense, the transition between bounded and unbounded motion is `sharp'in model 1. Comparing the phase diagram of the two models, we thus see thatit is as if the urve �1(et) of model 1 has `opened up' in model 2 into a region,namely, �1(et; en) < � < �s(en; et), where one now has oexistene of halting,unbounded and periodi orbits.In a separate paper [13℄ we have ombined these two models by allowing thepartile to slide, on the aount of gravity, after it has ome to a halt. Inthis ase, upon sliding until the end of the step the partile then embarkson a ballisti ight, at whih point we resume iteration of the bouning mapF . Preliminary results on this hybrid model were given in Ref. [13℄ and amore detailed analysis of its dynamis will be the subjet of a forthomingpubliation [14℄. Here however we wish emphasize, as a onluding remark,that no matter how one hooses to restart the motion after the partile omesto a halt, the partile veloity remains always bounded in the region � <�1(et; en).This work was supported in part by FINEP, CNPq, and PRONEX under grantnumber 76.97.1004.00.
A AppendixHere we show that the quantity  de�ned in (16) beomes vanishingly smallas the veloity (u; v) beomes arbitrarily large. First we note that  an berewritten as  = pv2 + n� 24�(u+ v)1� � + q(�u+ v)21� � 35 :19



In what follows we will use the fat thatjpx�px� 1j � 1px ; 8x � 1;and that 0 � z < 1 � �. (This last relation follows from the fat that thelargest z is obtained when the partile falls o� the edge of a step with zeroinitial veloity.) If n � 1, the ondition (14) together with the inequalities justmentioned imply that0 � pv2 + n�  �(u+ v)1� � + [(�u+ v)2 � z(1� �)℄1=21� � ! = + " [(�u+ v)2(1� �)2 #1=2 � "(�u+ v)2(1� �)2 � z(1� �)#1=2 �  + 1� ��u+ v :Furthermore, again by equation (14) we have1pv2 + n � pv2 + n�pv2 + n� 1 >pv2 + n�  �(u+ v)1� � + [(�u+ v)2 � z(1� �)℄1=21� � ! >  :Putting these equations together, we obtain that  is inversely proportionalto the veloity in the following sense� 1� ��u+ v �  < 1pv2 + n :Referenes[1℄ J. Rajhenbah, Phys. Rev. Lett. 65 (1990) 2221.[2℄ P.-A. Lemieux, D. J. Durian, Phys. Rev. Lett. 85 (2000) 4273.[3℄ D. J. Durian, J. Phys.: Condens. Matter 12 (2000) A507.[4℄ L. Samson, I. Ippolito, D. Bideau, G. G. Batrouni, Chaos 9 (1999) 639; andreferenes therein.[5℄ C. Aney, P. Evesque, P. Coussot, J. Phys. I 4 (1994) 1161.[6℄ G. G. Batrouni, S. Dippel, L. Samson, Phys. Rev. E 53 (1996) 6496.20
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