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Depth-shifting of shallow water guide source observations
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In theory, matched field processing offers the significant benefit of higher signal gains and increased
localization capability. However, this has not been robustly observed in practice because of inherent
uncertainties about details of the shallow water propagation environments which limit the prediction
of the channel response. The use of guide sources to directly measure the transfer function between
source and receiver arrays has been proposed as a means for reducing mismatch. However, the guide
source measurement only provides a measured transfer function at the guide source location. In this
paper a method of depth-shifting guide source observations is proposed, making it possible to
estimate transfer functions for points in the ocean other than the guide source location. The proposed
depth-shifting process does not require knowledge of environmental parameters. The theoretical
background for the technique is developed below and its range of applicability is examined © 2005
Acoustical Society of America. �DOI: 10.1121/1.2010309�

PACS number�s�: 43.30.Wi, 43.30.Bp �EJS� Pages: 2224–2233

I. INTRODUCTION

Passive sonar performance in shallow water can be de-
graded because these environments support complex multi-
path propagation and often include multiple loud surface in-
terferers. Matched field processing �MFP�, which
incorporates a propagation model to determine the replicas
used in beamforming, has been proposed as a way to recover
the losses incurred due to multipath propagation and provide
increased source localization.1 Adaptive processing, in par-
ticular adaptive MFP �AMFP� can provide the ability to null
surface interference. Receive arrays with significant vertical
aperture can support discrimination between surface and sub-
merged sources and, if accurate environmental inputs are
available, can achieve significant adaptive rejection of sur-
face sources. Under ideal situations, AMFP can provide im-
proved performance in both localization and detection of
sources.

In practice the performance gains possible from AMFP
are difficult to achieve. High ambiguities typically exist in
the MFP output, especially for arrays with limited vertical
aperture, which limits interferer rejection. The motion of the
targets and interferers can be a significant problem, introduc-
ing additional signal loss, smearing source peaks, and con-
suming adaptive degrees of freedom.2 However, for arrays
with significant vertical aperture the most important limita-
tion on MFP performance is that precise information on the
underwater channel is generally not available. The mismatch
between the computed and actual array steering vectors can
result in loss of array gain and, for adaptive processing, sign-
ficant target self-nulling.

A number of approaches have been proposed to deal
with the problem of environmental mismatch in MFP. Algo-
rithms can be designed that attempt to reduce sensitivity by
directly building a model of the environmental uncertainty
into the processing.3–5 Alternatively, geoacoustic inversion
methods can be used to estimate more accurate seabed pa-
rameters, which are typically the source of greatest environ-
mental uncertainty. Inversions can be done using either trans-
missions of known wave forms from calibrated sources6,7 or
from sources of opportunity such as loud merchant ships.7

Other authors have suggested the use of guide sources
for mitigating environmental uncertainty.8,9 Guide sources
may be calibrated sources deployed for an experiment or can
be sources of opportunity such as surface ships, whose posi-
tion might be obtained from an offboard sensor. In either
case the guide source can be used to determine the acoustic
response across the array, eliminating the need to predict the
response using a propagation model. This response is imme-
diately known for the source-receiver path of the guide
source, but it is still unknown for sources at alternate loca-
tions.

The approach presented here attempts to determine the
response of a source by translating the observed response
from the guide source. In previous work,10 translation of a
response from one source range to another was demonstrated
by utilizing multifrequency data. However, the guide source
will generally be located at a different depth than the target
of interest, meaning that a method of translating in depth is
desired. This is particularly true when the guide source is a
surface ship and the target of interest is a submerged source.
In this paper a method of “depth shifting” the guide source
response using a vertical line array �VLA� is presented. With
knowledge of the guide source location, this vector can then
be shifted in depth to provide a steering vector for beam-
forming to alternate depths. Thus, a replica vector is obtained
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without the need for environmental knowledge or the use of
a propagation model.

The work presented here is similar in some respects to
work done by Conti et al. for a time-reversal mirror
application.11 Conti et al. used image processing techniques
to extract the curvature of the field received from an impul-
sive source across a fully spanning VLA. This curvature was
related to an image source contribution. By adjusting the
curvature before playing back the time-reversed signal, the
location of the time-reversal focal point was shifted in depth
and range. The approach in the following accomplishes a
similar shifting but applies to cw sources, rather than the
short-duration wave forms used in time-reversal operations.

The first section to follow outlines the theoretical back-
ground for depth shifting. The depth-shifted observation �or
replica vector� is formed by applying an operator to the ac-
tual guide source observation. The choice of this operator is
motived by the derivation of an approximate mode orthogo-
nality condition. A calculation for estimating the location of
the depth-shifted peak is shown and conditions for the depth-
shifting operation to be accurate are discussed. Finally, simu-
lation results are used to demonstrate the technique. The use
of an alternate depth-shifting operation is also explored.

