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Geometrical Models for Grain DynamicsGiovani L. Vasconcelos1 and J. J. P. Veerman21 Departamento de F��sicaUniversidade Federal de Pernambuco50670-901, Recife, Brazil2 Mathematics DepartmentGeorgia Institute of Technology, Atlanta, USAApril 9, 1999AbstractWe study models for the gravity-driven, dissipative motion of a sin-gle grain on an inclined rough surface. Imposing some conditions onthe momentum loss due to the collisions between the particle and thesurface, we arrive at a class of models in which the grain dynamics isdescribed by one-dimensional maps. The dynamics of these maps isstudied in detail. We prove the existence of various dynamical phasesand show that the presence of these phases is independent of the resti-tution law (within the class considered).INTRODUCTIONRecently, we proposed [1] a model for the dynamics of a single grain ona rough inclined surface. The model had some remarkable properties whichenabled us to carry out a detailed description of its dynamics. The resultswe obtained were consistent with the limited evidence from experiments[2]. In this paper we will show that the qualitative aspects of the dynamicsare insensitive to the actual form of the tangential restitution law. Thus,we generalize our previous results reported in Ref. [1], which were derivedassuming one particularly simple form of the restitution law.In our model, which is shown in Fig. 1, the rough surface is consideredto have a simple staircase shape whose steps have height a and length b. Forconvenience, we choose a system of coordinates in such a way that the step1



plateaus are aligned with the x axis and the direction of the acceleration ofgravity g makes an angle � with the y axis. A point particle is then imaginedto be launched on the top of the `staircase' with a given initial velocity. Uponreaching the end of a step plateau, the particle will undergo a ballistic 
ightuntil it collides with another plateau located a certain number n of stepsbelow the departure step (e.g., n = 3 in Fig. 1). Accordingly, we will referto the integer n as the jump number associated with this 
ight. After thecollision, the particle will slide frictionlessly along the step with which itcollided until reaching its end, when a new 
ight begins.We thus have 3 restrictive assumptions on the model:1. The form of the tangential restitution law.2. The absence of normal bouncing.3. The rectangular shape of the staircase.The aim of this paper is to lift the �rst of these restrictions. We willshow that our results are robust with respect to the tangential restitutionlaw. This is of importance since tangential restitution laws are very hard toestablish experimentally [?] and are not well understood theoretically. Asdiscussed below, we will assume here that the velocity after a collision isan unknown function (of the incoming velocity) satisfying some reasonablerequirements. We will then show that all qualitative results obtained in Ref.[1] still hold for this general class of restitution laws.As far as the other restrictions are concerned, computer simulations [4]have indicated that a nonzero normal coe�cient of restitution does not sig-ni�cantly alter the general dynamics of the particle. We will take up thisissue in a future work [5]. The third restriction, on the other hand, turnsout to be relevant. One can show, however, that the qualitative aspects ofthe dynamics are unchanged so long as the faces of the steps on which theparticle falls all have exactly the same constant slope. We shall see belowthat the `staircase' geometry leads to a crucial simpli�cation of the dynam-ics. The extent to which this in
uences the dynamics will be discussed infuture work.Now we specify the collision rules. Let v = (vx; vy) denote the compo-nents of the particle velocity parallel and perpendicular to the collision planebefore a collision, respectively, then we will take the velocity v0 = (v0x; v0y)after the collision to be given byv0x = etC(vx; vy); (1)2



