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RESEARCH Open Access

Reproductive output of mosses under
experimental warming on Fildes Peninsula,
King George Island, maritime Antarctica
A. Casanova-Katny1,2*, G. A. Torres-Mellado2 and S. M. Eppley3

Abstract

Background: Mosses dominate much of the vegetation in the Antarctic, but the effect of climatic change on moss
growth and sexual reproduction has scarcely been studied. In Antarctica, mosses infrequently produce sporophytes;
whether this is due to physiological limitation or an adaptive response is unknown. We studied the effect of
experimental warming (with Open Top Chambers, OTCs) on sporophyte production on Fildes Peninsula, King
George Island for four moss species (Bartramia patens, Hennediella antarctica, Polytrichastrum alpinum, and Sanionia
georgicouncinata). To determine whether reducing cold stress increases sexual reproduction as would be predicted
if sex is being constrained due to physiological limitations, we counted sporophytes for these four moss species in
OTC and control plots during two years. Also, we measured sporophyte size for a smaller sample of sporophytes of
two species, B. patens and H. antarctica, in the OTC and control plots.

Results: After 2 years of the experimental treatment, maximum daily air temperature, but not daily mean air
temperature, was significantly higher inside OTCs than outside. We found a significant species by treatment effect
for sporophyte production, with more sporophytes produced in OTCs compared with controls for B. patens and
P. alpinum. Also, sporophytes of B. patens and H. antarctica were significantly larger in the OTCs compared with
the control plots.

Conclusions: Our results suggest that the lack of sexual reproduction in these Antarctic mosses is not
adaptive but is constrained by current environmental conditions and that ameliorating conditions, such as
increased temperature may affect sexual reproduction in many Antarctic mosses, altering moss population
genetics and dispersal patterns.

Keywords: Antarctica, Bryophyte, Climate change, Fildes Peninsula, King George Island, Sporophyte

Background
The Antarctic Peninsula and the Scotia Arc region of the
Southern Ocean (including the South Orkney Islands,
Elephant Island, and the South Shetland Islands) are
among the fastest warming regions on Earth [9, 64, 65].
Records show an increase of 0.2 °C per decade since the
1950s in the Scotia Arc region (e.g., South Orkney Islands)
and an even greater increase of 0.56 °C on the western

side of the Antarctic Peninsula (Faraday/Vernadsky re-
search stations; [63]). In some regions, such as on the
western Antarctic Peninsula, temperature increases have
been highest in autumn and winter [51], before the main
growing season starts, while in other regions, such as on
the eastern Antarctic Peninsula, summer warming has
been greatest [60, 64]. Whereas the warming trend along
the Antarctic Peninsula is supported by a 50-year record,
few long-term data exists for precipitation because in situ
measurement of precipitation on the Antarctic continent
is difficult; much of the knowledge of precipitation
variability has been derived from ice cores [63]. Using this
kind of information, Monaghan et al. [37] showed no stat-
istical change in Antarctic ice accumulation across the
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continent since the middle of the last century. However, at
the Faraday/Vernadsky stations, a positive trend in the
number of annual precipitation days has been measured,
with an increase of 12.4 days decade−1 since the 1950s, with
the majority of that increase occurring during the summer-
autumn season (Turner et al. [62]). Consequently, there has
been changes in soil water availability based on this
increase in precipitation as well as from melting of glaciers,
especially during the Antarctic summer. Biodiversity in
Antarctica is strongly driven by patterns of water availability
[19], and the increase in water availability with climate
changes will thus likely alter patterns of diversity, and
expose new potential habitats to be colonized by terres-
trial biota, particularly pioneers such as lichens and bryo-
phytes [17, 18, 61].
The Antarctic vegetation is dominated by a cryptogamic

flora, with numerous species of lichens and bryophytes.
The bryophytes include ca. 112 species of mosses and 27
species of liverworts along the maritime Antarctic [40, 54].
The effect of climate warming on bryophytes in stressful
habitats has been studied extensively in other parts of the
world, such as in the alpine and in the Arctic. Elmendorf
et al. [23] analyzed 61 experimental warming studies on
tundra vegetation in the alpine and Arctic and found that
mosses were the most negatively impacted element of the
vegetation with acrocarpous mosses (similar to those in
Antarctica) much more affected than pleurocarpous
mosses (which are more common in the Arctic). However,
these studies of passive warming have principally mea-
sured plant cover, biomass or growth, with no data avail-
able on the impact of warming on moss reproduction.
To date little is known about the responses of Antarctic