II. THEORETICAL BACKGROUND FOR DEPTH
SHIFTING

The normal mode representation of the field at fre-
quency � and time t that is present on a sensor at depth z due
to a unit normalized source at a range rs and depth zs can be
written as

p�zs,z,rs;�,t� =
i��zs�

�8��1/2 �
m=1

M

�m�zs��m�z�
ei�km���−�m����rs�t�

�km���rs�t�
,

�1�

where �m is the mode function, km is the horizontal wave
number, �m is the attenuation constant of the mth mode, and
M is the total number of propagating modes. For simplic-
ity, the explicit reference to frequency � in Eq. �1� will be
omitted in subsequent equations except when the fre-
quency dependence is not clear.

One useful characteristic of the mode functions is their
orthonormalacy relationship, which can be written as

�
0

D

�l�z��m�z� = ��l − m� , �2�

where the integration is computed over the water column of
depth D. In MFP, the above-noted relationship can be used
to simplify the inner product of pressure fields sampled
along a fully spanning VLA to a weighted summation over a
single mode.10 In this section, a similar relationship is pur-
sued, but one that involves not only the mode functions but
their spatial derivatives. The rationale is that there is a cor-
respondence between mode number m and source depth, so
that shifting in mode number produces an analogous effect to
shifting in depth. This central idea will be motivated by the
derivation in this section, followed by the expressions for the
MFP output produced in the following section.

The derivation begins by noting that the depth depen-
dence in Eq. �1� is contained entirely in the mode functions
�m, which are a function of two parameters: the vertical
mode wave number kz,m and source depth. An assumption is
made that this dependence is on the product of the two, i.e.,
�m�z� can be considered as a function of the form f�kz,mz�.
This is consistent with the Wentzel–Kramers–Brillion
�WKB� approximation for mode shapes and eigenvalues.

Under this assumption, the partial derivatives with re-
spect to depth and wave number, respectively, can be written
as

�

�z
�m�z� = g�kz,mz��kz,m +

�kz,m

�z
z	�g�kz,mz�kz,m,

�3�
�

�kz,m
�m�z� = g�kz,mz�z ,

where the unknown function g�kz,mz� has been introduced as
a common product of the two differentiations �for example,
if �m�z�=sin kz,mz, then g=cos kz,mz�. In calculating the
depth derivative, the depth dependence of the vertical wave
number has been neglected. The unknown function g can be
eliminated to give

�

�kz,m
�m�z� =

�

�z
�m�z�

z

kz,m
, �4�

which can be approximated using a centered finite differ-
ence:

�

�kz,m
�m�z� 


�m+1�z� − �m−1�z�
kz,m+1 − kz,m−1

. �5�

The results so far have introduced a parametrization of the
mode functions and have shown how its derivatives are re-
lated. A new approximate orthogonality expression for the
mode functions is now derived.

The standard mode orthogonality condition in Eq. �2�
can be used to write the following difference expression:

�
0

D

��l+1�z� − �l−1�z���m�z�dz = ��l + 1 − m� − ��l − 1 − m� .

�6�

�This is obtained by applying the orthogonality condition
twice, then subtracting the two results.� The resulting expres-
sion includes a term similar to the centered difference in Eq.
�5�, thus inserting and simplifying gives

�
0

D

z
�

�z
�l�z�

kz,l+1 − kz,l−1

kz,l
�m�z�dz

= ��l + 1 − m� − ��l − 1 − m� . �7�

Now, the horizontal wave numbers are assumed to have a
linear dependence on mode number:

kz,l = q�z�l . �8�

In general q will be a function of depth, but as noted earlier,
this difference has been assumed to be weak. The difference
between vertical wave numbers in Eq. �7� can then be sim-
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plified, giving a new �but approximate� orthogonality expres-
sion for the mode functions:

�
0

D

z
�

�z
�l�z��m�z�dz �

l

2
���l + 1 − m� − ��l − 1 − m�� .

�9�

The right-hand side above will be nonzero when either delta
function is satisfied, i.e., when m= l±1. Thus the approxi-
mate orthogonality condition will hold between nearest-
neighbor modes. The expression is approximate because of
the first-order finite difference used to represent the vertical
wave number derivative. If desired, higher-order approxima-
tions to the finite difference could be used to capture addi-
tional off-diagonal mode cross-talk terms.

From numerical experiments, it was observed that a
similar approximate orthogonality can be obtained if the
depth-shifted replica is taken to be simply the depth-
derivative of the guide source data �without the factor of z on
the left-hand side �LHS� of Eq. �9��. This behavior can be
explained in terms of the mode shapes expected for modes
that are well above cutoff. In this case the mode shapes tend
towards ��2/D�sin kz,lz, with vertical wave numbers given
by kz,l=�l /D. The integral of mode m with the depth deriva-
tive of mode l can be calculated to be

�
0

D �

�z
�l�z��m�z�dz

=
l

D
�1 − cos ��m − l�

m − l
+

1 − cos ��m + l�
m + l

� , �10�

which will be identically zero for l=m±2k, where k
= �0,2 ,4 ,…�. The resulting zeros help to reduce cross-talk
and sidelobe levels. Note that the factor of 1 /D above results
in lower cross-correlation values than were seen in Eq. �9�.
The different scaling between the two depth-shifting opera-
tions is removed when the depth-shifted replica is normal-
ized.

