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Figure 10. North (a), east (b) and vertical (c) daily positions (grey circles) for GPS site COAT in southern Guatemala reduced by the long-term site velocity
and corrected for coseismic offsets given in Supporting Information Table S2. Coloured curves show the viscoelastic deformation that is attributable to the
2012 Champerico earthquake for all three rheological models described in Section 3.2 and shown in Supporting Information Fig. S2. Red area in the inset map
shows the 2012 Champerico earthquake rupture zone. See Fig. 4 caption for further information.

6 D I S C U S S I O N A N D C O N C LU S I O N S

6.1 Earthquake comparisons

Of the three earthquakes we modelled with TDEFNODE, the
2009 Swan Islands and 2012 Champerico earthquakes occurred
at normal seismogenic depths and had afterslip-to-earthquake
moment ratios (35 per cent and 70 per cent) typical of other

large strike-slip (Freed et al. 2006) and subduction-thrust earth-
quakes (Lin et al. 2013). Post-seismic observations for both earth-
quakes are consistent with our assumptions of logarithmically
decaying afterslip at a fixed location on the fault. Our modelling
suggests that most afterslip for the 2009 Swan Islands earth-
quake occurred on the eastern end of the rupture zone rather
than its western end (Fig. 3c), where large afterslip could have
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Figure 11. Cumulative viscoelastic deformation integrated over the period
2009 May 28 to 2017.0 as predicted with VISCO-1D software and the
maximum-response rheological model shown in Supporting Information
Fig. S2 and described in the text. Four earthquake slip solutions were used
as input to VISCO-1D, as follows: (1) the 2009 May 28 Mw = 7.3 Swan
Islands strike-slip earthquake, (2) the 2012 August 27 Mw = 7.3 El Sal-
vador earthquake, (3) the 2012 September 5 Mw = 7.6 Nicoya earthquake
(Costa Rica), (4) the 2012 November 11 Mw = 7.4 Champerico (Guatemala)
earthquake (Protti et al. 2013). Their respective coseismic slip solutions are
shown in Figs 3(a), 6(a) and 9(a), and Supporting Information Fig. S9. The
tick marks in (a) show the directions of the horizontal viscoelastic displace-
ments. Small symbols in (b) show the GPS site locations from Fig. 2.

altered the stresses acting on the seismically hazardous Motagua
fault.

Slip during the 2012 El Salvador earthquake averaged ≈1 m and
was shallower than 20 km (Fig. 6a), consistent with previous results
(Ye et al. 2013, Geirsson et al. 2015). The earthquake triggered
an additional ≈1 m of nearby afterslip (Fig. 6c) with a moment
equivalent to 140 per cent of the geodetic earthquake moment. Lin
et al. (2013) report that afterslip following most subduction thrust
earthquakes has an equivalent moment release less than 50 per cent
of the coseismic moment. The 2012 El Salvador earthquake thus
triggered an unusually large amount of afterslip. Given that geodetic
measurements onshore from the El Salvador trench segment sug-
gest that locking at normal seismogenic depths is either weak or
zero (Correa-Mora et al. 2009), we infer that little or none of the
plate convergence is accommodated by thrust earthquakes below

depths of ≈25 km offshore El Salvador. Our modelling suggests
that afterslip plays an important role in accommodating the plate
convergence above depths of ≈25 km (Fig. 6c).

Finally, our good model fits suggest that afterslip was the process
responsible for most post-seismic deformation after the 2009 Swan
Islands and 2012 El Salvador and Champerico earthquakes. This
finding is consistent with modelling evidence that post-seismic de-
formation associated with earthquakes with Mw <7.5 can be well
approximated via an elastic afterslip model (Sun & Wang 2015).

6.2 Implications of far-field post-seismic deformation for
western Caribbean tectonic studies

Our observations and modelling indicate that coseismic and post-
seismic deformation associated with the four Central America earth-
quakes described above are resolvable at distances of 500 km or
more from their rupture zones, encompassing most locations in
Central America. By implication, estimates of plate/block rotations
and interseismic fault locking in the earthquake-prone, western por-
tion of the Caribbean plate that ignore the transient effects of re-
gional earthquakes are likely to be biased in unpredictable ways. The
good fit of our time-dependent model (Section 5 suggests that most
of the transient deformation present in our original GPS position
time-series was successfully removed, even given our simplifying
assumption of fault afterslip as the source of all the post-seismic
deformation.