mosses to climate change [44]. For Antarctic mosses, it has
been recently shown that growth rates have declined since
1980 in East Antarctica, at sites near Windmill Islands and
Vestfold Hills [14], and that this response is due to lower
water availability caused by increasing temperature and
wind speed during the last 50 years. Experiments in Open
Top Chambers (OTCs) carried out in three different loca-
tions on the Falkland, Signy, and Anchorage Island on
cryptogamic communities showed no significant effect of
warming on mosses [5]. In contrast, in situ experiments by
Day et al. [20, 21] in vascular plant-dominated communities
have determined a decrease in moss cover after 4 years of
long term growth under passive warming on Anvers Island,
along the Antarctic Peninsula. In these experiments, it is
unclear whether warming directly decreases moss cover or
whether increases in vascular plant cover caused by warm-
ing leads indirectly to decreases in moss cover. Hill et al.
[29] suggest that mosses are likely to be outcompeted by
the grass Deschampisia antarctica as soils warm due to the
increase in the decomposition rate of organic matter resul-
ting in larger pools of proteinaceous nitrogen, and the more
efficient acquisition by vascular plants of nitrogen from

protein decomposition. However, earlier warming experi-
ments using passive warming suggest that on bare substrate
without plants, moss cover increased by 40 % in 2 years
[32]. Also, in the maritime Antarctic, the vertical accumu-
lation rates of Chorisodontium aciphyllum peat moss have
increased during the last two century, suggesting regional-
warming is increasing moss growth rates [45]. While these
studies and others have shown that warming affects growth
rates for Arctic and Antarctic bryophyte systems, there is
virtually no data available on the effects of warming on
bryophyte reproduction or phenology.
Rates of sexual reproduction in bryophytes generally

decrease with increasing latitude ([16, 36]; but see [53]),
suggesting temperature is a primary driver of sexual
reproduction in bryophytes. Sporophytes (the diploid
product of sexual reproduction in bryophytes) are produced
on 80–90 % of species of Guatemalan and New Zealand
mosses; 76 % of the British Island moss flora have been re-
corded with sporophytes; and fewer than 25 % of Antarctic
moss species have been found with sporophytes (see [16]).
In Antarctica, temperature generally correlates with rates of
bryophyte sexual reproduction [50]; between 25 and 33 %
of bryophytes have sporophytes in the maritime Antarctica
while in continental Antarctica sexual reproduction is
extremely rare with only 10 % of bryophytes producing
sporophytes [16, 49, 54]. At finer scale resolution there
appears to be a microclimatic effect. Studies in the south
maritime Antarctic (along 68–72° LS) have shown that a
high percent of Antarctic moss species (43 % in Marguerite
Bay area and 47 % in Alexander Island) produce sporo-
phytes in so called “favorable small scale oases,” and those
that do produce sporophytes regularly invest heavily, both
in sporophyte biomass and number [16, 53, 67].
Reduced sexual reproduction in mosses may be due to

adaptation or physiological limitation. One possibility is
that the mosses of Antarctica are under selective pressure
to reproduce asexually rather than via sexual reproduction,
perhaps because only a few phenotypes are adapted to such
environments. Under such a scenario, sexual reproduction
would not be adaptive under extreme stress and individuals
that have evolved to favor asexual reproduction would be
favored [33]. Alternatively, the abiotic conditions of Ant-
arctica may limit sexual reproduction via short growing
seasons, sporophyte mortality due to desiccation [67],
sporophyte abortion after extreme conditions in winters or
summers [26, 67], and notably diurnal freeze-thaw cycles
which may prevent gametangial initiation or maturation,
fertilization, or sporophyte development [35]. Further-
more, in species with separate sexes, one sex may be
less stress tolerant than the other sex (e.g., [57, 66]),
altering the population sex ratio and reducing the
probability of sexual reproduction.
Here, we tested the effects of passive warming experiments