III. MODIFIED BARTLETT PROCESSOR

The output from a Bartlett matched field processor
evaluated at a position of �z ,r� can be written as

P�z,r� = 
w̄H�z,r� · ȳ
2, �11�

where w̄�z ,r� is the Nx1 weight vector and ȳ is the received
response across the N-element array. Since the intent of this
paper is to describe an algorithm for the structured shifting
of MFP output peaks, the case considered here is that of a
single deterministic source �or target� at position �zs ,rs�, so
that ȳ= ȳ�zs ,rs� and P�zs ,rs� is the matched field output at the
target range and depth. �In general, for a signal in presence
of noise, the beamformer output is a stochastic quantity that
should be evaluated with an expectation operator. However,
the goal of the present work is not to evaluate the signal to
noise performance, but instead the ability to shift the beam-
former focus direction by varying the steering vector applied
to a deterministic signal. Thus, for the theoretical develop-
ment we consider the case of deterministic MFP with the

understanding that the usual signal and noise models apply
�see, for example, Ref. 1�. In the numerical simulations,
background white noise at 60 dB is included.� For the stan-
dard Bartlett processor, w̄= w̄model and the weight is the nor-
malized output of a propagation model �commonly re-
ferred to as the “replica” vector�. Accurate detection and
localization is heavily dependent on accurate knowledge
of the ocean environment, which is typically not available
in practice.

In this paper, a modified Bartlett processor is presented
where the weight vectors are obtained not from model out-
put, but from manipulation of a guide source response. Thus,
the “matching” occurs between previously observed fields,
and there is no loss due to model parameter mismatch. This
modified Bartlett processor has the form given in Eq. �11�
but with w̄= w̄guide computed from a guide source, and the
exact form will now be presented. The weight vectors are
obtained from observing the acoustic field from a guide
source �the guide source SNR is assumed to be high enough
so the effects of noise are negligible�.

In the previous section, an approximate mode orthogo-
nality relationship was presented which resulted from com-
puting the derivative of the mode functions with respect to
depth. To utilize this relationship in a modified Bartlett pro-
cessor, the depth-shifted “replica” vectors are computed from

v̄H�z,r� = z �
�

�z
x̄�zg,rg� , �12�

where x̄�zg ,rg� is the field received from the guide source, z̄
is a vector of depths at each phone location, and � indicates
the Hadamard product, or element-wise multiplication. The
depth-shifted weight is then calculated as

w̄�zs,rs� =
v̄�zs,rs�

v̄�zs,rs�


. �13�

The use of this weight vector can be evaluated by sub-
stituting Eqs. �12� and �13� into Eq. �11� to give

P�z,r� = 
w̄H�z,r� · ȳ�z,r�
2 = C�z �
�

�z
x̄�zg,rg� · ȳ�z,r��2

,

�14�

where C is a normalization constant. With sufficiently fine
spacing, the depth derivative can be approximated by a finite
difference equation, with the elements of the shifted replica
given by

vk�zs,rs� = zk
xk+1�zg,rg� − xk−1�zg,rg�

2�z
, �15�

where k is the index to a particular hydrophone in the array
and �z is the depth spacing between hydrophones. �Effects
of the discretization introduced in Eq. �15� will be discussed
and examined in the numerical simulations.� Assuming that
the acoustic field from the guide source and the target can be
expressed in normal modes as given in Eq. �1� then gives

2226 J. Acoust. Soc. Am., Vol. 118, No. 4, October 2005 L. M. Zurk and B. H. Tracey: Depth-shifting of guide sources

Downloaded 08 Feb 2012 to 131.252.4.4. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



P�z,r�

= C��
n

N

zrn
�

�z
xn�zg,rg�yn�zs,rs��2

= C���
l

L

�
m

M ��
n

N

zrn
�

�z
�l�zg,rg��m�zs,rs�ei�klrg−kmrs���2

,

�16�

where the spatial summation in the inside brackets is evalu-
ated at the n=1,… ,N elements of the array, zrn is the depth
of the nth hydrophone, and C� is a new constant that con-
tains the additional terms in Eq. �1�. It can be seen that in
Eq. �16� the summation is the discrete approximation of
the LHS of Eq. �9�; substituting in the delta function on
the right-hand side of the equality then gives

P�z,r� = ��
m

M

�m − 1��m�z��m−1�zg�ei�kmr−km−1rg�

− �m + 1��m�z��m+1�zg�ei�kmr−km+1rg��2

, �17�

which is the modified Bartlett output evaluated at source
position z , r and using the guide source response for depth
shifting. This differs from the conventional MFP expression
because the quantity is evaluated at mode indexes m and
m±1 �the conventional expression contains only the index m
for a fully spanning VLA�. Thus, the maximum output does
not occur when zg=zs and rg=rs, but for some other “shifted”
location.

