
Portland State University Portland State University

PDXScholar PDXScholar

Center for Urban Studies Publications and
Reports Center for Urban Studies

1986

Modeling Location for Cadastral Maps Using an Modeling Location for Cadastral Maps Using an

Object-Oriented Computer Language Object-Oriented Computer Language

Daniel Kjerne
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/cus_pubs

 Part of the Geographic Information Sciences Commons, Urban Studies Commons, and the Urban

Studies and Planning Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Kjerne, Daniel, "Modeling Location for Cadastral Maps Using an Object-Oriented Computer Language"
(1986). Center for Urban Studies Publications and Reports. 137.
https://pdxscholar.library.pdx.edu/cus_pubs/137

This Report is brought to you for free and open access. It has been accepted for inclusion in Center for Urban
Studies Publications and Reports by an authorized administrator of PDXScholar. Please contact us if we can make
this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/cus_pubs
https://pdxscholar.library.pdx.edu/cus_pubs
https://pdxscholar.library.pdx.edu/cus
https://pdxscholar.library.pdx.edu/cus_pubs?utm_source=pdxscholar.library.pdx.edu%2Fcus_pubs%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=pdxscholar.library.pdx.edu%2Fcus_pubs%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/402?utm_source=pdxscholar.library.pdx.edu%2Fcus_pubs%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=pdxscholar.library.pdx.edu%2Fcus_pubs%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=pdxscholar.library.pdx.edu%2Fcus_pubs%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/cus_pubs/137
https://pdxscholar.library.pdx.edu/cus_pubs/137?utm_source=pdxscholar.library.pdx.edu%2Fcus_pubs%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

MODELING LOCATION FOR
CADASTRAL MAPS USING AN

OBJECT-ORIENTED
COMPUTER LANGUAGE

by
Daniel Kjeme

1986

Center for Urban Studies
School of Urban and Public Affairs

Portland State University
Portland, OR 97207-0751

(503) 725-4020
(503) 725-5199 FAX

http://www.upa.pdx.edu/centers.html#CUS

PORTLAND STATE UNIVERSITY SUPPORTS EQUAL OPPORTUNITY IN ADMISSIONS, EDUCATION, AND USE OF FACILITIES,
PROHIBITING DISCRIMINATION IN THOSE AREAS BASED ON RACE, SEX, SEXUAL ORIENTATION, COLOR, RELIGION,

NATIONAL ORIGIN, HANDICAP, OR AGE. THIS POLICY IS IN ACCORD WITH STATE AND FEDERAL LAW.

Daniel Kjerne
Geography Department
Portland State University
P.O. Box 751
Portland, OR 97207

MODELING LOCATION FOR CADASTRAL MAPS
USING AN OBJECT-ORIENTED COMPUTER LANGUAGE

ABSTRACT. The challenge to designers of
multipurpose computer-aided land information
systems is to capture enough of the "deep
structure" of the problem domain to enable a
system to answer user questions and requests
in a satisfactory way. Criteria defining
"satisfactory" in each case must include
considerations of accuracy, completeness,
timeliness, and cost. These considerations,
when applied to the location in space of
parcel boundaries and property corners,
present unusual difficulties. This is in
large measure ·due to the .. fa Gt that important
elements of the field measurement process, and
the determination of location based on what
are essentially logical {legal) abstractions,
are problematic or impossible to capture,
store, and display either in the graphi~
object {the map) or in computer storage as
presently constituted.

The problem of representing these· data is
approached through the use of an
object-oriented computer language which treats
each individual cadastral object as storing
internally the method, reference object (s},
and measurement(s) by which it was located in
the field. The concept is tested in an
application of Neon™, an object-oriented
language implemented on the Macintosh™
computer.

INTRODUCTION

Since the first National Research Council report on
the need for a multipurpose cadastre (8), workers in
land records modernizatio.n have gained experience with
local government agencies and private-sector enterprises
in defining the user needs and considerations, both
institutional and technical, involved in implementing
such a system. The original concept of a single,

unified parcel-based system is being replaced by a
concept that relies on coordination of data exchange
standards and software integration of users' layers for
specific tasks. In general, the meaning of this crucial
term has been left to the reader to define, but it seems
to involve the data-storage expression of a cartographic
"theme". That is, it is a set of computer files, a
collection of data sets, which is the concern of a
particular agency or user, and· includes locational and
attribute data enabling it to be displayed and analyzed
as if it were a map. Chrisman and Niemann proposed such
a "layer-based" system with no single permanent basic
unit after working with local, state, and federal
agencies operating at the county level in Wisconsin (3) .