on sexual reproduction in Antarctic moss communities on
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Fildes Peninsula in the maritime Antarctica on King George
Island (KGI). We selected four moss species growing at two
study sites, considering both sexual systems because we
were interested in how warming would influence sexual
reproduction in dioecious and monoecious species and
the differential responses of perennial versus short-lived
species. We used Open Top Chambers (OTCs) of a
hexagonal chamber model for in situ passive warming, as
these are the most suitable for experimental warming
studies in the Antarctica [6]. We report the change in
sporophyte production in four moss species in OTCs and
control plots after 2 years. If physiological limitations
rather than adaptation are limiting sexual reproduction,
we predict that experimental warming will increase sexual
reproduction in Antarctic mosses and that this response
will be species-specific.

Methods
Study site
The study was carried out on Fildes Peninsula, King George
Island (62° 00’S, 58° 15’W) in the South Shetland Island
Archipelago. Bryophytes cover large areas (>100 m2) mainly

within 200 m of the coast and in depressions, where
moss communities are well-developed, extending several
hundred meters on Collins Bay, Nebles Point, and Valle
Grande. In total, 61 moss species have been recorded on
King George Island, of which 40 are present on Fildes
Peninsula, one of the largest ice-free areas on the South
Shetland Island Archipelago [39]. The experiments were
carried out at two sites, Juan Carlos Point (62°12’ S 58°
59’W, 37 m a. s. l.) and La Cruz Plateau (62°12’S, 58°57’ W,
41 m a. s. l.) (Fig. 1). Juan Carlos Point, which is charac-
terized by northern exposure towards Drake Passage,
has a moss-grass community dominated by the grass
Deschampsia antarctica Desv and two to three moss
species (frequently Sanionia spp.), and this community
is found on several islands along the South Shetland
Archipelago [13]. La Cruz Plateau is located in the interior
of Fildes Bay, which is oriented towards Bransfield Strait,
and characterized by polygonal soils with permafrost
about 90 cm deep. La Cruz Plateau has a moss-lichen
community dominated by the lichens Usnea aurantia-
coatra (Jacq.) Bory and Himantormia lugubris (Hue) I.M.
Lamb.

Fig. 1 Map of Fildes Peninsula on King George Island. The two study sites where Open Top Chambers (OTCs) were installed in the
summer of 2008. King George Island is part of the South Shetland Archipelago, located to the northwest of the Antarctic Peninsula
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Study species
Fildes Peninsula is the second largest ice-free area along the
western Antarctic Peninsula (Olech [41]). Non-vascular
cryptogamic vegetation dominates, and the only vascular
plant to grow on Fildes Peninsula is the grass Deschampsia
antarctica Desv. The climate of the Fildes Peninsula is mild
by Antarctic standards, with a maritime climate in the
summer and polar conditions in the winter [11]. From
1970 to 2004, mean daily air temperature during the
growing season (December-February) was between 0.6
and 1.5 °C, and the lowest mean daily air temperature
in winter (July-August) was −6.5 °C [11]. From 1970
= 2004, Fildes Peninsula was overcast more than 70 %
of the time in any month, and summer rain was com-
mon with mean monthly rain between 40 to 70 mm
(January-February; [11]).
There are approximately 109 lichens and 40 bryophytes

on the Fildes Peninsula [1, 40]. We selected four moss
species: 1) Polytrichastrum alpinum (Hedw.) G.L. Sm.,
which is dioecious (the most common sexual system in
mosses; [68]) and 2) Sanionia georgicouncinata (Hedw.)
Loeske, 3) Bartramia patens Brid., and 4) Hennediella
antarctica (Ångström) Ochyra & Matteri, which are all
monoecious. The long-lived species P. alpinum and S.
georgicouncinata rarely reproduce sexually in Antarctica
[40]. The short-lived species, B. patens and H. antarctica,
produce sporophytes frequently on subantarctic islands
and on the South Shetland Island Archipelago, where H.
antarctica can colonizes areas of several square meters
[40]. In contrast, on Fildes Peninsula the two monoecious
species grow in small and disperse patches of about two
cm in diameter, frequently as pioneers on the moraine of
glaciers in rock crevices or growing in moss-lichen
communities. Dried reference samples of identified moss
species were deposited at the Herbarium of Concepción
University (CONC).