v0y = �envy; (2)where etC(vx; vy), with 0 � et < 1, represents our generic tangential resti-tution law and 0 � en < 1 is the normal coe�cient of restitution. In Ref.[1], the function C(vx; vy) was taken to be equal to vx and en was set to0. Here C will only be required to satisfy some reasonable criteria. But forsimplicity en will still be kept zero, the advantage being that the model canthen be described by a one-dimensional map. When en > 0 the dynamics isgoverned by a three-dimensional map, the analysis of which is more compli-cated and will be left for forthcoming publications [5]. We will also neglectthe energy dissipation as the particle slides along a step, since we supposethat the main energy loss is due to collisions.THE MODELWe now turn to the exact formulation of our model. For physical reasons,we will require the function C(x; y) to satisfy the following conditions:1. C(x; y) is twice di�erentiable and homogeneous of degree 1, that is,C(�x; �y) = �C(x; y) for � > 0.2. C(0; 1) = 0.3. @uC(u; 1) 2 [0; 1].The physical meaning of the conditions above should be evident. The ho-mogeneity condition implies that, for a �xed angle of incidence, the kineticenergy of the particle afterwards is proportional to its value before the im-pact. The second condition says that a particle colliding vertically does notacquire tangential momentum, while the third condition ensures a net lossof tangential momentum upon collision, i.e., v0x < vx.Let us write E = 12mV 2, where m is the particle mass and V is thelaunching velocity at the start of a 
ight, and let E0 denote the correspondingkinetic energy at the beginning of the next 
ight (see Fig. 1). Using simplearguments of energy conservation together with the collision conditions (1)and (2) [with en = 0], one can write E0 in terms of E. The result isE0 = 12m[etC(vx; vy)]2 +mg sin�(nb� x); (3)
3



where n is the corresponding jump number for the 
ight and x is the x-coordinate of the landing point. Introducing the notation:E = Emga cos�; (4)g(u) = [C(u; 1)]2; (5)t = tan�; (6)� = tan�; (7)we obtain that the dynamics of the model, in terms of the dimensionlessvariable E , is given by the following map:E 0 = f(E ; n) = ne2t g(qE=n+ t) + nt(� � t� 2qE=n): (8)The jump number n is determined by the energy E according to thefollowing condition: n is equal to the smallest integer such thatn(� � t)� 2pnE � 0: (9)This means that E falls within the interval In:E 2 In(t) � �14(n� 1)(� � t)2; 14n(� � t)2� : (10)Thus the function f(E ; n) exhibits jump discontinuities at energy valuesE = 14n (� � t)2, but each of its branches is smooth.From hereon, we will use the notation z = pE=n. In terms of the variablez the map (8) yields an equivalent dynamical system:z0 = r nn0 h(z); (11)where owing to the homogeneity of f(E ; n) the function h(z) is independentof n, being given byh(z) =qe2t g(z + t) + t(� � t� 2z); (12)and z takes value in the rescaled interval Jnz 2 Jn(t) � �12p1� n�1 (� � t); 12(� � t)� : (13)4



Note that the homogeneity of f(E ; n), which allowed us to formulate theproblem in terms of the variable z, is a consequence of the geometry ofthe staircase and of the homogeneity requirements on C. This alternativeformulation will turn out to be very useful in the analysis that follows.FIXED POINTSTo investigate the existence of �xed points it su�ces to study the dy-namics within a given interval Jn, so we set n0 = n. In this case the map(11) becomes simply z0 = h(z); (14)with z restricted to the interval Jn. The �xed points are then given by thesolutions of the equation z = h(z), which in view of (12) gives(z + t)2 = e2t g(z + t) + t�: (15)From the requirements on C it is easy to show that the solution of Eq.(15) is always unique. So call this solution z0(t). Then note that a �xedpoint with jump number n will exist if z0(t) 2 Jn. We claim that thatz0(t) will cross both endpoints of the intervals Jn(t) as t increases from 0to � . To show this, let us de�ne the quantity D(t) = z0(t)� zmax(t), wherezmax(t) = (� � t)=2 denotes the right endpoint of Jn. Di�erentiating (15)with respect to t, we obtain@tz0 = �2(z0 + t)� e2t g0(z0 + t) � 1: (16)Note that the derivative of g must be positive. Thus using (9) we obtainthat � � t� 2z + e2t g0(z + t) � 0; (17)so that 2(z + t)� e2t g0(z + t) � � + t: (18)On the other hand from the requirements on C it follows that C(u) � u andso g0(u) � 2C(u)C 0(u) � 2C(u) � 2u: (19)Thus @tz0 > �� + t � 1 > �12 : (20)5