In the simulation and analytic results to follow, the prob-
lem is restricted to that of obtaining depth-shifted replicas at
the guide source range. Thus r=rs=rg in Eq. �17�. In this
case the output power of the processor becomes

P�z,r� = ��
m

M

�m − 1��m�z��m−1�zg�ei�km−km−1�r

− �m + 1��m�z��m+1�zg�ei�km−km+1�r�2

. �18�

Depth-shifted replicas at different ranges will be discussed in
Sec. III B.

A. Location of shifted peak

Expressions for the location of the shifted peak can be
derived using a WKB approach to describe the vertical wave
numbers and mode shapes. The depth shifted peak will be
calculated assuming that r=rs=rg, as described in Eq. �18�.
The power output will be maximized when terms match on a
mode-by-mode basis. The shifted peak zs should satisfy the
following:

�m�zs� = �m−1�zg�ei�km−km−1�r,

�19�
�m�zs� = �m+1�zg�ei�km−km+1�r.

An estimate of the shifted location is found using the follow-
ing steps:

�1� the WKB approximation is used to express modes as a
sum of up- and down-going waves.

�2� Equation �19� is rewritten as four equations, satisfying
the up- and down-going portions of the wave field.

�3� Approximate values for the shifted location are found.

The steps involved are shown in the Appendix. As a final
result, the shifted depth is given as

zs � zg ±
q

km
r . �20�

Thus the depth-shifting process will cause two shifted peaks
in depth to appear for every possible guide source depth. The
Appendix shows that this is because the up- and down-going
portions of the wave field are shifted differently. To first
order, the mode wave numbers will be comparable to the
medium wave number, so an approximate estimate for depth-
shifting is given by

zs � zg ±
q

k0
r . �21�

As noted earlier, for modes well above their cut-off fre-
quency, q=� /D. Using this value together with the fre-
quency, guide source range, and guide source depth, the lo-
cations of the depth-shifted peaks can be estimated. Note that
the depth shift is frequency-dependent, so that if multiple
frequencies are available �i.e., the sources have some band-
width or multiple tonals� these can be used to generate shifts
at multiple target depths. Thus, Eq. �21� provides a means for
generating a family of target depth values. Finally, it will be
shown in Sec. III B, processing using the ambiguity intro-
duced by the ± in Eq. �21� can be resolved by application of
the invariance principle.

The analytic results can also be used to qualitatively
explain several features that will be seen in simulation re-
sults. First, Eq. �20� shows that the exact location of the
shifted peak is mode-dependent. Thus if the modes have very
different phase speeds, a smearing of the peak location will
result. Second, the derivations above assume that the varia-
tion in vertical wave number with depth can be neglected. To
the extent that this is not true, i.e., significant sound speed
gradients exist, an additional defocusing of the depth-shifted
peak may be expected.

B. Range invariance shifting

The expression in Eq. �21� gives the relationship be-
tween the guide position zg , rg and a single target depth of zs

with rs=rg=r at the single frequency �. If the guide source is
a broadband source, the concept of using the invariance prin-
ciple to shift in range10,12 can be utilized. As will be shown in
this section, this provides the ability to consider rs�rg and
utilize multiple observations from the guide source when it
moves in range.

The objective is to acquire a weight vector which allows
one to beamform to a source at position zs , rs and at a target
frequency of �. Assume that observations have been ac-
quired for a guide source traveling in range and radiating
over some �broad� acoustic bandwidth. Then, consider the
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Bartlett output using one of these weight vectors acquired
when the guide source is at z=zg , r=rg and the guide re-
sponse at the frequency �g=�+�� is used to give

P�zs,rs� = ��
m

M

�m − 1��m�z��m−1�zg�ei�km���rs−km−1��+���rg�

− �m + 1��m�z��m+1�zg�ei�km���rs−km+1��+���rg��2

,

�22�

where the frequency dependence has been explicitly intro-
duced for clarity and the assumption has been made the �
does not vary considerably between � and �+��. �The fre-
quency increment �� is considered small enough so that
�� /��0.1.� To continue, follow the approach described
in the Appendix of utilizing the WKB approximation and
equating arguments of the exponentials to obtain the fol-
lowing expression for the processor peak:

zs =
1

qm
�zgq�m − 1� + �km����rs� − km−1�� + ���rs + �r�� ,

�23�

where the substitution of rs=rg+�r has been used. Approxi-
mate the wave number km as

km�� + ��� = ��k0 + �k�2 − q2m2 
 k0�1 −
q2m2

2k0
2 −

�k

k0
�

�24�

to give �see the Appendix for details�

km�� + ��� − km−1��� 
 − q2 m

k0
− �k . �25�

Retaining dominant terms then gives the following depth
shift operation:

zs � zg ± � q

k0
rg −

1

qm
��krg − k0�rg�	 . �26�

The last term of Eq. �26� goes to zero when it satisfies
the invariance relationship given by Brehovskih12 as �for 	
=1�

��

�
=

�r

r
. �27�

When Eq. �27� is satisfied, Eq. �26� reduces to the form
of Eq. �21� except that the Bartlett processor peaks for guide
range rg�rs, and each value of rg provides a different depth
shift as per Eq. �26�. When responses from a number of
guide positions are observed �e.g., the guide moves in range,
rg� this implies choosing the frequency �=�g−�� to satisfy
Eq. �27�, resulting in the ability to shift to zs as given in
�26��. For a guide source that has sufficient frequency extent,
this fact can be used to resolve the ambiguity introduced by
the ± in Eq. �21�.

