Portland State University

PDXScholar

Systems Science Faculty Publications and Presentations

Systems Science

9-2016

Exploratory Modeling of TBI Data

Martin Zwick Portland State University, zwick@pdx.edu

Stephanie Kolakowsky-Hayner *Mt. Sinai*

Sadie Carney Portland State University

Maya Balamane Brain Trauma Foundation

Tracie Nettleton Oregon Health & Science University

See next page for additional authors

Follow this and additional works at: https://pdxscholar.library.pdx.edu/sysc_fac

Part of the Logic and Foundations Commons Let us know how access to this document benefits you.

Citation Details

Zwick, Martin; Kolakowsky-Hayner, Stephanie; Carney, Sadie; Balamane, Maya; Nettleton, Tracie; and Wright, D., "Exploratory Modeling of TBI Data" (2016). *Systems Science Faculty Publications and Presentations*. 140.

https://pdxscholar.library.pdx.edu/sysc_fac/140

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Systems Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Authors

Martin Zwick, Stephanie Kolakowsky-Hayner, Sadie Carney, Maya Balamane, Tracie Nettleton, and D. Wright

Exploratory Data Modeling of Traumatic Brain Injury

Martin Zwick

Systems Science Graduate Program Portland State University

zwick@pdx.edu

http://www.pdx.edu/sysc/research_dmm.html

Bethesda, June 9, 2015

- RaDaR (raw data analysis)-Occam subproject
 - Martin Zwick, Tracie Nettleton
 - Hugo duCoudray Forrest Alexander, Naghmeh Daneshi, Peter Olson
- Brain Trauma Evidence-Based Consortium (BTEC)
- Dr. Nancy Carney, OHSU, head
- Funded by DoD via Brain Trauma Foundation, Stanford
- 1. Objectives, exploratory modeling
- 2. Preece data; approach
- 3. Some results on Preece dataset

1. Objectives, exploratory modeling

- Exploratory modeling (data mining) using Reconstructability Analysis (RA) on multiple data sets to contribute to:
 - a clinically useful TBI classification system
 - other BTEC subprojects, e.g., dynamic modeling
- now Preece data on auto accidents
- other data sets to follow

What RA is

- Reconstructability Analysis (RA) = Information theory + Graph theory
- RA: a probabilistic graphical modeling technique
 - Graph = model: node = variable; link = relationship
 - Hypergraphs = associations between >2 variables
- RA can detect many-variable or non-linear interactions not hypothesized in advance
- RA model = a (conditional) probability distribution simpler (fewer df) than data, capturing much of the information in the data

Why RA & Occam software

- Explicitly designed for exploratory modeling
 - Analyzes both nominal <u>&</u> continuous (binned) variables
 - Easily interpretable method & output
 - Standard text input; Occam emails results to user
 - Occam web-accessible; available for research use
- Related statistical & machine-learning methods (log-linear, logistic regression, Bayesian networks, classification trees, support vector machines, neural nets) not well designed for exploration, or have limited model types or difficulty with nominal variables or stochasticity

2. Preece data; approach

- 52 variables
- Variable types
 - P = patient characteristics (17 variables)
 - Y = symptoms (25): subjective reports
 - G = signs (4): objective indicators
 - -C = cognitive deficits (5)
 - N = neurologic deficits (1)
- N = 337; reduces to 175 or less if exclude missing data

Variables (1/3)

• Patient (P) variables (17)

pinjgrp,5,	pij	Injury Group patient or control							
page,7,	pag	age							
psex,2,	psx	sex							
pyred,6,	руе	years of education							
pedlevel,8,	ped	highest level of education							
puhrsleep,5,	pul	sual # of hrs of sleep: less than or greater than normal (8 hr)							
precentill,3,	pri	ecent illness 0 no 1 yes							
pmedication,3,	pmd	urrent medications 0 no 1 yes							
ppainkller,3,	ppk	currently on painkillers 0 no 1 yes							
ppreheadinj,3,	pph	have they had previous head injury 0 no 1 yes							
pprecon,3,	ррс	previous concussion 0 no 1 yes							
pnumprecon,8,	pnp	how many previous concussions							
pdbqerror,13,	pqe	Driver Behavior Questionaire self reported driving errors/violation							
pdbqviol,14,	pqv	Driver Behavior Questionaire violations							
plitigat,4,	plg	was the case litigated							
prespacc,6,	рас	who was responsible for the accident							
pfsiq,5,	piq	full scale IQ calculated from national adult reading test							

Variables (2/3)