This implies that @tD is always positive. Hence D(t) increases with t. Fi-nally, note that z0(0) = 0 so D(0) = ��=2, and that D(�) = z0(�) > 0.This means that, as t increases from 0 to � , z0(t) will cross the left endpointof the interval Jn at least once (exactly once if n is big enough) and itsright endpoint exactly once. Thus a unique �xed point with jump numbern appears at an inclination tn such that z0(tn) = p1� n�1 zmax(tn) andceases to exist for t > t1 = limn!1 tn.We have thus established our �rst result: For every choice of � , etand g(u) [within the class considered here], there is an increasing sequenceftng1n=1 with a limit point t1 = limn!1 tn < �; (21)such that there is a �xed point with jump number n for all t 2 (tn; t1].Furthermore the �xed point (for a given n) is unique.CONDITION FOR BOUNDED VELOCITYThe dynamics of the map (14) can be analyzed using standard techniquesin one-dimensional dynamical systems. For example, the orbit of a givenpoint z 2 Jn can be obtained by setting z1 = h(z), z2 = h(z1), and so on.There is however a caveat about the dynamics of our map. Suppose thatfor a given point z 2 Jn its image h(z) leaves the interval Jn. If we know n,then by (11) we see that E 0 = n[h(z)]2. Thus, using (10), we determine n0by (n0 � 1)z2max < n[h(z)]2 � n0z2max; (22)or n0 = ceiling[n[h(z)]2z2max ]: (23)Thus n0 < n if [h(z)]2 � (1� 1n)z2max (24)n0 > n if [h(z)]2 > z2max: (25)We are now in a position to discuss our next result: The particle velocitybecomes unbounded whenever t > t1 and stays (after a transient) uniformlybounded whenever t < t1.Suppose �rst that t > t1 so that there is no �xed point in the interval[0; zmax(t)]. By the assumptions on C, we have h(z) > z for all z in the6



physically relevant interval [0; zmax] and some iterate hj(z) is forced to leavethe interval Jn to the right. According to (25), the jump number and hencethe particle velocity will increase inde�nitely. Now suppose that t < t1 sothat z0(t) < zmax(t). A typical graph of h(z) in this case is shown in Fig. 2.Let n0 then be the smallest integer satisfying: z0(t) < p1� (n0)�1 zmax(t),so that the intervals Jn, for n � n0, will all lie to the right of z0. This meansthat for n � n0 we have E 0 < E and so n0 < n. For n < n0, on the otherhand, the jump number may grow (so that n0 > n). But from (23) we havethat n0 � max0<n<n0 supz2Jn(t) ceiling[n[h(z)]2z2max ]: (26)Denoting the bound above by n1, we then conclude that after a transientthe jump number will be uniformly bounded by maxfn0; n1g.The preceding argument thus proves the existence of the transition frombounded to unbounded velocity at t = t1. In the region of bounded velocity,several dynamical regimes are possible depending on the stability of the �xedpoints, as we shall see next.STABILITY OF FIXED POINTSThe �xed point z0(t) will be stable (unstable) whenever the derivative�(t) = h0(z0) satis�es the condition j�j < 1 (j�j > 1). The derivative at the�xed point is obtained from (12):�(t) = e2t g0(z0 + t)� 2t2z0 : (27)From (19) it immediately follows that � < 1. Thus instability occurs ifand only if �(t) < �1. A straightforward calculation shows that �(0) =12e2t g00(0) > 0, so the �xed point with n = 1 is always born stable at t = 0.As t increases, this �xed point (and others as well) may remain stable ormay eventually become unstable, depending on the nature of the restitutionlaw.From (27) we can see that the �xed points are always stable wheneverthe loss of tangential momentum (due to collisions) is small. In other words,if e2t g0(u) is not too far from 2u we are guaranteed that � > �1. When thisis the case, then for t2 < t < t1 we will have more than one attractor forthe dynamics. On the other hand, for collision rules with large momentumloss (i.e., small et) there will be a critical inclination above which the �xed7



