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Abstract
We  demonstrate  the  use  of  Reconstructability  Analysis  
(RA) on the UCI Australian Credit  dataset to reduce the  
number of input variables for two different analysis tools.  
Using 14 variables, an artificial neural net (NN) is able  
to  predict  whether  or  not  credit  was  granted,  with  a  
79.1%  success  rate.   RA  preprocessing  allows  us  to  
reduce the number of independent variables from 14 to  
two different sets of three,  which have success rates of  
77.2% and 76.9% respectively.  The difference between  
these  rates  and  that  of  the  14-variable  NN  is  not  
statistically significant.  The three-variable rulesets given  
by RA achieve success rates of 77.8% and 79.7%.  Again,  
the difference between those values and the 14-variable 
NN is not statistically significant, that is, our approach  
provides a three-variable model that is competitive with  
the 14-variable equivalent.

1. Introduction

This  paper  uses  a  method  called  reconstructability 
analysis (RA) to reduce the number of variables used in 
an  industry-standard  classification  problem.    Although 
the  RA  technique  is  over  twenty  years  old,  it  is 
underutilized and this paper illustrates its capacities. RA 
is used here to  develop models which are simpler,  i.e., 
have fewer variables, than the original problem, yet still 
capture  most  of  the  predictive  information  in  the  data. 
We then use these simpler models to analyze training and 
testing datasets for an artificial neural net, as well as to 
construct lookup tables specifying rules derived from the 
models.  Related work on feature selection for artificial 
neural  networks  by  RA methods  has  been  reported  by 
[1], [2], and [12], and for data mining by [3]. Note that 
RA is not merely a feature selection method; it  can be 
used also to produce the predictive model based on the 
selected features, as this paper shows.  This study is part 
of a continuing exploration of the robustness of RA for 

both feature selection and predictive modeling in different 
application contexts.

The  rest  of  the  paper  is  in  five  parts.   First,  we 
provide a brief introduction to reconstructability analysis. 
Next, we describe the Australian Credit Card dataset.  We 
then describe the procedures we used to build our training 
and testing datasets, and present our results for both the 
neural  nets  and  the  lookup  tables.   We  finish  with  a 
discussion of the results.

2. Reconstructability Analysis

Reconstructability  analysis  (RA)  derives  from  [4], 
and  was  developed  by  Broekstra,  Cavallo,  Cellier, 
Conant,  Jones,  Klir,  Krippendorff,  and  others;  an 
extensive bibliography is available in [5], and a compact 
summary  of  RA  may  be  found  in  [6]  and  [7].   RA 
resembles  log-linear  methods  [8],  used  widely  in  the 
social  sciences  [9],  and  where  RA  and  log-linear 
methodologies overlap they are equivalent [10].  In RA 
[11],  a  probability  or  frequency  distribution  or  a  set-
theoretic relation is decomposed (compressed, simplified) 
into  component  distributions  or  relations.   The  most 
common application  is  the  decomposition  of  frequency 
distributions, where RA does statistical analysis.  

RA  can  model  problems  both  where  “independent 
variables”  (inputs)  and  “dependent  variables”  (outputs) 
are  distinguished  (directed  systems)  and  where  this 
distinction is not made (neutral systems).  In the present 
case,  we  have  a  directed  system,  with  up  to  15 
independent  variables  A-O  as  inputs,  and  a  single 
dependent  variable,  Z  as  the  output.   The  goal,  in  our 
analysis, is to find some subset of the inputs that provides 
an acceptable level of prediction of the output.  Since the 
information contained in a model is  not the same as the 
classification rate,  nor  even a covariance measure,  it  is 
possible  to  obtain  high classification rates  with  models 
that provide only limited information.
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Consider a frequency distribution f(A, B, C, Z) for a 
directed system, where A, B, and C are inputs and Z is an 
output.   RA decomposes such distributions into models 
consisting  of  sets  of  projections,  for  example  into 
f1(A,B,C), f2(A,B,Z) and f3(B,C,Z), written as the (cyclic) 
model  ABC:ABZ:BCZ.   This  model  has  three 
‘components,’ each of which corresponds to a projection 
of  the  frequency  distribution  of  the  data.   Models  are 
acyclic if recursively eliminating variables unique to any 
single  component  and  eliminating  components  that  are 
projections of other components (and are thus redundant) 
arrives  at  the  null  structure  [10].  The  ABC:ABZ:BCZ 
model cannot be reduced by either of these operations and 
is thus cyclic.