A similar concept appeared in a report prepared for
the Multnomah County (Oregon) county assessor (5).
Under that concept, the multi-purpose cadastre is a
collective term for that group of closely integrated
land information systems used and maintained by the
county surveyor, county recorder, and county assessor.
Each of· these users ·has its own set of questions and
expected form of answers; in this sense each user
perceives, works with, and maintains a separate land
information system consisting of a layer and its
supporting hardware and software. But there is a high
degree to which all three users rely on each others'
data as well as a large overlap between the sets of
questions and answers. Thus, from the point of view of
an observer outside these three agencies, the
multipurpose cadastre is "one thing".

Other users of land records, public and private,
rely on data available from the multipurpose cadastre,
and supply data to it. As these users develop and
implement their own land information systems, there will
be an ongoing need to develop and maintain standards to
allow data sharing among different systems. Figure 1,
portraying the systems and the flows of data between
them, illustrates the relationship between the
multipurpose cadastre and other land information systems
in a local area.

The cadastral layer is the special concern of a
county assessor. It maps the location of objects such
as property corners, boundary lines, street and utility
rights of way and easements, and contains linkages to
data types such as owners' names, site addresses, land
use, flood plain, zoning, jurisdictional boundaries, and
a wide variety of other land data. In the
non-computerized assessment agency, part of these
functions are performed using assessor's maps, which are
often used as a base for locating other types of objects
by other agencies. The location of cadastral objects is

I

thus seen as crucial data not only for those maintaining
the cadastre, but for other agencies in the community of
land records users.

FIGURE 1

THE MULTIPURPOSE CADASTRE AS AN ELEMENT IN A SYSTEM OF
LAND INFORMATION SYSTEMS

/ city or "" public
county transport

administrative agency

'"
agency

.J

J,t ~ T
city or
county 4

planning)
agency

city or
county
police (
sheriff

fire

LEVELS OF DESCRIPTION

public
utility

T

private
utility

T

private
engineering
surveying

photogr ammetry
firm

J,t
title

company

The design strategy_. for a land information system
may be thought of as entailing the preparation of a
series of descriptions, of increasing specificity, of
the entities and relationships between entities which
are the subject of the questions directed to the system.
The first description will, of necessity, be general in
nature; it would only be implementable that is,
useful in producing answers to questions -- with the aid
of a highly sophisticated "knowledge base", hardware,
and software configuration. So sophisticated a
configuration, in fact, that it only exists now in the
form of humans, who can take a verbal description of a
problem, a set of data, and tools such as pen, ink and
calculator, to produce answers to questions.

Once a description has been achieved at this general
level, it must be "translated" into a more specific
description so that it can be implemented using a less

sophisticated hardware/software configuration. The ob
jective is to preserve the ability to answer questions,
but to, in effect, move the expertise of the higher
level description from the minds of the human experts
into the information system.

The number of levels necessary to traverse between
the human verbal description and the machine code
implementation varies with the type and complexity of
the problem. Nyerges (9) discusses the design of a
cartographic data base in -- terms of six levels of
description, while pointing out that other workers have
described the design process using larger and smaller
numbers of levels. For the problem of locating objects
in the cadastral layer, the present paper will sketch
out descriptions at two different levels of the six
described by Nyerges. The descriptions correspond to
level 1 and level 4 of Table 1. The first of these, the
information reality level, i-s that level used by
humans in formulating and solving a problem in a
specific area. The ·second, at the. data structure
level of description, is the highest level of machine
implementation, corresponding to a high-level language
(or, perhaps, database query language or spreadsheet
modeling) description.

TABLE 1

SIX LEVELS OF DESCRIPTION,
FROM LEAST TO MOST SPECIFIC (ADAPTED FROM (9))

1) information reality

inf ological { 2) information structure
models 3) canonical structure

datalogical { 4) data structure
5) storage structure models 6) machine encoding

The descriptions (especially the second one) will
necessarily be incomplete, in a paper of this scope, but
the intention is to suggest how a particular programming
language paradigm object-oriented design can
describe the model used by those pro-fessionals and
technicians who have the problem of cadastral location
as their field of expertise: property surveyors and
cadastral cartographers.