• Symptom (Y) variables (25)

ypainscale,5,	ypn	tandard painscale used by hospitals									
yemoscale,5,	yem	acle defining emotional state(0 no problems 1 few 2 moderate 3 many problems)									
ydassd,5,	ydd	epression Anxiety Stress Scales: depression									
ydassa,6,	yda	Depression Anxiety Stress Scales: anxiety									
ydasss,4,	yds	Depression Anxiety Stress Scales: stress									
yheadache,6,	yhs	Rivermead headache									
ydizz,5,	ydz	Rivermead dizzy									
ynausea, 5,	yna	Rivermead nausea									
ynoisesens,6,	yns	Rivermead noise sensitivity									
yslpdis,6,	ysd	Rivermead sleep disorder									
yfatigue,6,	yfa	Rivermead fatigue									
yirritable,6,	yir	Rivermead irritable									
ydepressed,5,	ydp	Rivermead depressed									
yanxious,6,	yax	Rivermead anxious									
yfrustrated,5,	yfr	Rivermead frustrated									
yforgtful,6,	yfg	Rivermead forgetful									
ypoorconc,6,	ycn	Rivermead poor concentration									
ylongthink,6,	ytk	Rivermead long time to think									
yblurredvis,6,	ybr	Rivermead blurred vision									
ylightsens,5,	yls	Rivermead light sensitivity									
ydoublevis,6,	ydv	Rivermead double vision									
yrestless,6,	yrs	Rivermead restless									
ydazed,5,	yaz	Rivermead dazed									
yrivmead,5,	yrm	summation of Rivermead post concussion symptom questionaire									
ycrrectedvis,3,	ycv	corrected vision									

Variables (3/3)

• Sign (G) & Deficit (C, N) variables (4, 5, 1)

ghrssleep,5,	ghl	umber of hours of sleep, divided in less than normal normal=8hr and greater than normal									
ggcs,4,	ggc	lasgow coma scale a measure of level of unconsciousness; lower = deeper unconsciousness									
gextcause,8,	gxc	external cause of the injury									
gpta,3,	gpt	post traumatic amnesia									
chazpt,10,	chp	azard perception test measures how quickly potential driving hazards are predicted									
cnormsrt,6,	cnr	Spatial Reaction Time normalized for age and sex									
cspatialreac,6,	csr	Spatial Reaction Time tests how quickly patient responds to a visual stimuli	patial Reaction Time tests how quickly patient responds to a visual stimuli								
cdgtcorrect,7,	cdg	Digit Symbol Substitution neuropsychological test									
cstarcan,4,	CSC	Star Cancelation Test a test of spatial neglect									
nlogmar,4,	nlr	LogMAR Logarithm of the Minimum Angle of Resolution: a visual acuity test									

Approach (1/3)

2 types of model searches

- Neutral: find relationships among all variables ('clustering')
- Directed: predict C, N variables from P, Y, G ('classification')
 - reference = independence model
 - predictive success (information captured) measured by
 - %ΔH = %reduction of uncertainty: (information-theoretic measure) Uncertainty is *like* variance Rule of thumb: %ΔH = 8% *can be* a sizeable effect
 - %C = %COrrect (general measure)
 - want low model complexity = Δdf

Approach (2/3)

3 degrees of search refinement (IVs: A,B,C...; DV: Z)

- Coarse search: variable-based models w/o loops, e.g., A B z, ...
 Fast, can handle many variables
- *Fine search*: variable-based models w' loops, e.g., A B z : B C z Slow, can handle 100s of variables
- Ultra-fine search: state-based models, e.g., $A_2 B_1 z : B_0 z$ Very slow, less than 10 variables

Three degrees of search refinement

Approach (3/3)

3 model selection criteria (information-complexity tradeoff)

- Conservative: Bayesian Information Criterion (BIC)
- Aggressive: Akaike Information Criterion (AIC)
 Incremental p-value (IncrP)
- AIC & BIC: linear combinations of error (opposite of information) & complexity; BIC penalizes more for complexity: weights it by ln(N)
- IncrP uses Chi-square p-values to pick models whose difference from --& every incremental step from -- independence is statistically significant

Some issues: binning, missing data, small N, validation

3. Results on Preece dataset

- Neutral coarse searches
 - find associations among all P, Y, G, C, N variables
- Directed coarse, fine, ultra-fine searches

 predict C, N from P, Y, G & from other C, N variables

Neutral coarse search (graph of associations)

• 15 p ≤ 0.05 associations in BIC model (2 involve C)

Neutral coarse search (15 associations)

