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Dynamics of a granular particle on a rough
surface with a staircase profile
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F. V. Cunha, Jr., G. L. Vasconcelos

Laboratério de Fisica Teorica e Computacional, Departamento de Fisica,
Universidade Federal de Pernambuco, 50670-901, Recife, Brazil.

Abstract

A simple model is presented for the motion of a grain down a rough inclined surface
with a staircase profile. The model is an extension of an earlier model of ours where
we now allow for bouncing, i.e., we consider a non-vanishing normal coefficient of
restitution. It is shown that in parameter space there are three regions of interest: i)
a region of smaller inclinations where the orbits are always bounded (and we argue
that the particle always stops); ii) a transition region where halting, periodic and
unbounded orbits co-exist; and iii) a region of large inclinations where no halting
orbit exists (and we conjecture that the motion is always unbounded). Fixed points
are also found at precisely the inclination separating regions i) and ii).

Key words: Grain dynamics, Granular flow, Friction, Nonlinear dynamics
PACS: 45.70.-n
PACS: 83.70.-f
PACS: 45.50.-j

1 Introduction

The gravity-driven flow of granular materials is a topic of considerable interest
because of its obvious practical importance as well as for scientific reasons.
Here the interplay between the driving force (gravity) and dissipation (inelastic
grain collisions) can lead to a range of complex dynamical behaviors, such
as intermittent flow (i.e., avalanches), and continuous steady and unsteady
flows [1,2]. A complete understanding of the grain dynamics during such flows
remains a challenge [3]. Thus, the study of simple models for grain dynamics
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is of great interest since they might provide useful insights into the actual
dynamics of granular flows. In this context, the motion of a single grain on a
rough inclined surface has recently been studied both experimentally [4] and
theoretically [5-9].

Motivated by some of these studies, we have recently introduced [10,11] a class
of models for the gravity-driven motion of a single grain down a rough inclined
surface, where some simplifying assumptions were made: (i) the rough surface
was supposed to have a simple ‘staircase’ profile; (ii) the grain was treated
as a point particle; and (iii) a simple restitution law was adopted, namely,
v; = C(v,v,) and v, = 0, where v, and v, are the velocity components
tangential and normal to the collision plane, with the prime denoting post-
collisional velocities, and C'(z,y) is a homogeneous function of degree 1 [11].

The no-bouncing condition (v, = 0) was adopted so that the dynamics of

n

the model could be reduced to a one-dimensional map. (To see this, note
that upon colliding with a step the particle slides to the end of this step, at
which point it takes off, and so on; hence we only need to keep track of the
tangential velocity at takeoff.) First we analyzed the simpler case in which
C(vg, v,) = ey, where e, is the tangential coefficient of restitution. Here it
was found that, as the surface inclination increases, there is a sharp transition
(independent of initial conditions) from a regime of bounded velocities to a
an accelerated regime. In the bounded regime itself, there is a transition from
steady motion (corresponding to stable fixed points) to unsteady (chaotic)
behavior [10]. Another important result was the fact shown in Ref. [11] that
the qualitative nature of the phase diagram of the model is preserved for any
physically reasonable choice of the function C(vy,vy,).

In the present paper, we consider an extension of our previous model where
we now include the case of a nonzero normal restitution coefficient e,,. More
specifically, here we adopt the following collision rule:

U£ = €4y, (1)
vl =—€,Un, (2)

where both e; and e,, take values in the interval [0, 1). Regarding these collision
conditions, it should be pointed out that in view of the discussion at the end
of the preceding paragraph, the choice (1) may not be as restrictive as it might
seem at first. As for condition (2), experiments on binary collisions between
spheres have shown that the normal restitution law is well described by a
single normal coefficient of restitution [12]. As it will be seen below, our model
is now described by a three-dimensional map which displays a much richer
dynamics. One striking difference from our original model [10] is that in the
present model the transition from bounded to unbounded orbits is no longer
sharp: there is an intermediate region where both bounded and unbounded
orbits coexist. Moreover, in this transition region we also find infinitely many



Fig. 1. Model for a single particle moving under gravity on an rough inclined surface.

periodic orbits. We conjecture (and give evidences) that below this transition
region, the particle always comes to a halt, whereas above it the particle always
accelerates.