MODELS OF CADASTRAL OBJECT LOCATION

Information Reality Level of Description

A property surveyor locates monuments and property
boundaries. Monuments may be natural or artificial.
Natural monuments are objects such as trees, boulders,
streams, ridges, and so on. Certain artificial
structures, such as buildings or curbs, are considered
durable and stable enough that they are classed as
natural monuments. Artificial monuments are usually
objects such as iron bars or rods driven in the ground
or brass disks set into concrete piers. Natural and
artificial monuments, in other words, are physical
objects. Boundaries, on the other hand, are abstract
objects, which may or may not be marked on the ground by
natural or artificial monuments (2, pp. 15-·16).

In locating monuments and boundaries, the property
surveyor gathers and evaluates evidence, including
evidence of title, ·measurements, testimony, calcula
tions, and so on. The surveyor does not determine
ownership -- that is the province of the courts. But
the surveyor does determine, based on a preponderence of
the evidence, where each cadastral object on the survey
in question is located on the ground, and on which
evidence that location is based. Thus, once the various
levels of evidence have been evaluated, the location of
objects in the field and in the off ice is reducible to a
series of actions recorded in field notes and plats,
diagrams, and survey reports. In principle, it is
possible to locate any object surveyed -- monument or
boundary -- with a knowledge of the procedure involved,
the objects from which measurements were made, and the
value of those measurements.

The cadastra1 cartographer is the technician in
an assessor's office who maps cadastral parcels. The
descriptions, survey records, and plats prepared by
property surveyors are the principal resource used in
construction of cadastral maps. While the surveyor is
concerned with one or a few parcels of land at one time,
the cadastral cartographer must map all the parcels in
an area, deciding at the time the map is constructed
which parcel descriptions to trust and which to hold in
a lesser light.

The hierarchy of evidence used in this process to
locate cadastral objects ·is basically the same as that
used by the property~ surveyor. The cadastral
cartographer is concerned with locating the same kinds
of objects as the property surveyor, with the addition
of a new kind: control. These are objects whose
location, rather than being determined relative to other

points, is ·-"given." They provide a framework within
which to locate groups of monuments and boundaries
(located by property surveyors) relative to each other.

In present non-computerized cadastral mapping
systems, locations of objects are updated by,
essentially, reconstructing the maps from scratch at
more or less frequent intervals (10, pp. 335-365). The
knowledge base for this cadastral object location system
obviously is not totally contained in the drafted
cadastral map. When a map is updated, the cartographer
must refer to the deed and survey records, recording on
the map only the finally determined position of the
objects. Thus we may say that the cadastral object
location system, in an assessor mapping system, consists
of three separate entities in different locations: 1) in
the paper maps, which show the most recently derived
location of objects; 2) source location data in the
survey records and deed descr~p't;:ions; and 3) in the
"expert knowledge" embodied in the surveyors and
cadastral cartographers who maintain the system.

Many attempts to computerize the cadastral layer
seek to avoid the ~econstruction process by digitizing
existing assessor's maps and mathematically "rubber
sheeting" them to control points. This provides a land
base image sufficient for the needs of many users of
parcel location data for instance, for mapping
electical utility distribution networks -- but it fails
to provide adequate and consistent spatial registration
in the long term. In particular, it is inadequate for
property and e·ngineering survey needs and, to a· lesser
extent, those of assessment mapping in highly developed
areas.

It is important to note that the relationships in
surveys and deed descriptions involved here are actually
deep structural relationships (9, p. 36) which manifest
themselves as spatial relationships when the objects in
the map are displayed. Any one cadastral object is not
related to every other object of concern in the location
system, but to a restricted subset: the specific objects
used by the property surveyor or the cadastral
cartographer in determining its location. It is thus
possible for a new survey or deed description to change
the derived location of a property boundary or monument
without at all affecting the derived location of a
nearby monument or property boundary. The second object
may have been located using an entirely different
description, depending on a different set of control
points. Conversely, depending on which survey or deed
description established a point, its location could be
altered by a. change in location of an object located
relatively far away. Consequently, rubber sheeting or

least squares adjustment is an inappropriate method for
updating cadastral object locations. What is needed is
a data structure that captures the structural/ spatial
relationships inherent in deed descriptions.