Passive warming experiments
In 2008, we installed a warming experiment on Fildes
Peninsula, King George Island. Ten Open Top Chambers
(OTCs) and ten control plots were installed at each of the
two sites (La Cruz Plateau and Juan Carlos Point). The
chambers were designed to produce an increase in air
temperature by preventing the loss of heat by convection
and have been used in other ecosystems, such as the
Arctic tundra for many years [28]. The OTCs used are
similar to those previously installed elsewhere in Antarctica
[5, 6]; they are hexagonally sided, tapering to an open top
and assembled of 3 mm thick, transparent acrylic panels of
40 cm height, with a basal area of 106.4 cm2. The acrylic
walls have small perforations to allow better air exchange
and hence avoid excessive warming. There are ten control
plots at each site, each one assigned to a nearby OTC,
having a similar floristic composition to each OTC

and approximately 80–90 % plant cover (with moss
cover approximately 50 % and the remainder lichen).
To characterize microclimatic differences produced by the
OTCs, air temperature and relative humidity measure-
ments were taken both inside the OTCs and in the control
plots using HOBO Pro v2 loggers (Onset, Bourne, Mass.)
programmed to record temperature every hour throughout
the year. Sensors were placed at 20 cm above the vegetation
inside two OTCs and in two control plots. For temperature
effects, we analysis all monthly air temperature values (from
February 2008 to March 2010), but for relative humidity we
used only values for the spring–summer season (November
to March), as this included the majority of time when
temperatures were above freezing and mosses would be
physiologically active. We recognize that OTCs can alter
temperature and snow conditions in other seasons [6, 7],
potentially causing physiological effects in the mosses.

Sporophyte measures
Sporophyte production was quantified for all four moss
species, in two consecutive summers (2008–2009 and
2009–2010); the number of sporophytes was recorded in
situ for each moss species in whole plots, for all ten
OTC and control plots at both sites (La Cruz Plateau
and Juan Carlos Point). However, S. georgicouncinata
never produced sporophytes during the experimental
period and thus was not included in the statistical ana-
lysis for sporophyte production. In 2010, for two species,
H. antarctica and B. patens, we also conducted more in-
tense sporophyte sampling on smaller areas (about 2 cm2)
within plots. From these sub-samples, for H. antarctica and
B. patens, lengths of sporophytes, sporophyte capsules,
and setae were recorded. Only ten H. antarctica and five
B. patens individuals were harvested (per treatment) for
sporophyte size measurements, as so few sporophytes
were produced. Additionally, to minimize plot damage, we
could not quantify the number of moss stems per species
as this would impede ongoing long-term experiments
within the chambers.

Statistical analyses
To determine the effects of treatment (OTC and control),
site (La Cruz Plateau and Juan Carlos Point), and inter-
actions between these two factors on temperature and
humidity measures, we used a series of ANOVA, using
Infostat [22]. To determine the effect of species (Bartra-
mia patens, Hennediella antarctica, and Polytrichastrum
alpinum), treatment (OTC and control), site (La Cruz
Plateau and Juan Carlos Point), and interactions among
these effects on sporophyte production over 2 years, we
used a generalized linear model with a Poisson distri-
bution, using JMP [48], and post hoc tests, using Infostat
[22]. We used Akaike Information Criterion (AIC) and
overdispersion analysis to evaluate potential models and
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determine which interactions to include [27, 42]. We used
an ANOVA to determine the effects of treatment (OTC
and control), species (H. antarctica and B. patens), and
interactions between these factors on whole sporophyte
length, capsule length, and seta length using Infostat [22].