It is interesting to note that certain dynamical features in the original model
[10], most prominently the existence of unstable fixed points, are due to the
condition of no-bouncing and subsequent sliding. In the bouncing model dis-
cussed in the present paper only stable fixed points and periodic orbits can
occur. (In [13] we have presented a preliminary analysis of a hybrid model
that contains aspects of both models, where we allow sliding after the particle
stops bouncing,.)

The paper is organized as follows. In Sec. 2 we describe our model. In Sec. 3
we give conditions for which unbounded orbits can exist, whereas in Sec. 4 we
discuss when halting orbits occur. The issue of existence of fixed points and
periodic orbits is then tackled in Secs. 5 and 6, respectively. Sec. 7 contains
additional discussion about our findings as well as our conclusions. We antic-
ipate here, in particular, that the main results of the paper are summarized
in the ‘phase diagram’ shown in this last section in Fig. 2.

2 The Model

In our model, which is shown in Fig. 1, the rough surface is considered to
have a simple staircase shape whose steps have height @ and length b [10]. For
convenience, we choose a system of coordinates such that the step plateaus
are aligned with the z axis and the direction of the acceleration of gravity g
makes an angle ¢ with the y axis. A particle is then launched on the top of
the ‘staircase’ with a given initial velocity, so that its subsequent motion will
consist of a sequence of ballistic flights and collisions, as illustrated in Fig. 1.



Suppose that our particle starts a given flight with velocity (u,v) and that
the launching point is taken as the origin. The particle will undergo a ballistic
flight until it collides with another plateau located a certain number n of steps
below the departure step—the integer n will thus be referred to as the jump
number for the flight. If the time of flight from departure to landing is denoted
by ¢, then the velocity (u., v.) at collision and the corresponding collision point
(¢, ye) are determined by

U, = u + gst,
Ve = U — gct,
Te = ut + 5gst?,

Yo = U — %gct2 = —na.

Here for ease of notation we have defined the parameters s = sin¢ and ¢ =
cos ¢. Notice that u. is positive whereas v, is negative. The last equation can
be solved for the flight time ¢, which in turn can be used to yield the particle
velocity and position at collision. Before doing this, however, it is best to
simplify the equations above by defining new variables.

First, let z denote the distance from the starting point of the current flight to
the edge of the horizontal ramp where the flight started; see Fig. 1. Then the
position z' at the beginning of next flight will be

Z=z+nb—xz. . (4)

Note that we always have

0<z<b . (5)
In fact, this latter requirement determines the value of the discrete variable
n, that is, n is the smallest integer such that the condition (5) holds for 2'.

Next, we define dimensionless variables:

X=2 y =2 z==,
b a b 6
ot U v T_ /gct (6)
B sv/2gca’ N V2gca’ - V2a

Subsequently we drop the capital notation with the understanding that we
shall be working solely with dimensionless variables. In these new variables,



the equations given in (3) become

Ue = U+ 1,
Ve =0 — 1,
Te = 2Kut + Kt

Ye = 2vt — t? = —n,

where we have introduced a new parameter k£ defined by

Note also that (4) simplifies to

d=z4n-—x. , (8)

with 0 < z < 1. The last equation in (7) can easily be solved for the re-scaled
time of flight:

t=uv+ (v*+n)2 9)

Inserting (9) into the first three equations in (7) yields the velocity (u.,v.)
and the position z. at collision as a function of u, v and z. Now, if we denote
by (u,v") the particle velocity immediately after the collision, then according
to the collision law given in (1) and (2) we have u' = eu. and v' = —e,v,,
whereas the corresponding coordinate z' is obtained by plugging z. into (8).
Performing this calculation, one obtains that the dynamics of the model is
described by the following map

F:(u,v,2) = (U0, 2", (10)

where

u' = e (u+v+\/v2+n),
v = e, Vv? +n, (11)
2 =z+n(l—k)—2k(u+v) (v+\/v2+n).