A prior report, mentioned above, explored the use of
a relational data schema to store the structural/spatial
relationships of cadastral objects (5) . The basis for
that schema was a topological/relational schema
presented by Van Demark (11) . The object-oriented
design approach described below is an attempt to
translate the concepts developed in the relational data
schema into a more powerful, intuitive medium.

An Object-oriented Data Structure Leyel Description

Object-oriented programming is based on a paradigm
of objects responding to messages, rather than on one of
operators performing actions on operands, as is the case
with procedural languages. As a programming style, it
began in the early 1960's with the development of Simula
by the Norwegian Computation Center in Oslo, Norway.
Simula was the first language to implement the Class
construct. In the early 1970's, the Learning Research
Group at Xerox Palo Alto Research Center began
implementation of the Smalltalk programming environment.
Smalltalk was the first system to be designed completely
around the Class/Object concept. Many other languages
have since provided support for classes, objects, and
subclassing, including CLU, Ada, C++ (an extended
version of C), and several versions of LISP, though
objects and classes are not as well integrated into
these languages as they are in Smalltalk (6).

Under this paradigm~ the computer is conceptually
divided into a number .of objects, or instances, each
of which can itself act like a small computer, and be
given a role like that of an actor in a play (7) . Each
class of objects may have its own private data types,
or internal variables, and actions, or methods, which
objects of that class perform upon receiving a suitable
message. This segmentation allows a great deal of
flexibility in the system considered as a whole, since
new classes of objects can be defined without worrying
about the side effects their behavior might have on the
private data .or actions of other, already defined
classes of objects. (Coping with such side effects is
definitely a consideration when programming with
procedural languages)~ The main feature of
object-oriented design, : though, is that it allows a
fairly direct translation of the behavior of an object
conceptualized at a higher level of description to that
of an object class at the programming level of
description.

This feature allows the structural/spatial
relationship noted in the information reality
description of cadastral objects to be implemented at
the data structure level. For instance, a particular
class of object, such as a property corner, can be
defined which will "know" that its location is
determined by a bearing and distance from another
monument. It will contain a private method to c-ompute
its location in response to a message from another
object, "Give me your location." The value of the
bearing, the value of the distance, and the identity of
the monument are all private data belonging to that
property corner. These data cannot be changed without a
specific message to that object. But if the direction
of north or the location of the reference monument were
to change, the location of the property corner would
also shift, without having to alter data belonging to
the corner.

Figure 2 indicates another feature of object
oriented design: inheritance of object behavior. An
object class in a lower position on the tree has the
same internal data types and can perform the same
methods as objects higher on the tree, in addition to
possessing methods and data types unique to itself. In
this way, it is easy to define new object classes which
are like already existing objects, but have additional
characteristics. An object of class ControlPoint can do
certain things specific to its class: for instance, it
can display itself in a certain format (perhaps by
reference to a bitmap) in response to a message. In
addition, the ControlPoint class of objects inherits the
me~hods and data types of the ZeroCell class df objects.
An object of this type can accept a message to store its
location in x,y coordinates and will return its location
in response to another message. The ·zeroCell, OneCell,
and TwoCell object classes are also at the appropriate
level for storage of topological data and methods.

As another example, MonurnentPointAngleDistance
objects are located by a specific location rule ("by
distance A from object B, at an angle C from object D,
turned from object E"). Each location rule corresponds
to a separate class of objects; thus,
MonurnentPointOffset objects might be located by
"intersection of the offset A from the ·line formed by
objects B and C and the offset D from the linear object
E." All the MonumentPoint fRuleNarnel object classes are
subclasses of the MonurnentPoint object class, which has
a set of private methods and data variables inherited by
all its subclasses (one such might be, for instance, a
method for displaying itself) .

FIGURE 2

HIERARCHY OF INHERITANCE OF OBJECT
CHARACTERISTICS FOR CADASTRAL

OBJECT CLASSES

ZeroCell

(T opo logical methods &
data types for zero-cells)

I
Contro lPoint

(Display method, method
for storage & retriev a 1

of coordinates)

(TMs class contains
methods & data types

for general object
behavior.)