• Predictive success (% Δ H, Δ %C relative to independence) (p ≤ 0.05)

v1	v2	%∆H(2 1)	%∆H(1 2)	p-value	Ν	∆%c(2 1)	∆%c(1 2)	v1	v2
Ggc	Pij	34.5	86.5	0.000	196	9.7	7.7	glasgow coma scale	Injury patient/control
Gxc	Pij	32.9	12.6	0.000	280	20.4	14.3	external cause	Injury patient/control
Ped	Руе	41.3	34.8	0.000	248	32.3	27.4	highest educ level	years of education
Yem	Ypn	6.4	6.1	0.000	218	5.0	2.3	emotional problems	painscale
Yds	Yem	6.0	27.8	0.000	210	3.8	0.0	stress	emotional problems
Ydd	Yds	43.6	26.0	0.000	210	1.4	1.9	depression	stress
Yda	Yds	54.7	32.6	0.000	210	0.0	2.9	anxiety	stress
Pmd	Ppk	50.7	57.6	0.000	230	28.3	15.7	current medications	painkillers
Gpc	Pnp	57.0	100.0	0.000	52	11.5	30.8	previous concussion	# previous concussion
Рас	Plg	26.5	12.3	0.000	201	0.0	12.4	caused accident	case litigated
Cnr	Csr	48.6	48.3	0.000	210	34.3	31.0	reaction time norm	reaction time
Psx	Ycv	6.5	8.8	0.000	197	2.0	0.0	sex	corrected vision
Gpc	Ydz	13.7	21.9	0.003	52	0	9.6	previous concussion	dizzy
Csr	Pph	5.3	2.3	0.010	187	5.3	4.8	reaction time	previous head injury
Gpc	Yfr	9.1	17.3	0.011	52	1.9	9.6	previous concussion	frustrated

Directed searches: DVs = deficit variables

- Priorities (Dr. Carney): focus here on predicting Cdg, Cnr
- #bins excludes missing values ; will often aggregate states into fewer bins

	#bins	5	Ν										
cdgtcorrect	6	Cdg	255	Digit Sy	it Symbol Substitution neuropsychological test								
				Most imp	ost important/reliable test								
cnormsrt	6	Cnr	210	Spatial	Reactio	n Time n	ormalize	ed for age	e and se	x			
cspatialreac	6	csr	214	Spatial Re	eaction Ti	me test: h	ow quickly	v patient re	esponds to	o visual sti	muli		
nlogmar	3	Nlr	209	LogMAR	Log of M	inimum A	ngle of Re	solution (v	risual acui ^s	ty)			
				Less impo	ortant/re	liable							
cstarcan	3	CSC	50	Star Canc	elation Te	est a test o	of spatial r	neglect					
chazpt	9	chp	282	Hazard pe	erception	test: how	quickly po	tential driv	ving hazar	ds are pre	dicted		

Cdg directed coarse, fine, ultra-fine searches

Predict Cdg: digit symbol substitution test (rebin |Cdg| = 2: ~ 50-50)

MODEL (IV component omitted)	$\Delta {\sf df}$	р	%∆H	%с				
COARSE, single predictors					∆BIC	N=240		
Pij Cdg	3	0.00	11.9	68.3	47.6	patient i	njury type	9
Ped cdg	7	0.00	11.7	65.0	5.9	education	n level	
Ggc Cdg	3	0.00	5.6	65.0	18.3	Glasgow	coma scal	e
Cnr cdg	5	0.00	3.5	60.8	6.1	spatial re	eaction, n	ormalized
Pye cdg	1	0.00	3.0	68.3	27.9	years education		
Csr cdg	5	0.00	2.5	63.3	0.4	spatial reaction		
Cdg (independence=reference)	0	1.00	0.0	50.8	0			
FINE					Criterion	N=240	Cnr =6, i	ncl missing
Pij cdg: Pye cdg	4	0.00	25.5	72.9	BIC			
Pij cdg : Pye cdg : Cnr cdg	9	0.00	32.8	76.7	AIC			
Pij cdg: Psx cdg: Pye cdg: Cnr cdg	10	0.00	32.9	76.3	IncrP	sex		
ULTRA-FINE (state-based model)						N=175	Cnr =2, r	no missing
Pij ₂ Cnr ₁ cdg : Pye ₀ cdg	2	0.00	13.5	68.6	BIC			
Cdg (independence=reference)	0	1.00	0.0	50.9				

Cdg ultra-fine (state-based) model 3/3

Model: $Pij_2 Cnr_1 cdg : Pye_0 cdg$ Odds (high is good) = $Cdg_1/Cdg_0(model) = p(high digit score)/p(low score)$ $Pij_1 control, Pij_2 mild head injury; Pye_0 low years educ.; Cnr_0 = fast reaction$

ı.