We note here for later use that the equation above for the variable z can be



conveniently written as

ul?
z’:z+n—f<;<—2—u2>. (12)
€t

As already mentioned, the jump number n appearing in (11) is determined by
the requirements that n be the smallest non-negative integer such that 2z’ > 0.
Here there are two cases two consider: either (i) the particle lands on the very
same step where the flight started, in which case n = 0, or (ii) it will jump
at least one step so that n > 0. First consider case (i). Solving the equation
Z'(n =0) > 0 gives the following condition:

if z>4kv(u+wv) then n=0. (13)

Otherwise, we have n > 0. In this case, in order to determine the exact value
of n we first note that the equation for 2’ in (11) can be written as a quadratic
expression in v? + n. A careful investigation of the roots of this equation
shows that if the inequality in (13) fails, then the quadratic equation has two
distinct roots, with precisely one of which being greater than v. This means
that n is the smallest positive integer such that v/v? 4+ n is greater than this
largest root. More specifically, one obtains that whenever inequality (13) fails
the jump number n is determined by the condition

m(u—i—v)—l-\/(f@u—l-v)?— (1-k)z

11—~k

vuZ+n > >Vol4+n—1. (14)

Solving this equation for n then yields

n= {% [mu+v+\/(nu+v)2—(1—n)z] N -‘,

1—«k

where [z] denotes the ceiling function (i.e., the smallest integer greater than

3 Bounded vs. Unbounded Orbits

Here we investigate the conditions under which the map F' can have unbounded
orbits, i.e., orbits for which the velocity grows indefinitely, or else when all
orbits remain unbounded. Our main result is stated below.



Theorem 1 The map F defined in (10) and (11) admits unbounded orbits if
K > Koo, and all orbits are bounded if k < Ko, where

(1 —e)(d —en)

B = Tt e (L4 en) (15)

Proof. We first note that for given x, e;, and e,, it is clear that if at least one
of u or v is very large then under iteration of map (11) the new «', v', and n/
will be large. Let us then define the following quantity

=TT _2/<ou—|-(1+f<;)v. (16)

1—«x

Using this definition, we can rewrite the equations for «' and v’ given in (11)
as
I €t

U= (14 K)u + 2v] + ey, (17)

v = : n 2ku + (1 + K)v] + ey (18)
— K

Now, when u and v are sufficiently large, it is shown in the Appendix that ~
becomes arbitrarily small and hence (u/,v") will grow if and only if the lin-
earized model (i.e., with v = 0) predicts growth. As is well known, a linear
map will predict growth if its derivative matrix has at least one eigenvalue
(Floquet multiplier) greater than unity. One can easily verify that the char-
acteristic polynomial of the derivative matrix of the linear part of the map
is

(14 k)
(1-K)

p(\) = 2 — (e, + ) A+ eey,.

One can now readily check that this polynomial has a root greater than 1 if
and only if kK > K. U

We remark that the case Kk = K is left undecided by theorem above. We will
see shortly, however, that in this case the map F' has fixed points with any
given jump number n and that the dynamics will always be attracted to one
of such fixed points, so that for kK = k., the orbits stay bounded as well.

A second noteworthy remark is that a model recently studied by Bideau and
Valance [8] is a particular case of our map above with v = 0 and ¢, = e, = e.
If we neglect the physical dimension of the steps in our map (11), then their



continuous map follows. The particle in this case always lands on the line
y = —xz. Thus, in our notation, their model replaces the last equation of (7)
by

y=2wt—t*=—-x . (19)

Solving for the re-scaled time of flight ¢ yields

2(u+v)
1—-k

t =

Substituting ¢ back into (7) gives us precisely the linear part of equations (17)
and (18).

4 Halting Orbits

One particularly interesting class of bounded orbits in our model is what we
term halting orbits, where the particle will bounce infinitely many times on
the same step (i.e., n = 0), with ever smaller velocity, until coming eventually
to a stop. By a non-trivial halting orbit we mean an orbit during which the
particle jumps at least once with n > 0 before coming to a halt. Our goal
in this section is to establish the conditions for the existence of such halting
orbits.

We begin by considering the motion of our particle on a single tilted ramp, by
which we mean a step of arbitrarily large size (i.e., b — oo in Fig. 1). Let us
then define the stopping distance d as the distance (measured along the ramp)
from the point of the first takeoff to the point where the particle finally stops.