I
I

OneCell

(T opo logical methods &
data types for

one-cells)

--____ L ______ _
c:"" to subclasses :.i.'.:)

T--·-··-··---T

MonumentPoint

(General methods & data
types for a 11 monuments,
including display method)

I

(Topological methods &
data types for

two-cells)

______ l ____ _
c:"" to subclasses :.i.'.:)

T--·-··-··---T

I

(General methods & data
types for property

points, including display
method)

--____ l_ ______ _
c:"" to subclasses :.i.'.:)

T--·-··-··---T ----------------------..... ------~ r~----------1) I
MonumentP oint Ang leDist

(Location method,
internal variables storing

reference objects and
values for angle,

distance)

MonumentPointOffset

(Location method,
internal variables
storing reference

objects, values for
offset distances)

MonumentPoint [Rulename]

Location method
reference object(s)

parameters for method

Figure 2 is only faintly suggestive of what would be
the true extent of the cadastral object location
hierarchy: in addition to the ControlPoint and
MonumentPoint subclasses of the ZeroCell class, a third
subclass, PropertyPoint, is indicated. This class of
objects also inherits characteristics of the ZeroCell
class, and would have a series of subclass object
classes (not shown) with different locational rules,
similar to those of the MonumentPoint[RuleNamel classes.
In addition, linear monuments and property boundary
classes (again, not shown) would be defined under the
OneCell object class, with subsidiary classes, each with
its own locational rule.

Each combination of locational rule, reference
object(s), and parameter(s) determines location for each
object. General rules are applied by humans -- property
surveyors and cadastral cartographers -- to specific
instances, finding one and only one location for each
object. In other words, this is not an "expert system"
capable of evaluating constraint rules (1), but,
essentially, a system capable of storing the location
decision made by the person compiling the cadastral map.

Listings 1-4 in the Appendix are object class
definitions of some of the objects indicated in Figure 2
and in the discussion above. They are written in what
might be called "Neon pseudocode". Neon™ is an
object-oriented language derived from FORTH and
SmallTalk-80, implemented on the Apple Macintosh™
computer, while the term "pseudocode" simply means that
the details of calculation and bitpushing have been left
out in order to make the basic idea a little more clear.
Listings 5-9 are working Neon code for many of the same
objects, and hence appear somewhat more arcane.

One of the many possible locational rules for
cadastral objects, each with its own object class, is
suggested by the object class definition for Monident
(Listing 10) . Since it models the locational behavior
of an object located at the identical spot as its
reference object, this object class doesn't store its
location as x, y coordinates. Instead, it has an
internal variable that is a pointer to its reference
object. When a Monident receives a locate: message, it
consults its private locate: method, which tells it to
send another locate: message to the object pointed to
in its RefPt variable. If the pointed-to object is an
object of type CtlPt, that object's own locate: method
will have it return the value in its Location variable.

On the other hand, if the pointed-to object is of
the class MonAngDist (Listing 4), its locate: method
actually calculates coordinates based on the values in

its internal variables and the location of its reference
object.

CONCLUSIONS AND DIRECTIONS FOR FUTURE INYESTIGATION

At this writing, classes of objects have been
defined in Neon that "know" their location by reference
to another object (s) and will move their displayed
position if the reference object (s) location changes.
It is possible to model cadastral object location as it
is understood by property surveyors and cadastral
cartographers. The use of an object-oriented design
renders such definitions straightforward. There remain
important questions having to do with the practicalities
of implementation.

First, much more work must be comrleted on the
schema of object location rules. The true scope of the
number of object classes involved needs to be
determined, as well as how such a schema would be
integrated with the other functionalities of a land
information system. At present, it appears that between
thirty and one hundred different object classes would be
required to locate cadastral objects. Should one use an
object-oriented design in the area of cadastral object
location only, grafting this capability to existing
geographic information system design (4), or would it be
effective to build a whole system using a unified
object-oriented design approach? The latter approach
will require adaptation of spatial data handling
operators existing in procedural languages to methods
internal to objects.

The second area of investigation involves
consideration of economic impacts. That is, what are
the comparative costs and benefits of a highly
structured cadastral layer as compared to a simple image
file? Given that updating a cadastral layer ineluctably
involves reconstruction of location from source records,
is it more cost-effective to integrate the locational
structure within the data base, so that reconstruction
is continuous, or to rely on manual reconstruction and
redigitization of maps at intervals?

