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 Abstract 
Long-distance trade has been rapidly increasing in recent years. As traders from around 
the world exchange goods, they form networks with traders as nodes and transactions as 
links. We use an agent-based model of a simple artificial economy to examine the 
emergence of trade networks when the distance between traders matters. Distance can 
become an issue if fuel for transportation becomes expensive or if greenhouse gas 
emissions from transportation become a major concern. We model the distance 
constraint as a transaction cost proportional to the amount of goods traded and the 
distance that those goods must be transported. We find that the resulting network 
topology is a good indicator of the stability and resilience of the economic system. The 
topology is random when there is no distance constraint. As the transaction cost 
increases, the topology transitions into a stable scale-free structure with some 
clustering, and a large fraction of trade occurs within local regions around the network 
hubs. Under these conditions, the final welfare of the traders decreases only modestly 
and environmental efficiency increases significantly when each region has a diverse 
combination of tradable goods. 

1.1.   Introduction 
Long-distance trade is an integral part of globalization and has been rapidly increasing 
in recent years. As traders from around the world exchange goods, they form networks 
where the traders represent nodes and transactions between them represent links. We 
examine the emergence of these trade networks using an agent-based model of a simple 
artificial economy, in which the distance between traders significantly influences the 
cost of trading. Distance can become an issue if fuel for transportation becomes 



 

expensive, or if greenhouse gas emissions from the fast-growing transportation sector 
become a major concern [Venkat 2003]. While information technology is rapidly 
removing many long-standing obstacles to free trade, the ultimate constraint to trade 
may well be our ability to physically move material goods between traders over long 
distances at an acceptable real cost.  

We hypothesize that a distance constraint might lead to a restructuring of the fast-
growing society of global traders, and stimulate new kinds of trade relationships and 
networks. We test our hypothesis in this study using the techniques of agent-based 
computational economics [Tesfatsion 2006] in a simple setting as a first step. While 
other studies have focused on the effects of fixed network structures [Wilhite 2001; 
Wilhite 2006], we take the view that trade networks are highly malleable and arise from 
the same constraints that influence economic performance. Given the evidence so far 
that complex systems encode their organizing principles at some level in their topology 
[Barabasi, et al, 2004], we investigate the evolution and structure of the networks in 
order to characterize the organization and functioning of our artificial economy. 

We model the distance constraint as a transaction cost. This cost reflects some 
degree of internalization of the real environmental costs of long-distance trade, 
including fossil fuel depletion and greenhouse gas emissions.  We study the effect of 
this transaction cost under two different initial allocations of tradable goods, one where 
there are regional differences and the other where the goods are uniformly distributed 
throughout the world. We are particularly interested in the properties of trade networks 
that emerge as we vary both the transaction cost and the initial allocation, and we 
examine how the network properties correlate with economic performance and 
environmental efficiency. 

1.2.   Trade Model 
We formulate the trade problem based on our previous work [Venkat and Wakeland 
2006], adapting a simple barter economy that has been used to study economic activity 
on fixed networks [Wilhite 2001; Wilhite 2006]. Our artificial world consists of 1024 
traders spaced uniformly in the four quadrants of a flat space, as shown in Figure 1(a). 
Each trader is an agent who remains at a fixed location, and is able to trade with others 
who may be at other arbitrary locations. Traders are presumed to find potential trade 
partners and negotiate the terms of trade through mechanisms that are independent of 
their locations, such as globally-accessible electronic trade exchanges. 

Each trader starts out with an initial endowment of two durable goods, g1 and g2, 
ranging from 0 to 1500 units each. The two goods suffer no degradation over time and 
serve as assets that can be exchanged. There is no production and the aggregate stock of 
goods changes only to account for the transaction cost as described later. The initial 
allocation can follow two distinct scenarios, maintaining nearly equal amounts of g1 
and g2 in our artificial world: 

• “Globally mixed random” (GMR): There are no regional differences. Each 
trader gets random quantities of the two goods such that the total quantity of 
both goods together is exactly 1500 units. 

• “Local comparative advantage random” (LCAR): The eastern half of the world 
has more g1 than g2, and the western half has more g2 than g1. Each trader in 
the east receives at least 1200 units of g1 and no more than 300 units of g2. 



 

Each trader in the west receives at least 1200 units of g2 and no more than 300 
units of g1. The actual amounts are allocated randomly such that each trader 
starts with a total quantity of 1500 units. 