Lemma 2 Let u and v be the velocity components at the beginning of the first
flight on a single ramp, then the stopping distance d is given by

(1+ egen)v? + (1 — €2)uv

d=1
T = een)(1 - 2)

(20)

Proof. To obtain the equation of motion on a single ramp, set n = 0 in (11):

u' =ey(u+ 2v), (21)
v =eyv, (22)
2=z —4drv(v+u). (23)



Note that for the velocity we have a linear map. Thus, if we introduce matrix
notation and write the initial velocity vector as

V= , (24)

then the next iterate V' can be written as V' = AV, where the matrix A is

e; 2e
A= """, (25)
0 e,

More generally, the velocity Vj, after k iterations will be Vj, = A*V| with

k i k—i
ey 2 ele
L = R (26)

k
0 e,

Note also that the distance (measured along the ramp) advanced by the par-
ticle over one iteration can be written with the usual scalar product notation:

z—2 = (V,BV), (27)

where the matrix B is given by

For the stopping distance d, we then get that

d= i(Akv, BA*V) = (V, i(Ak)tBAkV), (29)

k=0 k=0

where the upper script ¢ denotes the transpose matrix. Using (26) and (28)
we find that

0 (eien)®

(Ak)tBAk = 2K k. ,
(eren)t  2e2F + 4y eleh—i
=1

(30)



Now inserting (30) into (29) then yields

00 00 oo k
d =4k [uv Y (eren)f + 02> e2F + 20233 ele2h | (31)
k=0 k=0

k=01i=1

The first two sums above are geometrical series, 7 (ese,)* = 1/(1 — esey)

and Y72 e2F = 1/(1 — €2), while the double sum gives

>~ k ) e
S Y el = (32)

k=0 i=1 (1 —e2)(1 —een) '

Substituting these expressions into (31) and performing some simplification,
one arrives at formula (20). O

We can now state and prove the following result concerning the existence of
nontrivial halting orbits.

Theorem 3 The map F given in (10) and (11) has non-trivial halting orbits
if and only if k < kg , where

v = (1 —ere,)(1—€?)

= . 33
1+ 3e,(e; +e,) + eed (33)

Proof. Let the particle fall off the edge of a step with zero initial velocity.
The particle then hits the next step at z’ = 1 — k and just after bouncing has
velocity V' = (eq, e,), as can be checked from (11). The stopping distance dy
for this case can be evaluated from the previous Lemma:

 Adk(en Fe)e,
b= A e i =) (34)

The particle comes to a stop before it reaches the edge of the ramp provided
that dy < 1— &k, which means k < k. This proves the ‘if” part. Next note that
whenever a particle lands on a ramp, the value for v must be greater than e;
and the value for v must be greater than e; (just after landing). Thus we have
that d is greater than dy. Since also z at the landing point must be smaller
than 1 — K, we see that if kK > ks then d > 1 — k and the particle cannot come
to a stop. l

One can easily verify that 0 < ks < ks < 1. Thus for kK < kK < kg both
unbounded and halting orbits coexist. In fact, we will see in Sec. 6 below

10



that in this case there exist other types of bounded orbits, namely, periodic
orbits. We conjecture that for k > kg, where no halting orbits exist, all orbits
are unbounded, whereas for Kk < ko, where no unbounded orbit is possible,
all orbits are halting ones. (These conjectures are supported by our numerics
where a bounded orbit was never found for x > K, nor a non-halting orbit was
ever found for Kk < Koo.)

5 Fixed Points

When we try to solve for the fixed points of the map (11) by setting v’ = u,
v' =w, and 2z’ = z, we immediately encounter a curious fact, namely, that the
variable z immediately drops out of its fixed-point equation. As we will see
below, this implies that for given e; and e, fixed points will exist only for a
specific value of the parameter x.