Results
Warming with Open Top Chambers (OTCs)
The OTC treatments increased mean maximum daily air
temperature during the study period (2008–2010), from
7.3 °C in control plots to 10.5 °C (Table 1a;F1,97 = 5.78, p <
0.018). However, warming treatment had no significant
effect on mean daily temperature or mean minimum daily
air temperature (Table 1). Site significantly affected the
mean minimum daily air temperature (F1,100 = 5.92, p <
0.0168), being lower at La Cruz Plateau (−9.42 °C) com-
pared to Juan Carlos Point (−6.4 °C; Table 1b). The inter-
action between treatment and site was not significant for
any of the abiotic measures. The highest warming effect we
measured was during the summer season, with an increase
of 0.61 °C inside the OTCs compared to the control plots
[12]. The temperature changes we recorded between treat-
ments were similar to values reported in warming experi-
ments for the Antarctic area, where Bokhorst et al. [5]
measured an increase of 0.7 °C in annual mean temperature
inside OTCs in comparison with the control plots.
The use of OTCs not only affected the air temperature,

but also produced additional changes in microclimate. In

general, mean daily relative humidity was significantly
lower in the OTCs (80.7 %) compared to the controls
(91.7 %; Table 1a). This difference occurred across treat-
ments at both research sites (data not shown), despite the
fact that the La Cruz Plateau and Juan Carlos Point sites
differed overall in mean daily relative humidity (83.9 %
and 88.5 %, respectively, Table 1b).

Moss responses to Open Top Chambers
Our results provide the first evidence that experimental
warming treatments generally have a positive effect on
sexual reproduction in several Antarctic mosses. We
found that the number of sporophytes in plots was signifi-
cantly affected by treatment, species, and the two-way
interaction between treatment and species (Table 2a).
The three moss species (B. patens, H. antarctica, and P.
alpinum, which produced sporophytes during our experi-
ment) differed in their level of sporophyte production
(Table 3), and responded differentially to the OTC treat-
ments, with two species (P. alpinum and B. patens) show-
ing greater sporophyte production in the OTCs compared
with the controls, and one species (H. antarctica) showing
no response to the treatment (Table 3). Sporophyte pro-
duction with our experimental warming treatment was
90.6 % greater for B. patens than in controls and for P.
alpinum was present in warmed plots while absent in con-
trols in both sites. Site as well as the interaction between
site and species had significant effects on sporophyte pro-
duction (Tables 2a and 3). There was greater sporophyte
production at the La Cruz Plateau site (75 % of plots had

Table 1 Microclimatic data of the study sites

A

Control OTC

Mean Daily Air Temperature (°C) −0.40a −0.41a

Mean Minimum Daily Air
Temperature (°C)

−7.0a −8.9a

Mean Maximum Daily Air
Temperature (°C)

7.3b 10.5a

Mean Daily Relative Humidity (%) 91.7b 80.7a

B

La Cruz Plateau Juan Carlos Point

Mean Daily Air Temperature (°C) −0.86a 0.01a

Mean Minimum Daily Air
Temperature (°C)

−9.42a −6.48b

Mean Maximum Daily Air
Temperature (°C)

8.40a 9.50a

Mean Daily Relative Humidity (%) 83.9a 88.5b

Air temperature and relative humidity measurements during the 2008–2010
study period at two sites on the Fildes Peninsula, King George Island. Mean
daily air tempature, mean minimum daily air temperature, mean maxiumum
daily air temperature, and mean daily relative humidity based on data
collected from HOBO Pro v2 loggers (Onset, Bourne, Mass) mounted at 20 cm
above the soil surface. A. Values inside the control and OTC plots. B. Values in
plots at both study sites. Different letters indicate statistical differences (p <
0.05) for treatments and sites