	IV sta	tes		da	ita		model		
Pij	Руе	Cnr	N	Cdg_0	Cdg_1	Cdg_0	Cdg_1	Odds	р
1	0	0	18	0.50	0.50	0.59	0.41	0.7	.41
1	0	1	22	0.68	0.32	0.59	0.41	0.7	.36
1	1	0	38	0.21	0.79	0.27	0.73	2.7	.01
1	1	1	20	0.35	0.65	0.27	0.73	2.7	.05
2	0	0	15	0.53	0.47	0.59	0.41	0.7	.45
2	0	1	24	0.88	0.13	0.86	0.14	0.2	.00
2	1	0	18	0.33	0.67	0.27	0.73	2.7	. <mark>0</mark> 6
2	1	1	20	0.60	0.40	0.62	0.38	0.6	.26
			175	0.49	0.51	0.49	0.51	1.0	19

conditional probabilities of DV

Cdg decision tree from conditional probabilities

Digit Symbol score odds (prob. high performance/ prob. low performance) & p-values relative to marginal prob. (odds = 1):

Cdg decision tree, verbally

- For all patients, education predicts performance on digit symbol test: more education predicts better performance.
 - Education is a confounding variable for digit symbol test in discriminating concussion, & must be controlled for
- For controls (orthopedic), reaction time does not predict digit symbol score.
- For TBI patients, fast reaction time predicts better digit symbol performance beyond influence of education.

Cnr directed coarse, fine, ultra-fine **searches**

Predict Cnr: reaction time, normalized by age, sex (rebin |Cnr| = 2: ~ 50-50)

MODEL	Δdf	р	%∆H	%с		N=175		
COARSE, single predictors								
Cdg Gpt Cnr	3	0.00	10.6	64.6	BIC, AIC	Cdg = dig	git symbol	test
Pph Cdg Gpt Cnr	7	0.00	13.1	66.9	IncrP	Gpt = am	nnesia	
Cnr (independence=reference)	0	1.00	0.0	50.9		Pph = pro	evious hea	ad injury
FINE								
Cdg Cnr : Gpt Cnr	2	0.00	8.8	64.6	BIC			
Pri cnr : Pph cnr : Cdg Gpt cnr	6	0.00	14.7	70.3	AIC	Pri = recent illness		
Pye cnr : Pph cnr : Cdg Gpt cnr	5	0.00	12.9	67.4	IncrP	<i>Pye = years education</i>		
ULTRA-FINE (state-based model)								
Pph ₁ Cdg ₁ Cnr : Cdg ₀ Gpt ₁ Cnr	2	0.00	12.4	64.8	BIC			
Cnr (independence=reference)	0	1.00	0.0	50.9				
								22

Cnr ultra-fine (state-based) model

conditional probabilities of DV

Model: $Pph_1 Cdg_1 Cnr : Cdg_0 Gpt_1 Cnr$ Odds (high is good) = $Cnr_0/Cnr_1(model) = p(fast = normal reaction)/p(slow)$ Pph_1 previous head injury, Cdg_1 high digit score; Gpt_1 amnesia

	IV state	S		data model					
Pph	Cdg	Gpt	Ν	Cnr ₀	Cnr_1	Cnr ₀	Cnr ₁	Odds	р
0	0	0	20	0.40	0.60	0.52	0.48	1.1	.92
0	0	1	19	0.16	0.84	0.16	0.84	0.2	.00
1	0	0	30	0.57	0.43	0.52	0.48	1.1	.90
1	0	1	18	0.17	0.83	0.16	0.84	0.2	.00
0	1	0	24	0.50	0.50	0.52	0.48	1.1	.91
0	1	1	13	0.61	0.39	0.52	0.48	1.1	.93
1	1	0	38	0.76	0.23	0.73	0.27	2.7	.01
1	1	1	14	0.64	0.36	0.73	0.27	2.7	. <mark>0</mark> 9
			176	0.51	0.49	0.51	0.49	1.0	23

Cnr decision tree from conditional probabilities

Reaction time score odds (probability normal/ probability slow) & p-values relative to marginal prob. (odds = 1)

Cnr decision tree, verbally

- For low performance on digit symbol test, amnesia predicts slow reaction time.
- For normal performance on digit symbol test, previous head injury *increases* the probability of fast (normal) reaction time. THIS IS ANOMALOUS.
 - We need to see if it would be replicated in another data set.
 - One possible explanation: prior exposure to Reaction Time test introduces a practice effect.
 - If Reaction Time is so vulnerable to a practice effect that it no longer discriminates concussed from non-concussed, then it's probably not an appropriate measure for this purpose.

Future (1/2)

- Preece data a test bed for future analyses.
- Results are preliminary & tentative, *illustrative* of *type* of results from exploratory analysis.
- Need to confirm results with other data sets or future studies.

Future (2/2)

- Hoping for more data sets (accident, military, sports), higher N, fewer missing data, additional types of variables (imaging, genomic, proteomic).
- Work to be fully collaborative with investigators sharing data.

• THANK YOU

RA (DMM) web page

http://pdx.edu/sysc/research-discrete-multivariate-modeling zwick@pdx.edu