Let us suppose that there exists a fixed point where the particle jumps m
steps every iterate. Then setting n = m, v’ = v = u’, and v' = v = v¥, in (11)
and solving for the fixed-point value of velocity components v and v}, one
readily obtains

. e m(1l+e,)
— 35
Um =7 e 1—e, ' (35)

% m
N et (36)

Now consider the equation for z’. Setting n = m and v’ = u = u}, in (12) and
performing some simplification yield

z’=z+m<1—i>, (37)

Koo

where Ky is as given in (15). From (37) it immediately follows that fixed
points (i.e., 2’ = z) can exist only if K = Koo It is also clear that the above
fixed points will exist if and only if there are values of z € [0,1) such that
the condition (14) is satisfied for kK = koo, u = u},, v = v}, and n = m. The

following calculation establishes that this indeed occurs.

*

*,and n = m in (14), we obtain after some

Setting K = Koo, U = Uy, vV =0
simplification:

11



1/2

(1+6t)(1—€n)2 -

2@2(1—6n)\/ﬁ+(1+6n)[m_2 e +e

>2/m — 1+ ¢€2. (38)

It is easy to see that the first inequality implies that z > 0, while the second
inequality yields z < z,,, where

2(e; +ep)
]_ -+ et)(]. + en)2

zm:( [l—l-en—m—l-\/m(m—l—l-e%) . (39)

[Note that z,, is an increasing function of m and that lim,, , 2, = %(1 — o)
Thus, for each m > 0 there exists an interval [,,
I, =10, z,), (40)

such that for z € I,,, the condition (14) holds. We have thus established the
following result.

Proposition 4 For every integer m > 0, the map F given in (10) and (11)

*

has a segment C,, = {(u’,, v, 2) | z € I,,} of fized points with jump number

m iof and only if K = Keo.

Next we turn to discuss the stability of the fixed points. Let us denote by DF'
the Jacobian matrix of the map (11). Calculating DF and performing some
simplification, one finds that DF' can be written in the following form

e en(u' —eu) /v 0

DF = 0 e2v /v’ 0 |- (41)

—2k(u'Je; —u) —2ku’(u' — eyu)/e2v’ 1

*

Setting kK = Koo, B = m, u' = u = u},, and v' = v = v}, into (41), we readily
find that the Jacobian matrix at the fixed point becomes

€ et(l + en) 0
DF|g,. = 0 e2 0 (42)
_o(e) [(l-ew)m _2\/(176%)m 1
(14e¢) (1+en) 1+e¢

It is easy to see that the eigenvalues of this matrix are given by the diagonal
entries: \; = e;, Ay = €2, and A3 = 1. Although the first two eigenvalues
(associated with the equations for u' and v, respectively) are positive and

12



smaller than 1, the third eigenvalue (from the equation for z') is equal to
unity, so that the fixed points are marginally stable. This property is clearly
a consequence of the translational invariance in the z coordinate of the fixed
points. Because of this fact, the question of stability of the fixed points must
be considered with some caution.

Small perturbations in the velocity from the fixed point will decrease expo-
nentially fast because the relevant eigenvalues A; and A, are both smaller than
1. However, before the velocity converges to the fixed point (u,, v¥ ) the value
of z might become outside the interval .J,,, thus leading to a change in jump
number. One can show that this cannot happen if we pick an initial velocity
sufficiently close to the fixed point and a value of z sufficiently far from the
edge of the ramp. We thus have the following result, the formal proof of which
will be published elsewhere.

Proposition 5 The segment C,, of fixzed points is an attractor for the map F
in the following sense: There is an open set Uy, of initial conditions such that
if ¥ € Uy, then lim, o F™(x) € Cy,

It is worthwhile noting here that if one finds a periodic orbit, then the previous
result will also hold for that periodic orbit. The most important observation
needed to establish this is that equation (41) implies that the eigenvalues
of the derivative along a g¢-periodic orbit can easily be calculated. Suppose
z = (u,v,2) is a point belonging to a g-periodic orbit of F. Then one can
easily check that the derivative DF'? of F'? evaluated at x is of the form

el * 0
DF=10¢€20

* x 1

Here * stands for an arbitrary entry. For the same reasons as before the eigen-
values of this matrix are ef, €2¢ and 1. Thus the contraction rates along the
invariant manifolds of a periodic orbit are the same as those for the fixed
points, and hence the periodic orbits will be stable in the sense described in
Proposition 5. In the next section we will consider several periodic orbits for

which explicit solutions can be found.