Taken together, these three projections, two of which 
predict the output from the inputs, constitute a model of 
the  data  that  is  less  complex  (has  fewer  degrees  of 
freedom)  than  the  data.   By  maximum-entropy 
(uncertainty) composition of these projections, the model 
yields  a  calculated trivariate  ABCZABC:ABZ:BCZ frequency 
distribution (the subscripts show the model used), which 
may differ from the  observed ABCZ data.   Dividing by 
the  sample  size  gives  the  calculated  probability 
distribution for the model.

Such a model may be assessed by its %Uncertainty 
Reduction, 100. [H(Z) - Hm(Z|ABC) ] / H(Z), where H is 
Shannon  entropy,  and  Hm(Z|ABC)  is  the  conditional 
entropy of  the output, knowing the inputs, for model m. 
The model can be used for prediction by generating the 
conditional probabilities of the output (Z) states, given the 
input (ABC) state. 

Because  RA  models  for  directed  systems  always 
include a component that has all the input variables (to 
allow  for  the  existence  of  relationships  between  these 
variables),  any  model  with  more  than  one  “predicting 
component”  (a  component  including  the  output)  has  a 
loop  in  it,  e.g.,  the  model  previously  discussed, 
ABC:ABZ:BCZ.   By  contrast  a  model  with  only  one 
component, e.g., ABC:ABZ which says that Z is predicted 
by A and B, has no loops (is acyclic).  (Z is unique to the 
2nd component and can be removed; the remaining AB is 
now redundant; this leaves only the 1st component, which 
can also be deleted since all of its variables are unique to 
it.)   The  presence  of  loops  causes  RA  to  require  an 
iterative rather than a single-step algebraic algorithm for 
the calculation of model probabilities.  If the inputs are 
independent  of  one  another,  however,  ABC:ABZ:ACZ 
becomes  simply  ABZ:ACZ,  and  has  no  loop;  in  such 
cases,  loops  can  occur  if  there  are  three  or  more 
predicting  components,  e.g.,  ABZ:BCZ:ACZ.   In  the 
present  paper,  models  with  loops  involving  an  input 
component  were  used  for  variable  reduction  (feature 
selection).   These complex models  can also be used to 

predict  the  output,  as  discussed  briefly  at  the  end  of 
Section V, or to prestructure a neural net with less than 
full connectivity, see [12]. and papers cited therein.

Calculations for this paper were made using the RA 
software  programs  developed  at  Portland  State 
University, now integrated into the package OCCAM (for 
the  principle  of  parsimony  and  as  an  acronym  for 
“Organizational  Complexity  Computation  And 
Modeling”).   The  earliest  of  these  programs  was 
developed by Zwick and Hosseini [13]; a list of recent RA 
papers of the PSU group is given in [14] and [15].

Models are selected from the one of the measures that 
OCCAM  outputs  for  different  models  applied  to  the 
training  set  data,  namely  the  Bayesian  Information 
Criterion  (BIC)  also  known  as  the  Schwartz  Criterion 
[16].    BIC is a way of linearly integrating the error of a 
model  and  its  complexity  (DF)  which  differs  from the 
Akaike Information Criterion (AIC) [17] by its inclusion 
of a factor which depends on the sample size, N:

AIC = – 2 N  p ln q + 2 DF.Σ
BIC = – 2 N  p ln q + ln(N) DFΣ

These measure are unaffected by adding the constant
 2N  p ln p, which gives Σ

AIC' = 2 N  p ln (p/q) + 2 DF.Σ
BIC' = 2 N  p ln (p/q) + ln(N) DFΣ

The first term of AIC and BIC is now the familiar 
likelihood-ratio (LR) Chi-square measure of a model.  In 
OCCAM, AIC and BIC are given relative to a reference 
model.  When the reference model is the the top of the 
lattice of structures, namely the data, good models have 
low values of these measures, since LR, the model error, 
is  ideally  small  and  so  is  DF,  the  model  complexity. 
When the reference model is the bottom of the lattice of 
structures, namely the independence model, which is the 
convention used in this study,