points become unstable. To see this, �rst consider the case et = 0. Settinget = 0 in (15) yields: z0(t) = �t + pt� . Substituting this into (27) gives�(t) = �1�p�=t��1. Thus for t > �=4 we have � < �1 and so the �xedare unstable . In particular, we note that for et su�ciently small all �xedpoints with n � 2 are born unstable. This follows from the fact that foret = 0 we have t2 > �=4.Let us now look at the transition to instability in more detail. In the(et; t) plane we have found a region where � < �1 (large et) and another onewhere � > �1 (when et is close to zero). These regions must be separated bythe solutions of �(et; t) = �1. In fact, setting t = t(et) in (27), di�erentiatingthe relation �(t) = �1 with respect to et, and using Eqs. (15) and (19), onecan show that these solutions lie on a di�erentiable curve tinst(et). Thusfor t < tinst the �xed point are stable whereas for t > tinst they becomeunstable.We have thus seen that in the (et; t) plane the regime of stable periodicorbits is bounded from above by a region of unbounded velocity (for largeet) and by a region of unstable periodic orbits (for small et). These distinctregions can be most easily visualized in the context of a simple model [1]where the tangential restitution law is given by: v0x = etvx, which meansg(u) = u2. In light of the preceding discussion, one can readily constructa phase diagram in the (et; t) plane displaying all the possible dynamicalregimes for this model [1]. This is shown in Fig. 3 for the case � = 1. Thefour regions indicated in this �gure correspond to:I { 0 < t < min(t2; tinst): there is a unique stable �xed point.II { t2 < t < min(tinst; t1): the system has multiple stable �xed points.III { tinst < t < t1: the �xed points are unstable.IV { t > t1: no �xed point exists.(When regions I and III overlap, there is a unique �xed point which isunstable.)We have seen above that the nature of the phase diagram remains thesame for all g(u) within the general class discussed in this paper.CHAOTIC BEHAVIORLet us now study the dynamics in the region where the �xed points areunstable. We are particularly interested in the limit t ! t1 (from below).First we note that (since the velocity is bounded) for any orbit the jumpnumber n must (after possible transients) lie within a band: n� < n < n+.8



To obtain an estimate for this band we appeal to the inset in Fig. 2, wherewe show a blow-up of h(z) near an unstable �xed point. In this inset we haveindicated the points z� and z+, de�ned by z� = h(zmax) and h(z+) = zmax.Now let n� be the largest integer such that z� > p1� (n�)�1 zmax, and n+the smallest integer such that z+ < p1� (n+)�1 zmax. By referring to Fig.2, one can convince oneself that if n > n+ so that Jn � Jn+ , then for anyz 2 Jn its orbit will eventually leave the interval Jn towards the left, thusdecreasing n. Similarly, if n < n� so that Jn� � Jn, then for any z 2 Jnits orbit will eventually leave the interval Jn towards the right and hence nmust increase.From the inset of Fig. 2 one sees that the interval [z+; zmax] is mappedto [z�; zmax] and thus (asymptotically as t! t1):j�(t1)j = zmax � z�zmax � z+ : (28)After performing a straightforward calculation one then obtains the fol-lowing estimate (asymptotic as t ! t1) for the band mean-value n =(n+ � n�)=2 and its width �n = n+ � n�:n = zmax2(zmax � z0(t)) ; (29)�nn = j�(t1)j � 1j�(t1)j+ 1 : (30)Within this band the dynamics is chaotic with a Lyapunov exponent ap-proximately equal to ln j�(t1)j. We note, however, that the orbits need notnecessarily �ll out the entire band. In fact, preliminary numerical resultsshow that they �ll out only a fraction of this band [5].This work was supported in part by FINEP and CNPq.References[1] G. L. Vasconcelos and J. J. P. Veerman, Phys. Rev. E (in press).[2] C. D. Jan, H. W. Shen, C. H. Ling, and C. I. Chen, in Proceedings ofthe 9th Conference of Engineering Mechanics, College Station, Texas,edited by L. D. Lutes and J. M. Niedzwecki (American Society of CivilEngineers, New York, 1992), pp. 768; G. H. Ristow, F.-X. Riguidel, andD. Bideau, J. Phys. I France 4, 1161 (1994).9



[3] S. F. Foerster, M. Y. Lounge, H. Chang, and K. Allia, Phys. Fluids 6,1108 (1994).[4] S. Dippel, G. G. Batrouni, and D. E. Wolf, Phys. Rev. E 54, 6845(1996).[5] C. G. Alves-Neto, G. L. Vasconcelos, and J. J. P. Veerman, unpublished.
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FIGURE CAPTIONS
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Figure 1: Model for a single grain moving on an inclined rough surface undergravity.
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Figure 2: Graph of h(z) showing the �xed point z0. The inset shows ablow-up of a region near an unstable �xed point.12
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Figure 3: Phase diagram for the model with collision rule v0x = etvx and� = 1. The solid line corresponds to t1, the dashed line to tinst, and thedot-dashed line to t2. 13
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