6 Periodic Orbits

Here we consider two classes of periodic of orbits: i) orbits of arbitrary period
k41, with £ = 1,2, ..., where the particle jumps k times with n = 0 and then

13



once with n = 1; and ii) orbits of period 2 where the particle jumps m steps
once and then m + 1 steps in the next flight. For convenience of notation we
shall label the periodic orbits by juxtaposing the corresponding jump number
for each point of the orbit. For instance, orbits of class i) above will be labelled
by 000...01 (meaning k zeros followed by 1). More compactly, we shall refer to
these orbits as being orbits of type 0¥1. Similarly, the periodic orbits in class
ii) will be said to be of type m(m + 1).

6.1 Periodic orbits of type 0F1

In order to obtain an explicit solution for periodic orbits of type 0¥1 a some-
what tedious calculation is required, and here we give only its main steps.
Since in this case the particle bounces k times with n = 0, we can use the
results of Sec. 4: if V = (u,v)" denotes the vector velocity at the beginning of
the first flight, then the velocity Vi = (ug, vg)" after the next & collisions will
be given by V;, = A*V, where A* is as in (26). Upon performing the sum in
(26) one finds

2 k _ Jk
up = efu + %v, (43)
n — “t

vp=eFu. (44)

Similarly, the distance dj, traversed after these £ flights can be obtained from
the same reasoning that lead to formula (31):

k=1 . k=1 k=14
de =4k |uv Y (ere,)” +0° D e + 207 > ejerd | . (45)
=0 =0

j=0i=1

After performing the sums above one gets

di, = 4k (akuv + BkUZ) , (46)
where
]- - n k n ]- — %k 2 ]_ — ekek
o o)t lare)(iod)  ealodd) o
1 —ene (en —er)(1—¢€2)  (en —er)(l —ener)

If we denote by z the particle position at the beginning of the first flight, then
the position after k flights is simply

14



The particle now jumps once with n = 1, so that according to (11) the velocity
(g1, Ver1) at the beginning of next flight is given by

Upy1 = € <uk +vp + (/U + 1) , (49)
Vky1 =€/ Vi + 1. (50)

One then has to solve the fixed-point equations, namely, ux; = v = up and
Ug+1 = v = vy. Here we omit the details and simply quote the final result

e G + (e, + e)eftt — 2e,ef e (51)
0— )
(en —e)(1 —efth 1 — 2t
P (52)
| _ 2+

Now consider the equation for the particle position z;,;. From (12) one has

2
=2 +1—kK (“Z;l — ui> : (53)
t

Setting uxy1 = u = ug in this equation and using (43), (46), and (48), one can
show after some algebra that z;,; can be written in the following form

K
Zptr =2+ 1 — ; (54)
Kok1
where
1 9 511
Foki = 7 [akuo + bpugvg + ckvo] . (55)

Here ug and vy are as in (51) and (52), and the constants ay, by and ¢y are
given by

1 — 2k+D) ehtl(ok _ ok e ek — k)12
ar = 4;2 , bk:ak— ¢ e( n o t), Ck:ﬁk— 715(6”' et) (56)
t n — ©t n — ©t

We thus see from (54) that, just as in the case of fixed points, periodic orbits
of type 0F1 can exist only at specific values of k, namely, for kK = Kg;. In
order to show that these periodic orbits do indeed exist we need to verify
that there are values of z such that condition (13) is satisfied at k = kg, for
u = up and v = vy. This condition immediately yields a minimum value for z:

15



z > 2k = kg vg(ug+1vp). Now note that we must have zp < 4rgr; vg (ug,+vg)

since the (k + 1)th flight has n = 1. In view of (48) this last inequality implies
z < 2k, = di+4kge v (ug +vg). One can also verify that 0 < 28, < 2k < 1.

Thus for z in the interval J;, = [2*. , 2F . ) the condition (13) will be satisfied

min’ “max
and the periodic orbits do exist. We have thus proven the following result.