Table 2 Sporophyte analyses

Source of variation

A. Sporophyte production Chi-square df p

Species 36.19 2 <0.0001

Treatment 4.74 1 0.0295

Site 3.19 1 0.0740

Species x Treatment 6.81 2 0.0332

Species x Site 8.55 2 0.0139

Treatment x Site 1.65 1 0.1994

B. Sporophyte size Whole Sporophyte Capsule Seta

Species F = 8.29 F = 23.35 F = 25.62

p = 0.0081 p = 0.001 p = 0.0001

Treatment F = 25.63 F = 7.03 F = 26.20

p = 0.0001 p = 0.014 p = 0.0001

Species x Treatment ns ns ns

A. The effect of species (the three moss species which produced sporophytes
during the experiment), treatment (OTC and control), site (Juan Carlos Point
and La Cruz Plateau), and interactions between these factors on sporophyte
production analyzed using a generalized linear model with a Poisson
distribution. B. The effect of species (H. antarctica and B. patens), treatment
(OTC and control), and interactions between these factors on sporophyte size
analyzed using ANOVA. Significant p-values are shown in bold
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sporophytes) compared with the Juan Carlos Point site
(only 15 % of plots had sporophytes), and this difference
was significantly species-specific (Tables 2a and 3).. The
fourth moss species for which we measured sporophyte
production, S. georgicouncinata, did not produce sporo-
phytes in any OTC or control plots (Table 3). Additionally,
sporophyte size was significantly increased in both B.
patens and H. antarctica growing inside the OTCs
compared with those in the control plots (Table 2b, Fig. 2)

Discussion
Sexual reproduction and the production of sporophytes
in mosses may be reduced by sperm-limitation [43, 46],
resource limitation [24, 56, 58, 59], and abiotic stress
([8]; Eppley et al. [25]). Our experimental warming
treatments increased sporophyte production in two moss
species, P. alpinum and B. patens, compared with controls
(Tables 2a and 3), and this warming potentially altered
many steps in the process of sporophyte formation, from
sperm and egg production, to gamete dispersal, to
fertilization success, to sporophyte maturation. Warming
has the potential to decrease abiotic stress, freeing up
resources used for stress defense (e.g., [38]); alter resource
availability by shifting the carbon balance and/or nutrient
cycling (e.g., [47]); and ultimately reduce sperm-limitation
by increasing the number of males, antheridial initiations,
and successful dispersal and fertilization events (all of
which are often low in Antarctic mosses; [36]).
We hypothesize that an important mechanism in the

greater number of sporophytes in our warming treatments
compared with controls for these two species is that the
increase in temperature caused by OTCs alters the carbon
balance for the plants, potentially increasing the rate of
photosynthesis to the point where plants are producing
sufficient carbohydrates both for respiration (which may
also alter with warming see [2]) and additional sporophyte
production. Increased primary productivity has been

observed under elevated temperatures in three Ant-
arctic moss species ([52]; but see [31]), indicating that
temperature is limiting photosynthesis in some but not all
Antarctic moss species. Thus, there is the potential for
additional carbohydrate gain with increased temperature in
some species. Sexual reproduction, including sporophyte
formation is thought to be quite costly in bryophytes,
taking at least 15 % of gametophytic biomass [3, 34], and
thus the ability of these species to have additional resources
for sporophyte formation could be the tipping point for
species to invest in sporophyte production.
In fact, we observed that sporophyte size was increased

significantly in both B. patens and H. antarctica growing
inside the OTCs compared with those outside (Table 2a,
Fig. 2). The results suggest the potential that the plants in
these species had additional carbohydrates available to
invest in larger sporophytes. Larger sporophytes are corre-
lated with more spores and higher fitness [10], and sporo-
phytes with longer setae are able to vibrate and thus
release pollen for longer dispersal at lower wind speeds
than those with shorter setae [30]. Consequently, the
investment in larger sporophytes that we measured in the
two Antarctic mosses can potentially generate benefits in

Table 3 Sporophyte data

Site Species Control OTC

Juan Carlos Point B. patens 0.0a 0.17 ± 0.1a

H. antarctica 8 ± 4.6a 15.5 ± 15a

P. alpinum 0.0a 0.0a

S. georgicouncinata 0.0a 0.0a

La Cruz Plateau B. patens 0.7 ± 0.4a 7.3 ± 3.4b

H. antarctica 9.3 ± 5.0ab 5.5 ± 3.4ab

P. alpinum 0.0a 1 ± 0.5ab

S. georgicouncinata 0.0a 0.0a

Species-specific sporophyte production under passive warming (with OTC) at
both study sites. Mean values ± SE for number of sporophytes counted in
whole plots (Control versus OTC). Similar letters indicate non-statistical
differences (p < 0.05)
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Fig. 2 Reproductive structures of Antarctic mosses. Sporophyte size
measures in the mosses a Bartramia patens and b Hennediella antarctica
growing during 2010 under experimental warming and ambient
conditions. Values are means + SE (n= 10 for H. antarctica and 5 for B.
patens per treatment)
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the colonization of new ice-free areas under a regional
change scenario.
We observed that sporophyte production is sparse and