Each trader attempts to maximize the same symmetric Cobb-Douglas welfare 
function, U = g1 * g2. Trade is organized in the form of trade rounds. In each round of 
trade, traders are chosen in random order and each trader is given a chance to initiate 
four consecutive trades. The trader then searches the world and finds the best possible 
trade partners for the four trades. Two traders consummate a trade if their marginal 
rates of substitutions are different, and if the welfare functions of both traders increase 
as a result. Trade price between agent i and agent k is determined by the following rule: 
Price = (g2i + g2k) / (g1i + g1k). In each trade, the initiating trader buys or sells one unit 
of g1 in exchange for an appropriate quantity of g2. Successive trade rounds proceed in 
this fashion and finally terminate when there are no further profitable trading 
opportunities. 

Each trade incurs a transaction cost computed as: Total transaction cost = distance * 
quantity of goods bought * unit transaction cost. We vary the unit transaction cost from 
0 to 0.25 in our experiments. The total transaction cost is subtracted from the quantity 
of goods received by each trader in a trade. Traders evaluate this cost in advance and 
proceed with a trade only if it would still increase their welfare. 

1.3.   Results and Discussion 
The trade model was implemented and simulated using NetLogo [Wilensky 1999]. 
Given the fixed positions of all traders in Figure 1(a), a typical network structure that 
emerges under the distance-based transaction cost is shown in Figure 1(b). Traders 
represent nodes of the network and transactions between them represent links. In this 
section, we probe the origin and structure of these networks and show how they relate 
to aggregate economic performance in this artificial society.  

 

 
(a)                                                                              (b) 

Figure 1. (a) Location of traders in the artificial world. (b) Typical network structure emerging 
from distance-constrained trade. 



 

When the transaction cost is zero, anyone can trade with anyone else in the world. 
Figure 2(a) shows that both LCAR and GMR produce the same level of final welfare 
under these conditions. This demonstrates that unconstrained trade can efficiently move 
goods between traders and achieve a level of welfare that is nearly independent of 
initial allocations. LCAR does require more trades in order to overcome geographical 
differences in the initial allocation as seen in Figure 2(b). However, LCAR responds 
poorly to increases in transaction cost, with welfare dropping to less than 50 percent of 
the unconstrained case at medium and high costs. The largest drop occurs as the unit 
transaction cost approaches 0.05, suggesting a change in the underlying structure, and 
the welfare characteristic stabilizes at about a cost of 0.1. In contrast, the average final 
welfare in the GMR case is within 15 percent of the unconstrained case for all 
transaction costs. 

 

 
(a)                                                                              (b) 

Figure 2. (a) Average final welfare and (b) total number of trades as functions of unit transaction 
cost. 

As the distance-based transaction cost increases, the average trade distance drops 
sharply, as seen in Figure 3(a). The trade distance stabilizes at a very low cost in the 
GMR case, whereas this occurs at a higher cost for LCAR, suggesting that changes in 
network topology may be occurring at different unit transaction costs in the two cases. 
Assuming that the greenhouse gas (GHG) emissions produced by each trade are 
proportional to the quantity of goods and the shipping distance, Figure 3(b) shows the 
environmental efficiency of the two initial allocations. Clearly, the transaction cost is 
effective in dramatically increasing the average welfare per unit of greenhouse gas 
emissions. GMR performs much better than LCAR because the average welfare and the 
number of trades are very stable while there is a large reduction in the trade distance. 
The environmental efficiency is relatively stable in this case beyond a cost of 0.05. 

We now examine the network structure in more detail. As seen in Figure 4, the 
reduction in average network degree closely follows the distance characteristics. The 
average degree in the GMR case is fairly stable for unit transaction costs between 0.05 
and 0.25. The average degree for LCAR goes through significant changes until a cost of 
0.1, and then continues to change at a slower rate. Stability of the network structure, as 
measured by the average degree, correlates strongly with relative stability in trade 
distance, number of trades, welfare and environmental efficiency for both GMR and 



 

LCAR as the transaction cost is varied. The performance of the GMR case is 
significantly more stable than LCAR and less sensitive to changes in transaction cost. 

 
(a)                                                                              (b) 

Figure 3. (a) Average trade distance and (b) environmental efficiency of welfare as functions of 
unit transaction cost. 

 

 
Figure 4. Average network degree as a function of unit transaction cost. 