IV. DEPTH-SHIFTING ALGORITHM

To summarize the preceeding sections, the algorithm for
depth shifting using a guide source is described in the fol-
lowing list.

�1� The acoustic pressure x̄�zg ,rg� across the array due to a
high SNR guide source is observed and retained, with
the guide position �i.e., z=zg and r=rg� known from
other information. This acquisition potentially occurs for
a number of guide source ranges as the guide transverses
the region and over a substantial bandwidth.

�2� For each discrete frequency band and source range, the
derivative of the pressure with respect to depth is com-
puted. For a vertical array with sufficient depth sam-
pling, this may be approximated by using a finite differ-
ence approximation as was utilized in the derivation in
the previous section. Alternately, an acoustic vector sen-
sor could be used to measure the particle velocity, from
which the derivative of the pressure may be calculated.

�3� The resulting derivatives are then normalized to unit
norm and stored as array weight vectors. Each weight
vector is associated with an unique target range and
depth �rs ,zs� through the relationships given in Eqs. �21�
and �26�. Note that with sufficient range observations
and signal bandwidth weight vectors can be obtained for
all possible target locations.

�4� The output of the Bartlett processor in Eq. �11� is com-
puted by applying the weight vectors from the previous
step to pressure across the array to determine power in
the direction of interest �r=rs ,z=zs�. Note that if mul-
tiple steering vectors are available for a single source
depth �due to multiple guide source ranges and broad
signal bandwidth� these can be used to resolve the am-
biguity arising from the ± sign in Eqs. �21� and �26�.

The above-noted procedure is particularly interesting
when a surface ship is considered as a potential guide source.
In this case the algorithm is readily applied �with zg�2 m�
as surface interference typically has a high SNR and its po-
sition may be obtained from a surface radar or shipping lane
information. Furthermore, the source is typically broadband
and can be observed at multiple ranges as the ship moves—a
fact which was exploited in Sec. III B.

V. SIMULATION RESULTS

Simulation results were generated using an environmen-
tal model based parameters gathered during the Santa Bar-
bara Channel experiment �SBCX�. Numerical results are
shown for 148 and 235 Hz, which were tones used during the
experiment, but no actual data results from SBCX are pre-
sented here. This is due to the fact that a data-driven evalu-
ation of the depth shifting algorithm requires the presence
�and position knowledge� of a guide source at multiple
ranges, along with observations of a target source. It is hoped
that constructing data collection opportunities for such an
evaluation may occur in the future, but in absense of this
data, the current work presents the theoretical background
and only simulated results.
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For all simulation results, a range-independent normal
mode simulation based on KRAKEN output was used.13 Fig-
ure 1 shows the sound speed profile used for the simulations,
and Table I lists the assumed geoacoustic properties of the
SBCX site. For comparison, results will also be shown for a
209-m-deep Pekeris waveguide with a constant sound speed
of 1500 m/s in the water column overlying an acoustic half-
space �parameters cc=1800 m/s, �=2 g/cm3, and �c

=0.04 dB/
�.

A. Mode orthogonality results

This section examines the approximate mode orthogo-
nality condition derived in previous sections. Mode correla-
tion matrices are calculated for a verticle line array �VLA�
that fully spans the water column with 1 m vertical separa-
tion between phones. The array gives excellent sampling so
the underlying orthogonality of the mode shapes is seen.
While not plotted, evaluation of the “standard” mode or-
thogonality condition �i.e., Eq. �2�� gives cross-talk between
modes �or off-diagonal elements of a mode correlation ma-
trix� at very low values �less than −15 dB�.

Figure 2 graphically shows the approximate orthogonal-
ity condition predicted by Eq. �9�. For convenience, the fig-
ure is produced by weighting the right-hand side of Eq. �9�
with a factor of 2 / l, so that perfect orthogonality would re-
sult in nonzero �first� off-diagonal terms with the value one,
and zeros elsewhere. The depth-shifting operation z�� /�z is
calculated using a centered finite difference on the mode
shapes. As predicted, because of the depth-shifting operation,
the correlation is highest between each mode and its two
nearest neighbors but there is nonzero cross-talk between
modes. This is believed to be a result of the approximations
utilized in the derivation of the new mode orthogonality con-

dition �such as the linear dependence of the vertical wave
number on mode index� which are less applicable at the
higher order modes that undergo increased bottom interac-
tion, as discussed in the next section. This increased cross-
talk may be expected to lead to higher sidelobe levels on the
depth-shifted ambiguity surface.