Future realizations of the regional velocity field may require
corrections for viscoelastic deformation given that such deforma-
tion decays more slowly (decades to centuries) than does afterslip.
Fig. 11 and Supporting Information Fig. S10, which approximate the
maximum and minimum summed viscoelastic responses to the 2009
Swan Islands earthquake and 2012 El Salvador, Nicoya, and Cham-
perico earthquakes, illustrate some of the challenges and pitfalls
associated with any such corrections. The magnitude and direction
of a viscoelastic response predicted for a given location can vary
significantly depending on the depths, viscosities, and rheological
behaviours that are assigned to the lower crust and mantle for a
given Earth structure. Uncertainties in the coseismic slip solutions
for recent and historic earthquakes (i.e. the 1976 Mw = 7.5 Motagua
fault earthquake) also cause uncertainties in the predicted viscoelas-
tic response, particularly at sites close to earthquake rupture zones,
where viscoelastic deformation is sensitive to the assumed location
and slip distribution of the modelled rupture.
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Figure 12. Time-dependent viscoelastic deformation at GPS site SAN0 (located in the previous figure) for the four earthquakes listed in the previous figure
and all three rheological models shown in Supporting Information Fig. S2. The daily north (a) and east (b) station positions, shown by the grey circles, are
reduced by the long-term site velocity and corrected for coseismic offsets given in Supporting Information Table S2. Coloured curves show the viscoelastic
deformation individually attributable to the 2009 Swan Islands earthquake and 2012 El Salvador, Champerico, and Costa Rica subduction zones earthquakes.
See Fig. 4 caption for further description.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.
Figure S1: Position time-series for GPS site VMIG, which has
abnormally high multipath noise. Site motion is relative to the
Caribbean plate. Daily site positions are indicated by the sage-
coloured circles. Red/white circles show 30-d average positions.
Light-grey circles show the daily common-mode noise that has been
removed from the daily positions. The red line denotes the slope
that best fits the daily positions before the August 2012 El Salvador
earthquake. Coseismic offsets caused by the 2009 Swan Islands
earthquake and the 2012 El Salvador and Champerico (Guatemala)
subduction thrust earthquakes have been removed for clarity.
Figure S2: Checkerboard tests for the Middle America trench seg-
ment that ruptured during the 2012 August 27 El Salvador earth-
quake, whose rupture area is defined by the red-dashed enclosed
areas in panels (A) and (C). Panels (A) and (C) show starting mod-
els and their predicted (synthetic) GPS velocities for continuous
(red) and campaign (black) sites. Panels (B) and (D) show slip solu-
tions recovered from inversions of the synthetic GPS velocities and
residual GPS velocities from the best-fitting solutions.
Figure S3: Diagrams of layer viscosities and depths for the three
Earth structure models used for our viscoelastic modelling.

Figure S4: Horizontal fits of TDEFNODE time-dependent model
at site ROA0. Shaded circles show changes in the east, north, and
vertical components of the daily station positions after removing
a best-fitting slope. Dashed lines denote times of the 2009 Swan
Islands and 2012 El Salvador and Champerico earthquakes.
Figure S5: Residual daily GPS site positions (coloured circles)
for our TDEFNODE time-dependent model. The residual daily site
position is defined as the modelled position subtracted from the
observed position. Dashed line denotes time of the 2009 Swan
Islands earthquakes. The locations for sites AIES, SNJE, SSIA and
VMIG are shown in Fig. 5(d) of the main document. Vertical signals
associated with this strike-slip earthquake are small and not shown.
Figure S6: TDEFNODE fits (red and blue lines) to daily north, east,
and vertical station positions reduced by their best-fitting slopes.
The sites selected are continuous sites in El Salvador near the 2012
El Salvador earthquake. The locations for all four sites are shown
in Fig. 6 d in the main document. Dashed lines denote times of the
2009 Swan Islands earthquake.
Figure S7: Residual daily GPS site positions (red and blue circles),
defined here as the positions estimated with the TDEFNODE model
subtracted from the observed positions. The shaded area shows the
72-d period between the 2012 El Salvador and Champerico earth-
quakes, whose times are indicated by the dashed lines. Locations for
sites BARI, CHPO, COTZ, COAT and MTP1 are variously shown in
Figs 9(a) and (d). RMS values for the TDEFNODE misfits include
station positions for all time spanned by the data for each station,
as specified in Table S1. The fits to the vertical station positions are
not shown.
Figure S8: TDEFNODE fits (red and blue lines) to daily north, east,
and vertical station positions reduced by their best-fitting slopes.
The sites selected are continuous sites in Guatemala near the 2012
Champerico (Guatemala) earthquake. The locations for all five sites
are shown in Fig. 8 of the main document. Dashed lines denote
times of the 2009 Swan Islands earthquake and 2012 El Salvador
and Champerico earthquakes.
Figure S9: (a) The geodetic coseismic slip solution of Protti et al.
(2013) for the September 2012 M = 7.6 Nicoya earthquake. (b) The
geodetic afterslip solution for the same earthquake, representing the
cumulative afterslip for the first 70 d after the earthquake (Malservisi
et al. 2015).
Figure S10: Cumulative viscoelastic deformation integrated over
the period 2009 May 28 to 2017.0 as predicted with VISCO-1D
software and the minimum-response rheological model shown in
Fig. S2 and described in the text.
Table S1: GPS site information.
Table S2: Estimated coseismic offsets.
Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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