AIC = AIC(ind) – AIC(model) = LR + 2 * DFΔ Δ Δ
BIC = BIC(ind) – BIC(model) = LR + ln(N)* DFΔ Δ Δ

In this case  AIC and BIC have  Δ Δ high values for 
good models, since LR is the information  Δ captured in 
the  model,  and  DF,  which  is  always  negative,Δ  
diminishes the measure the more complex the model is. 
Including  the  ln(N)  factor  in  BIC  penalizes  moreΔ  
complex models.  BIC is thus more conservative than AIC 
in  recommending  departures  from  the  reference 
independence model.  In our experience, models picked 
by BIC do better on generalization (test or recall data)Δ  
than the more complex models picked by AIC.Δ
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3. The Australian Credit Dataset

The  University  of  California  at  Irvine  maintains  a 
repository of  machine  learning  databases,  including  the 
Australian Credit dataset [18].

The  dataset  has  690  records,  of  which  37  were 
discarded due to missing data, leaving 653 records. There 
are 15 independent variables and one dependent variable. 
The  15  independent  variables  include  6  continuous 
variables (B,C,H,K,N,O), four binaries (A,I,J,L), and five 
multi-value nominal (D,E,F,G,M).  The binary dependent 
variable, Z, codes for whether or not credit was granted. 
The data is encoded, and there is no information on the 
meanings of any of the variables or their values.

To  allow  appropriate  processing  by  the  NN,  the 
multi-valued  nominal  variables  were  recoded  into 
appropriate numbers of 0/1 binaries, giving a total of 41 
input nodes.

Looking ahead slightly, the tenth variable (I) proved 
to  be  such  a  strong  predictor  of  the  outcome  that  it 
dominated all the others.  In order to make the test more 
difficult, this variable was dropped from the analysis.

The  data  was  split  into  five  independent  Learning 
(training) set (588 records) / Recall (test) set (65 records) 
partitions.  Only data from the Learning sets was used to 
select and fit RA models.

4. Procedure

The first step in reconstructability analysis is to bin 
any continuous variables in the dataset.   The choice of 
the  number  of  bins  requires  balancing  the  desire  for 
maximum  predictive  power,  which  calls  for  high 
granularity, and also for statistical significance which, for 
complex  models  and  low  sample  size,  calls  for  low 
granularity;  also  issues  of  computational  load  may  be 
involved.  In this case, the six continuous  variables were 
each  binned  into  five  bins  of  approximately  equal 
frequency.  Next,  the  OCCAM  software  was  used  to 
process  this  version  of  the  dataset.  Table  1.  shows ten 
typical models (of almost 3,000) generated from one of 
the Learn datasets. 

The  IV  component  in  the  models  contains  all  the 
inputs, i.e., ABCDEFGHJKLMNO.  The two highlighted 
models  (rows  4  and  5)  were  used  to  determine  the 
variables for the NN. The other models show the range of 
possibilities  and  their  usefulness.  Row  10  is  the 
independence (bottom) model, where nothing predicts Z. 
Rows  3,  8,  9,  and  10  are  single  predictive  component 
models,  which have no loops.   Rows 2,  4,  5,  6,  and 7 
contains models with loops, when relations exist among 
the inputs.  Row 1 contains a model with loops (involving 

F, N, and H) even if the IV component is omitted.  Only 
rows 4 and 5 have positive AIC and BIC values. Δ Δ

Table 1. Examples of OCCAM models.
Model refers to the RA model under consideration,  dDF, 
the degrees of freedom used up by that model,  Inf,  the 
information content of the model, and dAIC and dBIC the 
Akaike and  Bayesian Information Criteria

MODEL ΔDF Inf ΔAIC ΔBIC
IV:BFNZ:FHZ:HNZ:
KZ 425 0.76 -238 -2098
IV:CZ:FHNZ:OZ  357 0.64 -195 -1758
IV:FKOZ        349 0.49 -302 -1830
IV:HZ:KZ:OZ    12 0.31 226 173
IV:HZ:JZ:OZ    9 0.30 225 186
IV:AZ:MZ 3 0.01 -0.33 -13.5
IV:AZ:LZ 2 0 -0.73 -9.48
IV:LZ          1 0 0.62 -3.76
IV:AZ          1 0 -1.45 -5.82
IV:Z           0 0 0 0

Across  the  five  data  partitions,  model  IV:HZ:KZ:OZ 
was selected three times by Occam as having the highest 
dBIC  values.  Model  IV:HZ:JZ:OZ  was  selected  twice. 
For this reason, we tested the NN with inputs HJO and 
HKO.