At present, efforts are continuing to flesh out the
schema of object classes indicated in Figure 3. The
hope is to demonstrate, using part of an assessor's tax
map, the feasibility of mapping objects with a whole
range of locational rulesi

REFERENCES

(1) Berning, Alan, 1981. "The Programming Language
Aspects of ThingLab, a Constraint-Oriented Simulation
Laboratory." ACM Transactions on Programming Languages
and Systems, Vol. 3, no. 4 (October 1981), pp. 353-387.

(2) Brown, C.M., 1969. Boundary Control and Legal
Principles, 2nd ed. New York: John Wiley & Sons.

(3) Chrisman, N., and B.J. Niemann, Jr., 1985.
"Alternative Routes to a Multipurpose Cadastre: Merging
Institutional and Technical Reasoning." Auto-Carto 7
Proceedings, pp. 84-94. Falls Church, Virginia:
ACSM-ASPRS.

(4) Cox, B.J., 1984. "Message/Object Programming: An
Evolutionary Change in Prograrrµning Technology." IEEE
Software, January 1984, pp. 50-61\

(5) Dueker, K.J., L.M. Con:r::ad, and D. Kjerne, 1985.
Draft User Needs Assessment and Technical Issues for a
Multipurpose Cadastre for Multnomah County. Oregon.
Portland, Oregon: Center for Urban Studies, Portland
State University.

(6) Horn, Bruce, "Neon, Version 1.0" (software review).
Dr. Dobb's Journal, October 1985, pp. 96-100.

(7) Kay, Alan, 1984. "Computer Software." Scientific
Affierican, Vol. 251, no. 3 (September 1984), pp. 53-59.

(8) National Research Council (NRC),
Multipurpose Cadastre. Washington,
Academy Press.

1980. Need for a
D. C. : National

(9) Nyerges, T., 1981. "Cartographic Information
Modeling as a Theoretical Basis for Cartographic Data
Base Structures." Paper presented at the Second
International Hypergraph-based Data Structures Seminar,
Richmond, Va., 9-13 March 1981.

(10) Oregon Department of Revenue (ODR), 1981. Manual
of Cadastral Map Standards. Concepts. and Cartographic
Procedures, 2nd ed. Salem, Oregon: ODR.

(11) Van Demark, P., 1985. "A Model Schema for
Geographic Base Layer." Survey sent to Spatial Oriented
Reference System Association (SORSA) members.

APPENDIX

----Listing 1----

:CLASS Object <Super Meta

This object class has general methods, like GET: and
PUT:, which allow the storage of data into internal
variables. All objects in an object-oriented language
inherit, directly or indirectly, from the Object class
)

;CLASS

:CLASS ZeroCell

Point

;CLASS

\ Terminates class
\ definition

----Listing 2----

<Super Object\ Begins class
\ definition;

Location

\ indicates superclass

\ These lines are for
\ the definition
\ of internal
\variables. The
\ variable "Location"
\ (a Point data
\ type) holds x,y
\ coordinates.

----Listing 3----

: CLASS ControlPoint <Super ZeroCell

:M

(theX theY --)

DEFINE:

Put: Location

\ no new internal
\ variables

\ beginning of
\ internal method
\ definition

\ this comment shows
\ the condition of the
\ stack before and
\ after method
\ execution

\ name of method

\ this method takes
\ two input values and
\ puts them in the

;M

-- theX theY)

\ variable "Location"

\ end of method
\ definition

:M LOCATE: Get: Location ;M \ This method returns
\ the values in
\ "Location"

;CLASS

----Listing 4----

:CLASS MonAngDist <Super ZeroCell

This type of monument locates itself by azimuth and
distance from another ZeroCell object.)

Angle
Real
Ptr

Azimuth
Distance
Ref Pt

(theRefPt theDistance theAngle --)
:M DEFINE: Put: Azimuth Put: Distance Put: RefPt

Define:, like the method of the same name in the
Control object class definition, takes input values
and stores them in internal variables. Instead of
storing x,y coordinates, this method stores the values
used to compute the coordinates.)