Proposition 6 For every integer k > 0, the map F given in (10) and (11)
has periodic orbits of type OF1 if and only if kK = kgk,. Moreover, the first
point with n = 0 in these orbits can be arbitrarily chosen from the segment
Cr = {(ug,v0,2) | z€ i}, with ug and vy being given by (51) and (52),
respectively.

One can verify that kg, < kg for £ < [ and that limy_, o kgr; = Ks. We
thus have the seemingly counterintuitive fact ‘slower orbits’ occur for larger
inclinations. We also remark that the procedure above could, in principle, be
extended to other classes of periodic orbits, for example, orbits of type 0¥10'1.
(The calculation, of course, becomes exceedingly complicated and will not
be attempted here.) In fact, we conjecture that to each sequence in {0, 1}
compatible with rotations on the circle by a rational angle, we can associate
an orbit whose jump numbers form that sequence. Periodic orbits with jump
numbers other 0 and 1 also exist as we show next.

6.2 Periodic orbits of type m(m + 1)

Now we consider a periodic orbit of period 2 with jump numbers n; = m and
ne = m + 1. Here we only need to consider the case m > 0, since m = 0
corresponds to the orbit 01 which belongs to the class of orbits studied above.
Let us denote the two points of the periodic orbit by z; = (uy,vy,21) and
xo = (ug, vg, 29), respectively, where F(z;) = xo and F'(x3) = z1. In order to
find such an orbit let us iterate the map (11) twice, first with n = m and then
with n = m + 1. For the second iterates of u and v we respectively find

u' =e {et(u +0) + (er + en) VU2 +m + \/6%1)2 +m(l+e2)+1|, (57)

v :en\/eizﬁ +m(l+e2)+1. (58)

We now solve for the fixed points of these equations. First note that the second
equation above can be written as a linear equation in v?, and so it has a unique
positive solution:

1+m(l+¢e2)
SN s GV 5
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which upon substitution back into (58) gives

e2 +m(l+e2)
= €p,| ne 60
U2 GJ 1— et (60)

Performing a similar calculation for the fixed point of (57), one then finds the
following values:

€t

m (14 eren)vr + (e + €,)va] (61)

Uy =

€¢

m[(et +en)v1 + (1 +een)vs] (62)

U9 =

with v; and v as given in (59) and (60), respectively.

Let us now consider the second iterate of the variable z. Using (12) it can be
readily verified that z” can be written as

=z 42m+1— ke ? [u"Z +(1— ef)u'2 - G?Uﬂ ; (63)

which for " = v = u; and v = us becomes

z":z+2m+1—n(e;2—1)(u%+u§). (64)

Inserting (61) and (62) into (64) and performing some simplification, one finds

z":z+(2m+1)l1— " ] (65)

Km(m+1)
where

deren, + (1 +€7)(1+¢€2)
Km(m -
S (I— €)1 —e2)
-1
Aer + en) (1 + eren) VJE2 + (L+€2)2m(m + 1) .
(1—e2)(1—et) (2m + 1)

Note that Kmym41) > Kmim41) for m < m’ and that limy, e Km@m+1) = Koo,
with ko as given in (15). [One can also verify that for m = 0 the expression
above for k¢, yields the same value as obtained by setting £ = 1 in (55).]

From (65) it is clear that periodic orbits of period 2 (i.e., 2" = z) can exist
only if K = Kyy(m41). As before, in order to ensure that these periodic orbits
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Fig. 2. Phase diagram for the map F: (a) in the plane ¢, = 0.2 and (b) in the
plane e, = 0.2. The lower and upper solid curves represent ko, and s, respectively;
the three dashed lines give ko1, ko1 and kgpo1 (from the bottom up); whereas the
dot-dashed line corresponds to k2.

do indeed exist we need to verify that the condition (14) holds at £ = Kpy(m1)
for n =m, u = uy, v = vy and for some 0 < z < 1. (Recall that we only need
to check for m > 0.) Such calculation is similar to that performed earlier for
the case of the fixed points, only much more awkward and so it will not be
presented here. The result is that there will be an interval .J,, C [0,1) such
that for z € J,, the condition (14) holds. We thus have

Proposition 7 For every m > 0, the map F has periodic orbits of period 2
with jump numbers ny = m and ny = m + 1 if and only if K = Kp@ny)-
Moreover the velocities (uy,v1) and (ug,vs) are uniquely given by (59)—-(62).