patchy in the Antarctic fellfield. Mosses at the La Cruz
Plateau site produced more sporophytes (75 % of plots had
sporophytes) compared with those at the Juan Carlos Point
site (only 15 % of plots had sporophytes), suggesting that
microclimatic characteristics affect the reproductive output
in these mosses. At the species level, P. alpinum produced
sporophytes only at la Cruz Plateau under warming and B.
patens increased the production of sporophytes consistently
with warming at both sites (from 0 to 0.17 ± 0.1 in Juan
Carlos Point and 0.7 ± 0.4 to 7.3 ± 3.4 at La Cruz Plateau).
On the other hand, H. antarctica produced the majority
of sporophytes at Juan Carlos Point and decreased produc-
tion at La Cruz Plateau (9.3 ± 5 in controls compared to
5.5 ± 3.4 in OTCs), which could be due to the decrease in
mean daily relative humidity as a consequence of warming
induced by the OTCs (Table 1). The most important micro-
climatic difference between the two sites is likely the lower
temperature at La Cruz Plateau (Table 1) and that there is
permafrost at around 90 cm at this site, which should influ-
ence water availability at the site, improving the perfor-
mance of H. antarctica in the control plots compared to
the OTCs. Also, the increase in sporophytes with OTCs did
not occur consistently across sites for the three species with
high sporophyte production (Tables 2a and 3). For example,
in B. patens the increase in sporophyte production in OTCs
compared to controls was greater at La Cruz Plateau than
Juan Carlos Point, where control plots had no sporophytes
at all. In H. antarctica, sporophytes did not increase in
OTCs at either site, and actually decreased slightly at La
Cruz Plateau (Table 3). Smith & Convey [53] found that in
southern maritime Antarctica (68–72°S) almost half of
the bryophyte species could produce sporophytes at sites
where a favorable microclimate generates available niches,
suggesting that micro-site differences matter in Antarctica
for bryophyte reproduction and that climate stress may
limit sexual reproduction in Antarctic bryophytes. Our
experiment supports this result as a slight microclimate
improvement (increase in temperature) induced a greater
sexual response in mosses in the colder La Cruz plateau
compared with the warmer Juan Carlos Point site.
While our OTCs are designed to increase temperature

and were successful in this regard, it is also important to
acknowledge that the OTCs change not only temperature,
but other variables including relative humidity, which is
likely to be equally important to sporophyte production
[10]. Humidity decreased in the OTCs, and while generally
moss sexual reproduction responds poorly to decreased
relative humidity and water availability, there are rare
instances where this is not the case [55]. Also, the increases
in sporophytes we recorded may have been caused by
an increase in many stages during sexual reproduction

from gametangia production, gamete production, and
fertilization success to sporophyte formation. While we
have focused on sporophyte production in this first ana-
lysis, future work needs to assess all stages in the moss
reproductive cycle to determine whether earlier steps
might be limiting sexual reproduction in these Antarctic
mosses.

Conclusion
This is the first study of sexual reproduction in mosses
under experimental warming conditions in Antarctica. Our
data show that field experimental warming enhances sexual
reproduction in some, but not all, moss species. These
results suggest that warming may improve investment in
sexual reproduction in mosses, and support previous pre-
dictions that the effects of climate change on Antarctic
terrestrial biota have the potential to be positive. Block et
al. [4] predicted that in the short term the majority of the
terrestrial Antarctic fellfield biota would be able to absorb
the effects of a changing climate because of the high levels
of physiological tolerance and life-cycle flexibility common
to these species, and Convey [15] suggests that warming
will enhance Antarctic terrestrial biota, although human
disturbance and invasives are likely to have an increasing
negative impact. Our results suggests that different moss
species will respond differently to climate change in
Antarctica, and understanding these species-specific
responses in bryophytes will be critical to understanding
plant responses to climate change in Antarctica. Future
work in Antarctic bryophytes should focus on understan-
ding how temperature affects gametangia and sporophyte
production across light and humidity levels in each species.
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