Figure 5 shows the degree distribution for zero and a low unit transaction cost for 
both GMR and LCAR. Without a transaction cost, the network is clearly random, with 
a high average degree as also seen in Figure 4. At a low unit transaction cost, the 
network still remains random, but the average degree is now much smaller since many 
potential longer-distance links have been eliminated by the transaction cost.  

Figure 6 shows the degree distribution for medium and high unit transaction costs. 
The GMR network displays some scale-free characteristics [Barabasi and Albert 1999] 
at costs of 0.05 and higher. Most nodes have a small degree while a few hubs have 
noticeably larger degrees, but the characteristic is limited by the small network size. It 
is also not an ideal scale-free model because the preferential attachment function 
[Barabasi, et al, 2004] is highly nonlinear due to the distance constraint.  More than 70 
percent of the nodes have at least two connections, suggesting some degree of 
clustering in the neighborhoods around the hubs. In the LCAR scenario, the network is 
decidedly random at a cost of 0.05, and moves closer to a scale-free structure at higher 



 

costs. Note that the formation of scale-free networks corresponds to a regime where 
trade is generally less sensitive to changes in transaction cost. 

 

 
(a)                                                                              (b) 

Figure 5. Degree distribution for zero and low unit transaction costs: (a) GMR. (b) LCAR. 

 
(a) (b) 

Figure 6. Degree distribution for medium and high unit transaction costs: (a) GMR. (b) LCAR. 

 
Figure 7. Evolution of the network over time (GMR, Cost = 0.1). 



 

Figure 7 shows the evolution of the network over time in the GMR case, where time 
steps correspond to trade rounds. The formation of hubs, corresponding to the power-
law tail in the degree distribution, is reinforced as trade proceeds and is nearly complete 
after a sufficient number of trade rounds. Once all of the traders have been added to the 
network, the network stops growing although new connections may still be formed. 

In the case of well-known scale-free networks such as the World Wide Web, new 
nodes link with higher probability to existing nodes that have a large number of 
connections. In our trade model, the organizing principle turns out to be quite different 
but still purposeful. The nodes that end up with the largest number of links generally 
start with lowest initial welfare and hence the largest motivation to engage in trade in 
order to improve their individual welfare. This motivation to trade makes them local 
trading hubs for their neighboring nodes. Some of the traders start with lower initial 
welfare than others because their randomly allocated initial quantities of g1 and g2 are 
very unequal.  

 

 
(a) (b) 

 
                                   (c) 

Figure 8. Trade characteristics as a function of node degree (GMR): (a) Average initial welfare. 
(b) Average trade distance. (c) Average number of trades. 

Figure 8(a) shows the distribution of initial welfare as a function of the final node 
degree. Figure 8(b) shows that hubs are likely to trade over longer distances on average, 



 

driven by their need to increase their welfare. Hubs are also likely to engage in 
significantly more trade than other nodes, as seen in Figure 8(c). 

1.4.   Conclusion 
We have seen that economic performance in the GMR case, as measured by average 
final welfare, degrades only modestly in response to the transaction cost, while 
environmental efficiency increases sharply and the number of trades is nearly 
unchanged. The average degree of the network stabilizes very quickly at a low unit 
transaction cost and the network gels into a scale-free structure with a certain degree of 
clustering. In contrast, the response of the LCAR scenario to the transaction cost is 
much more severe. There is a dramatic decline in welfare coupled with increased 
number of trades. The network structure remains random until the transaction cost is 
quite high, at which point it too approaches a scale-free structure. Economic 
performance stabilizes to some extent when the network takes on scale-free 
characteristics, but remains considerably worse than the GMR case. 

What lessons can we draw from these experiments with a simple artificial world? 
First, the network topology appears to be a good indicator of the stability and resilience 
of the economic system. It is a useful way to characterize economic interactions that 
can provide insights into both organization and function. Second, a distance-based 
transaction cost – whether imposed by markets or through environmental regulation in 
the real world – could lead to stable trade networks where most trade occurs within 
local regions and a small fraction of trade spans longer distances. The hub structure and 
clustering that emerge in our experiments are ideally suited for local trade. Once such a 
network has formed, the loss of welfare would be limited if each region has a diverse 
combination of tradable goods. This suggests that diversified local economies may 
adapt better to distance constraints than trade regimes where each region specializes in 
a small number of goods. 
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