7 Discussion and Conclusions

The analysis presented above can be summarized in the ‘phase diagram’ shown
in Fig. 2, which we now proceed to discuss. In this figure the lowermost and
uppermost curves represent, respectively, the surfaces k (€, €;) and k(e €;)
cut at the planes ¢, = 0.2 (Fig. 2a) and e, = 0.2 (Fig. 2b). These two sur-
faces separate the parameter space (e, e, k) into three distinct regions. We
conjecture (and have verified numerically) that in the region k£ > ky(e,, €;),
where no halting orbits exist, only unbounded orbits can occur, whereas in
the region k < Ky (€n, €;), where no unbounded orbit is possible, only halting
orbits occur. In the middle region, k. (€, €;) < k < Ks(en, €;), not only halting
and unbounded orbits coexist but there are also periodic orbits of arbitrary
period. Shown in Fig. 2 as dashed lines are the corresponding surfaces ko,
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Koo1, and Kopo1 at which periodic orbits of types 01, 001, and 0001 exist. Also
shown as a dot-dashed line is the surface x5 at which a periodic orbit of type
12 appears. We have argued above that many other periodic orbits should
exist for Koo (€n, €1) < Kk < Kg(en, €;). In fact we conjecture that periodic orbits
are dense in this region.

It is interesting to compare the conclusions above with what was found in
our earlier model [10], where e, = 0 and the particle was allowed to slide
frictionlessly. We shall refer to this previous model as model 1, while the model
discussed in the present paper will be called model 2. Model 1 was considerably
simpler to analyze since its dynamics is described by a one-dimensional map
[10]. Its phase diagram contains a curve Koo(e;) such that if x < Kk (e;) then
all orbits are bounded, whereas if k > k4 (e;) all orbits are unbounded. In
this sense, the transition between bounded and unbounded motion is ‘sharp’
in model 1. Comparing the phase diagram of the two models, we thus see that
it is as if the curve Ky (€;) of model 1 has ‘opened up’ in model 2 into a region,
namely, koo (€, €,) < k < K4(€p, €;), where one now has coexistence of halting,
unbounded and periodic orbits.

In a separate paper [13] we have combined these two models by allowing the
particle to slide, on the account of gravity, after it has come to a halt. In
this case, upon sliding until the end of the step the particle then embarks
on a ballistic flight, at which point we resume iteration of the bouncing map
F. Preliminary results on this hybrid model were given in Ref. [13] and a
more detailed analysis of its dynamics will be the subject of a forthcoming
publication [14]. Here however we wish emphasize, as a concluding remark,
that no matter how one chooses to restart the motion after the particle comes
to a halt, the particle velocity remains always bounded in the region k <

Koo (€1, €n).

This work was supported in part by FINEP, CNPq, and PRONEX under grant
number 76.97.1004.00.

A Appendix

Here we show that the quantity v defined in (16) becomes vanishingly small
as the velocity (u,v) becomes arbitrarily large. First we note that v can be
rewritten as

K(u+ v KU + v)?
y=Vvi+n-— ( )+ ( )

1—« 1—«&
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In what follows we will use the fact that

1
Ve —vVz—1<—, Vo>1,
VT

and that 0 < z < 1 — k. (This last relation follows from the fact that the
largest z is obtained when the particle falls off the edge of a step with zero
initial velocity.) If n > 1, the condition (14) together with the inequalities just
mentioned imply that

0§¢F:—_<mw+vy+mw+vy—zu—nwﬂ>:

1—-k 1—-k
N [(ku + v)? 12 (ku+ v)? z 1/2< N 1—k
T =R 1-r? (1-r)] =7 kuto’
Furthermore, again by equation (14) we have
—i——>¢w+n—¢ﬂ+n—1>
VAL
ST — (ﬁ(lu +v) N [(ku + 0)21— 2(1 — H)]1/2> -
- K — K

Putting these equations together, we obtain that 7 is inversely proportional
to the velocity in the following sense

11—~k 1

L S R —
ku+v = Voldn
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