Design of a Dynamic Activity Travel Modeling System for Metro

John Gliebe

Portland State University

Citation Details

https://pdxscholar.library.pdx.edu/usp_fac/141
Design of a Dynamic Activity Travel Modeling System for Metro

John Gliebe
Portland State University
Overview

- Background
- Motivation
- Other tour/activity models
- Design concept
- Development plan
Background

- **Metro**
 - Advanced trip-based modeling
 - Bowman-Bradley Day Pattern Model
 - TRANSIMS

- **John Gliebe**
 - Work with Metro on TRANSIMS
 - Dissertation on joint activity modeling
 - Experience with other activity model projects
Motivation

- Trip-based models no longer cut it for some of the more complex questions.
 - Time of day sensitivity
 - Dynamic congestion effects
 - Variable pricing and tolls
 - Reliability of both highways and transit

- Existing activity/tour-based models be missing the enhanced temporal element
 - Potential to misrepresent space-time constraints
 - Dynamic path information does not inform travel choices
Other Activity & Tour-Based Models

- Day Pattern Approaches
 - SFCTA, SACSIM, DRCOG
- Household Role Hierarchical
 - MORPC, NYBPM
- Continuous Time Emphasis
 - FAMOS, CEMDAP
- TRANSIMS
Design Principles

Scale
- Urban/metropolitan scale
- Three levels of temporal resolution (initially)
 - Long-term, Daily, Dynamic (minute by minute)

Theoretical
- Random utility models used consistently throughout
- Use of time-dependent travel times and costs
- Utility is time-dependent
- Household members are interdependent

Implementation
- Modular implementation
- Design, build and test approach to development
- Self-calibrating
- Microsimulation of outcomes
Application Programming

- Design: Controller–Model–Event Manager
 - C++ for core numerical processing
 - Python for user interface and scripting
 - VISUM for network assignment

Performance Goals

- Run entire model system with feedback in no more time than current trip-based model
- Multiple DASH runs/averaging
 - May require parallel processing
Development Plan

Core Track
- DASH
 - Tour primary stop purpose
 - Tour mode purpose
 - Next purpose
 - Next location
 - Next mode
- Initial conditions model
 - Role and day pattern
 - Starting time

Supporting Track
- Population synthesis
- Long-term choices
 - Workplace location
 - School/college location
 - Auto ownership
- Assignment Integration
 - Static (near-term)
 - Dynamic (long-term)
- Feedback
Timeline

- 2008 – Estimation, calibration and testing using 1994 survey and static skims from trip-based models
 - 1995 EMME/2 network
 - 1995 VISUM network
 - 2005 VISUM network validation
- 2009 – Testing and calibration using dynamic skims (source TBD)
- 2010-2011 Update with new survey results