The accuracy of the discrete evaluation of both the stan-
dard orthogonality and the approximate differential orthogo-
nality relationship depends on the spacing and extent of the
discrete integral in Eqs. �2� and �9�, respectively. Deviations
from orthonormality occur for arrays that either do not span
the entire water column or have insufficient array spacing. In
Fig. 3, the mode correlation matrices for both orthogonality
relations are shown for an array that is undersampled �Figs.
3�a� and 3�b�� or only partially spans the water column �Figs.
3�c� and 3�d��. It can be seen from the figure that the accu-
racy of the discrete approximation deteriorates for both or-
thogonality relationships, and would result in decreased per-
formance for a VLA without sufficient sampling.

This observed degradation is perhaps more pronounced
for the new orthogonality relationship, and is particularly
more noticeable at the higher mode numbers. It is believed
that this is because those modes experience greater attenua-
tion and loss due to bottom interaction. In the theoretical
derivation, it was assumed that the vertical wave numbers
increase approximately linearly with mode number, and will
clearly not be the case for the higher modes. However, with
sufficient energy at the lower modes �which is frequently the
case for long range propagation scenarios� the losses due to
deviations of the higher order modes may be negligible. Note
also that other common sources of array degradation �such as
error in element position� will apply to the mode correlation
and hence also to the depth shifting.

Because the SBCX environment has a downward re-
fracting sound speed profile �SSP�, it does not exactly satisfy
the assumptions made in deriving Eq. �9�. As a check, depth-

FIG. 1. Sound speed profile �SSP� for Santa Barbara Channel environment.

TABLE I. Parameters for geoacoustic model used in SBCX data: z
=depth from surface; cc=compressional sound speed; �=density; �c

=compressional wave attenuation.

z�m� cc�m/s� ��g/cm3� �c�dB/
�

209 1607 1.95 0.37
309 1702 1.95 0.37
309 1862 1.98 0.035
609 2374 1.98 0.035
609 2374 2.03 0.04

FIG. 2. Mode correlation matrix �outer product� between depth-shifted and
original modes for fully spanning VLA in SBCX environment. Output is
produced as specified in the left-hand side of Eq. �9� and the figure is plotted
with a multiplicative factor of l /2 so that perfect agreement would result in
a value of one on the off-diagonals, and zero elsewhere. Frequency is 235
Hz.
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shifted correlation matrices for a variety of ocean environ-
ments were calculated. The mode correlation matrix for the
cases considered were nearly identical to that calculated for
the SBCX environment, indicating the specific ocean param-
eters do not have a critical effect on the results.

As discussed earlier, an alternate depth-shifting opera-
tion can be carried out by applying only the depth derivative
to the guide source observation. The behavior of this alter-
nate depth-shifted replica is seen from the mode correlation
matrix in Fig. 4. This figure again shows high correlation
between nearest-neighbor modes, but a “checkerboard” pat-
tern is seen in the output. This pattern was predicted from

Eq. �10�. The different scalings between the two depth-
shifting operations are removed when the depth-shifted rep-
lica is normalized.

B. Depth-shifted results

In this section the depth-shifting operation is applied to
simulated guide source measurements to verify that shifting
occurs and to understand how performance depends on the
environment. The receive array used for simulation has a
similar geometry to the VLAs used in SBCX, consisting of a
bottom-mounted VLA with 30 hydrophones spaced at 5 m
separation in the vertical, spanning roughly 80% of the water
column. The uppermost phone in the array is at a depth of 5
m.

For reference, a simulation was run showing MFP out-
put at 235 Hz using a guide source without applying the
depth shifting algorithm developed in this paper. The result,
shown in Fig. 5, is for the case rg=rs=2.5 km. The output is
plotted as a function of the guide source depth and the target
depth, zg and zs, respectively. As expected, the unshifted
guide source can only be used to produce output at the depth
of the guide source.

Figures 6 and 7 show the result of applying the depth-
shifting algorithm to data collected from guide sources at
ranges of 2.5 and 4 km, respectively, at a frequency of 235
Hz. The depth-shifted output is again produced at the same
range as the guide source �rg=rs�. In Fig. 8, the depth-shifted
result is produced at f =148 Hz, with all other parameters
remaining the same. In all three figures, as predicted by

FIG. 3. Mode correlation matrix for SBCX environment using Eq. �9� �left-
hand column� and Eq. �2� �right-hand column�, plotted with a multiplicative
factor of 1 /2. Simulated VLA has inadequate spacing �1.5�
=9 m� in �a�
and �b�, or covers the top half of the water column in �c� and �d�. For both
standard and new orthogonality relationships, degradation occurs as the ar-
ray becomes less capable. Frequency is 235 Hz.

FIG. 4. Mode correlation matrix between depth-shifted and original modes
for fully spanning VLA in SBCX environment, using the simple depth-
derivative operation. The “checkerboard” pattern predicted by Eq. �10� is
seen, giving reduced mode cross-talk as compared to Fig. 2.