;M

(-- theX theY)
:M LOCATE:

computes the sine of Azimuth times Distance, adds to
x-coordinate of RefPt, puts on stack; computes the
cosine of Azimuth times Distance, adds to y-coordinate
of RefPt, puts on stack)

;M

;CLASS

----Listing 5----

(ZeroCell -- point object class. Should have handle to
list of OneCells bounding each ZeroCell, as well as
location. dk 12 May 86)

:CLASS ZeroCell <Super Object

Point Location

;CLASS

----Listing 6----

(qdbitmap -- from qdl -- 03/06/86 dk)

Decimal

(define the quickDraw bitmap object

:CLASS qdBitMap

Var
Int
Re ct

<Super Object

BaseAddr
RowBytes
BndsRect

addr n 1 t r b ---)
:M PUT: Put: bndsRect Put: RowBytes Put: BaseAddr ;M

addr) \ gets abs addr of
\ BndsRect

:M BNDGET: Addr: BndsRect +base ;M

;CLASS

the following "colon definitions" define new words (A
la FORTH))

SPOT 8 210 gotoxy ;

.OK -curs spot 12 spaces spot +curs ;

+pair { xl yl x2 y2 -- xl+x2 yl+y2 } xl x2 + yl y2 + ;

CoordMsg " The coordinates are " ;

-----Listing 7-----

load bitmaps -- array and bitmap sources for control
point and monument tempiates. dk 12 May 86)

4 Array Ctlimage
xx to: Ctlirnage ;

hex

18002400 0 xx
42008100 1 xx
81004200 2 xx
24001800 3 xx
decimal
forget xx
QDBitmap CtlptSource
abs: Ctlimage 4+ 2 0 0 8 8 Put: CtlptSource
2 Array Monimage
: xx to: Monimage
hex
6000FOOO 0 xx
F0006000 1 xx
decimal
forget xx
QDBitMap MonSource
abs: Monimage 4+ 2 0 0 4 4 Put: MonSource

-----Listing 8-----

(Ctlpt -- this uses a separate bitmap, CtlptSource.

:CLASS Ctlpt
Var
Int
Re ct

<Super ZeroCell
DestBits
Mode
Dest Re ct

:M GETPORT: Abs: DestBits call GetPort 2 +: DestBits ;M

(theMode --
:M CHMOD: Put: Mode ;M

(theX theY --)
:M DEFINE: { xloc yloc -- } xloc yloc Put: Location

xloc yloc -4 -4 +pair putTop: DestRect
xloc yloc 4 4 +pair putBot: DestRect .ok

;M

(-- theX theY)
:M LOCATE: Get: Location .ok ;M

:M DRAW: GetPort: self Abs: CtlptSource Get:
DestBits Bndget: CtlptSource Abs: DestRect Int: Mode 0
call CopyBits .ok ;M

:M REF: CoordMsg Get: Location .. er .ok ;M

;CLASS

----Listing 9----

(Mon -- contains display method for all monuments

:CLASS Mon
Var
Int
Re ct

<Super ZeroCell
DestBits
Mode
DestRect

:M GETPORT: Abs: DestBits call GetPort 2 +: DestBits

;M

{ theMode --
: M CHMOD: Put: Mode ;M

:M DISPLAY: GetPort: self Abs: MonSour~e Get:
DestBits Bndget: MonSource Abs: DestRect Int: Mode 0
call CopyBits .ok ;M

;CLASS

----Listing 10----

Monident -- this is a type of monument located at a
ZeroCell-type object -- dk 12 May 86)

RefMsg ."Reference point is " ;

:CLASS Monident <Super Mon

Var Ref Pt

(theRef Pt --)
:M DEFINE: Put: RefPt .ok ;M

:M LOCATE: { \ theObj -- x y } Get: RefPt -> theObj
Locate: theObj

;M

:M DRAW: { \ xloc yloc -- }
Locate: Self -> yloc -> xloc

;M

xloc yloc -2 -2 +pair putTop: DestRect
xloc yloc 2 2 +pair PutBot: DestRect
Display: Super

(--) \ prints name of refPt
:M REF: RefMsg Get: RefPt 3 - >name id. er .ok ;M

;CLASS

	Modeling Location for Cadastral Maps Using an Object-Oriented Computer Language
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1479925944.pdf.QryyA