4.1. The Neural Net
The NN was tested against two versions of the data – 

binned and continuous.  Also, NNs were examined with 
all fourteen inputs, and with the two sets of three inputs 
that  were selected by RA preprocessing.   In a standard 
NN  approach,  the  original  (unbinned)  versions  of  the 
continuous  variables  were  used,  with  their  values 
normalized so they all lay between one and zero.  In order 
to  see  how  much  the  NN  was  dependent  upon  the 
continuous  nature  of  the  variables,  we  also  used  the 
binned  version.   We  would  expect  that  the  use  of 
continuous  variables  would  improve  the  NN  accuracy. 
The NNs used had one input node for each variable or 
coded value thereof, one bias node, and one output node. 
The number of nodes in the hidden layer was the sum of 
the input and output nodes.  The hidden and output nodes 
used  a  log-sigmoid  transfer  function  with  continuous 
outputs that range from 0 to 1.  The input nodes connected 
only to the hidden layer.  One of the three-input NNs is 
shown in Figure 1.

The NN was built and tested using the NeuralWorks 
tool  from  Neuralware,  Inc.  During  training,  the  errors 
were  computed  based  on  the  continuous  outputs.   For 
testing purposes, since the object was classification, the 
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softmax function of the NN tool was used to force outputs 
to 1 or 2.  Each initialization of the NNs was trained and 
tested on the 588-record Learn set using shuffle and deal 

Figure 1. Neural Net Structure.

randomization  and  a  16-record  update  cycle.  Learning 
rate  was  0.8  and  momentum  was  0.6  throughout  the 
process.   Every  600  training  events  the  net  was  tested 
against  the  full  Learn  set,  and  saved  if  it  produced 
improved results.  When no improvement was seen for ten 
of these learn/test cycles, the last saved net was tested on 
the  Recall  set.  For  each  data  partition  and  each  set  of 
variables, the NN was initialized 100 times and the results 
saved and averaged.

4.2. The Rule Set
In addition to using the RA technique to decide on 

the  best  inputs  for  the  NN,  we also  used  the  variables 
from the three variable sets to define an array of decision 
rules that could be basis for a lookup table (Table 2).  The 
decision rule is derived by comparing for every input state 
(HJO) the two conditional probabilities, p(Z=1|input) and 
p(Z=2|input).  The rule is: predict Z=1 or Z=2, whichever 
conditional probability is greater. 

As an example,  a total of 60 rules captured all  the 
information available in the three variables HJO. Table 2. 
shows the process and resulting rule set for an example 
twenty rules using the HKOZ model, based on data from 
the Learn set. The rules were constructed by counting the 
instances of each outcome (1 or 2) in the output variable 
for  a  given  set  of  values  in  the  input  variables  and 
assigning a rule based on the majority of the outcomes.  In 
the  learn  dataset  for  HKOZ  there  were  51  instances 
observed where H = 1, J  = 1 and O = 1.  The calculated 
probability for model IV:HZ:KZ:OZ, that Z would have 
value  of  1  (credit  approved)  was  16.78%,  and   the 
calculated  probability  that  Z  would  have  a  value  of  2 
(credit denied) was 83.22%.  The rule therefore assigns all

Table 2. Twenty  sample rules.
Rules are taken from the sixty rule set for model HJOZ, 
based on the learning data. Column HJO shows the 

values possible for those variables. Column Freq is the 
number of cases observed in the Learn set.  Columns Z1 
and Z2 show the calculated percentage of outcomes for 
that HJO combination.  If Z1 is higher, then the Rule for 
that combination of input values is set to one.  Tied rules 
were assigned a value of 2, since that was the majority 

outcome in the Learn set. The Score column counts what 
proportion of the Z-values each rule correctly captures.