FIG. 5. Bartlett output for 2.5 km guide source at f =235 Hz in SBCX
environment with no depth shifting.

FIG. 6. Depth shifted output as given in Eq. �18� for 2.5 km guide source
radiating at f =235 Hz in SBCX environment. Note that the peak is split in
two as predicted, with predicted peaks at zs=zg±40 m.
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theory, shifted peaks appear at two depths for every guide
source depth. It can be seen from examination of the figures
that diversity in source range and/or frequency produces
multiple target depths or shift values �i.e., the ability to lo-
cate sources at multiple possible depths zs�.

Evaluating Eq. �21� with the values for the ocean depth,
guide source range, and frequency used in the simulation
example gives an estimate of the predicted shifted depths.
For the f =235 Hz case, at 2.5 km in range a peak in output
is expected for zs=zg±40 m, while for the 4 km range peaks
are predicted at zs=zg±64 m. For f =148 Hz at 4 km range
the peak is predicted at zs=zg±101 m. All these values are in
good agreement with the simulation results, even though the
environment is not an isospeed channel. This suggests that
the relationship between the guide depth and the shifted
depth may be only weakly sensitive to details of the environ-
ment.

As noted earlier good results can be obtained by using a
simple depth derivative applied to the guide source data. Fig-
ure 9 and 10 shows the depth-shifted outputs for 2.5 and 4
km sources, respectively. The sidelobe levels obtained using
this depth-shifting operation are lower than those seen in
Figs. 6 and 7, due to the reduced cross-talk between modes
seen in Fig. 4.

The above-noted derivations assume that the vertical
wave number for each mode is only weakly dependent on
depth. When sound speed varies with depth, this is no longer
strictly true and some defocusing can be expected. Addi-
tional simulations were run to better understand the sensitiv-
ity to sound speed profile. The simpler depth-derivative
depth-shifting operation was used for these simulations.
First, results were generated for a Pekeris waveguide, which
has constant sound speed in the water column. Results were
then generated for an environment with the extremely steep
downward refracting sound speed profile shown in Fig. 11,
having the same bottom properties as the SBCX site. Results
for the Pekeris environment are shown in Fig. 12, while re-
sults for the steep SSP environment are seen in Fig. 13
�guide source range is 2.5 km in both cases�. For the Pekeris
waveguide, little evidence of mismatch loss and defocusing
is seen. Increased mismatch is seen for the steep SSP envi-
ronment. These results support the idea that the depth-shifted
replicas will be most accurate when the change between the
sound speed at the guide source depth and at the shifted peak
depths are relatively small.

Comparing Figs. 9 and 12 to the standard MFP result
�Fig. 5� shows a loss of signal energy in the depth-shifted
results. This loss is believed to result from the increased
weighting that depth-shifting places on high-order modes
�shown in Fig. 2�, which distorts the replicas. This signal loss
will increase the SNR requirements for successful source lo-

FIG. 7. Depth shifted output as given in Eq. �18� for 4.0 km guide source
radiating at f =235 Hz in SBCX environment. Note that the peak is split in
two as predicted, with predicted peaks at zs=zg±64 m.

FIG. 8. Depth shifted output as given in Eq. �18� for 4.0 km guide source
radiating at f =148 Hz in SBCX environment. Note that the peak is split in
two as predicted, with predicted peaks at zs=zg±101 m.

FIG. 9. Depth shifted output for 2.5 km guide source radiating at f
=235 Hz, SBCX environment, obtained by applying a depth-derivative to
the guide source data. Note that sidelobes are suppressed compared to Fig.
6.

FIG. 10. Depth shifted output for 4 km guide source radiating at f
=235 Hz, SBCX environment, obtained by applying a depth-derivative to
the guide source data. Note that sidelobes are suppressed compared to Fig.
7.
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calization using depth-shifting. However, mismatch losses
are also present in standard MFP due to environmental un-
certainty. For the SBCX experiment, where good environ-
mental calibration was available, mismatch losses for MFP
were typically 1–2 dB.2 For environments where ocean pa-
rameters are poorly known, the mismatch introduced by
depth-shifting may be less than for standard MFP.

C. Invariance depth-shifted results

The theory of Sec. III B suggests that a response shifted
in both range and depth can be produced by utilizing a guide
with a broadband response as per Eq. �26�. The results shown
in Fig. 14 were produced by using the response from a guide
source at range rg=rs−�r and frequency �g=�s+�� for a
target range of 4 km and frequency at fs=2��s=148 Hz. As
previously seen in Fig. 8, the guide response produces a
depth-shifted focus at zs=zg±101 m when �r=0 �i.e., rg

=rs� and �f =�� / �2��=0. When the modified Bartlett out-
put in Eq. �18� is calculated using the guide response at �f
=10 Hz, the peak occurs at the target depth zs as given in Eq.
�26� but for the guide range satisfying the invariance rela-
tionship in Eq. �27� : �r=�f / f �rs. In Fig. 14 the MFP
output is plotted as a function of guide range and target depth
with a peak occuring at 4.0 km range for �f =0 �left-hand
plot� and at 4.3 km in range for �f =0 �right-hand plot�; both
of which which agree with the predicted values.