HJO Freq Z=1 Z=2 Rule Score
111 51 16.78 83.22 2 76.47
112 23 2.91 97.1 2 91.3
113 11 13.59 86.41 2 90.91
114 16 39.95 60.05 2 56.25
222 8 8.52 91.48 2 75
223 11 32.85 67.15 2 81.82
224 4 67.42 32.58 1 50
231 2 76.78 23.22 1 100
232 2 32.92 67.08 2 50
313 11 25.63 74.37 2 54.55
314 6 59.32 40.68 1 66.67
321 9 64.27 35.73 1 66.67
423 9 67.76 32.25 1 66.67
424 6 89.89 10.11 1 100
433 16 91.72 8.28 1 93.75
434 14 97.91 2.09 1 92.86
531 15 95.89 4.11 1 100
532 3 77.58 22.42 1 66.67
533 3 94.79 5.21 1 100
534 24 98.72 1.28 1 100

future (Recall) instances of H = 1, K = 1, O = 1 to the 
credit denied category.  Since the Learn set had a larger 
number of instances where Z = 2,  ties (Z1 = Z2) were 
broken by assigning an outcome of 2 for each.

5. Results

The  results  are  shown  in  Tables  3  and  4. 
Classification  performance  of  the  model-based  NNs  is 
shown in Table 3, in the sense of percentage of Recall 
records correctly classified.  As expected, the 14-variable 
NNs using continuous variables outperformed those using 
binned variables, and a single tail paired t-test shows this 
significant at the 0.069 level. 
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Table 3. NN-based classification performance. 
Performance of OCCAM models on the 65-record Recall 

set. The first column (# of Vars) is the number of variables 
used in the model. Column Data Format reports if the 

continuous variables were binned or not.  Column Vars 
lists the variables used. The average Score is reported in 

the next column, along with the Standard Deviation.

# of 
Vars

Data 
Format Vars Score Std Dev

 14 Bin A-H, J-O 75.0% 3.0%

 14 Cont A-H, J-O 79.1% 5.0%

  3 Bin HJO 76.6% 6.0%

  3 Cont HJO 77.2% 7.0%

  3 Bin HKO 69.9% 8.0%

  3 Cont HKO 76.9% 6.0%

Dropping  the  number  of  variables  to  three,  either 
HJO or HKO, and still using continuous versions of the 
continuous  variables  produced  results  that  were  not 
significantly different from the 14-variable models, at the 
0.41 and 0.29 levels, respectively.

Looking  now  at  the  performance  of  the  ruleset, 
obtained directly from the data for the variables selected 
by RA (Table 4), we see that the results for the HJO and 
HKO rulesets are close, and in fact the difference is non-
significant at the 0.26 level.  In addition, we see that the 
ruleset  is  competitive with the 3-variable NNs,  and the 
differences are non-significant at the 0.35 and 0.13 levels, 
respectively for HJO and HKO.

Table 4. Rule table classification performance. 
Performance of OCCAM-model-based rule tables. The 

first column (# of Vars) is the number of variables used in 
the model. Column Vars lists the variables used.  The 

average Score is reported in the next column, along with 
the Standard Deviation. 

# of  Vars Vars Score Std Dev
3 HJO 77.8% 5.3%
3 HKO 79.7% 6.0%

6. Discussion

We  have  shown  that  applying  reconstructability 
analysis  allows us to reduce the number of variables in a 
standard problem to a small  subset  of the original,  and 
that  this  reduction  allows  the  creation  of  simple  NN 

architectures that  have most  of  the predictive power of 
maximally complex NNs.  Since a simpler NN that can 
learn  the  training  set  is,  in  theory,  more  likely  to 
generalize well compared to a more complex NN of equal 
performance, it is to be preferred.  In the present study, 
the simpler  NN did not actually  do better  than the full 
input set  NN, but simpler NNs are also to be preferred 
because they are easier to interpret and are trained faster. 
We also find that predicting the output with a simple and 
transparent  look-up  table  obtained  directly  by  RA 
modeling performs as well as NNs trained on the same 
data subsets.
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