VI. CONCLUSIONS

While matched field processing holds the promise of
increased target gain and localization accuracy, MFP perfor-
mance can be seriously degraded by uncertainties of the un-
derwater environment. Guide sources at known positions in
the ocean may be used to address this problem by directly
measuring the source-to-receiver transfer functions for use in
processing. In this work, a new algorithm for extending
guide source observations for use in MFP has been intro-
duced. This algorithm provides a method of observing the
response �e.g., steering vector� from a guide source at one
depth, and translating it to another depth. It relies on a new
approximate orthogonality relationship which shifts the
modes that contribute to the MFP output. The technique does
not require environmental inputs, though performance will
degrade for environments with steep sound speed profiles.
The depth shifting operators examined here, which use a
depth derivative to form the shifted replicas, introduce some
signal losses that will increase SNR requirements for suc-
cessful source localization. The development of other depth-
shifting operations that aim to minimize this loss may be an
interesting topic for further investigation.
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FIG. 11. Steep downward refracting sound speed profile designed to stress
depth-shifting technique.

FIG. 12. Depth shifted output for 2.5 km guide source radiating at f
=235 Hz, Pekeris waveguide environment. Depth-shifting is done by apply-
ing a depth-derivative to the guide source data. Note that output is slightly
cleaner than for the SBCX case.

FIG. 13. Depth shifted output for 2.5 km guide source radiating at f
=235 Hz, for environment with steep sound speed profile. Depth-shifting is
done by applying a depth-derivative to the guide source data. Note the
increased sidelobe levels as compared to the environments which have
smaller sound speed gradients.

FIG. 14. Depth shifted MFP output for 4.0 km target at 235 Hz plotted as a
function of target depth and guide range. The guide source is at 2 m depth
and the response is at 148 Hz �left-hand plot� and 158 Hz �right-hand plot�.
The shifting of �f =10 Hz produces a shift in the range peak from 4.0 km to
4.3 km. Location of the target depth is given by Eq. �26�.
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APPENDIX: WKB CALCULATION FOR SHIFTED PEAK
LOCATION

As in Eq. �8�, the vertical wave numbers are assumed to
be linearly related to mode number. The mode functions are
approximated using the WKB approach, which models the
mode as a sum of up- and down-going plane waves with
angles that may vary in depth:

�l�z� = Bei�0
zq�z�ldz + Ce−i�0

zq�z�ldz. �A1�

The relative amplitudes B and C of the up- and down-going
waves depend on boundary conditions of the problem.

The WKB approximation can be expected to be accurate
for modes that are well above their cutoff frequencies. An-
other simplified ocean environment that yields modes which
fit the above-mentioned model is the so-called ideal wave-
guide, which consists of an isospeed ocean with a pressure
release surface and bottom. In this case the vertical wave
number is given by kz,l= �� /D�l, where D is the ocean depth,
and mode shapes are given by ��2� /D�sin kz,lz. The ideal
waveguide model can be a good approximation for modes
that are well above their cut-off frequencies.

Using the WKB approximation for the mode shape, the
two equations in Eq. �19� are split into four, by requiring the
up-going and down-going parts of the modes to satisfy the
equations separately. The first equation is

Bmei�0
zsqmdz = Bm−1ei�0

zgq�m−1�dzei�km−km−1�r, �A2�

where the depth dependence of q�z� is not shown explicitly.
A first step in completing this calculation is to find the

horizontal wave number difference between adjacent modes.
Given the above-mentioned assumptions, the horizontal
wave number is given by

km = �k0
2 − q2m2, �A3�

where k0 is the medium wave number �� /c�. It is fairly easy
to show that

km−1 = km�1 +
q2�2m − 1�

km
2 . �A4�

Approximating the square root operator and making the as-
sumption that modes higher than the first few are important
�so that 2m
1�, an approximate horizontal wave number
difference is found as

km − km−1 � − q2 m

km
. �A5�

Two simplifying assumptions are now made. First, the mode
amplitude terms Bm and Bm−1 are assumed to be are roughly
equal and are divided out of Eq. �A2�. The equality will then
be satisfied if the arguments to the exponential terms are

equal. Next the assumption is made, as above, that the ver-
tical wave number term q is approximately constant with
depth. In that case the depth integrals become trivial, and the
depth of the shifted peak is given by

zs =
m − 1

m
zg −

q

km
rs,

�A6�

zs � zg −
q

km
rs,

where the approximation made on the second line will be
valid beyond the first few modes. Carrying out a similar
calculation with the down-going wave gives a second solu-
tion:

zs � zg +
q

km
rs. �A7�

The same two solutions are found by equating the up- and
down-going waves in the second line of Eq. �19�. These
results can be used to estimate the shifted locations of the
depth peaks.
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