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• RaDaR (raw data analysis)-Occam subproject 
– Martin Zwick, Tracie Nettleton 
– Hugo duCoudray Forrest Alexander, Naghmeh Daneshi, Peter Olson 

• Brain Trauma Evidence-Based Consortium (BTEC) 
• Dr. Nancy Carney, OHSU, head 
• Funded by DoD via Brain Trauma Foundation, Stanford 

 
1. Objectives, exploratory modeling 

 
2. Preece data; approach 

 
3. Some results on Preece dataset 
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1. Objectives, exploratory modeling  
• Exploratory modeling (data mining) 
    using Reconstructability Analysis (RA) 
    on multiple data sets to contribute to: 

 

– a clinically useful TBI classification system 
 

– other BTEC subprojects, e.g., dynamic modeling 
 

• now Preece data on auto accidents 
• other data sets to follow 
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• Reconstructability Analysis (RA) = Information 
theory + Graph theory 
 

• RA: a probabilistic graphical modeling technique 
– Graph = model: node = variable; link = relationship 

– Hypergraphs = associations between >2 variables 
 

• RA can detect many-variable or non-linear 
interactions not hypothesized in advance 
 

• RA model = a (conditional) probability distribution 
simpler (fewer df) than data, capturing much of the 
information in the data 
 
 

 

What RA is  
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Why RA & Occam software  
• Explicitly designed for exploratory modeling 

– Analyzes both nominal & continuous (binned) variables 
– Easily interpretable method & output 
– Standard text input; Occam emails results to user 
– Occam web-accessible; available for research use 

 

• Related statistical & machine-learning methods  
(log-linear, logistic regression, Bayesian networks, classification trees, 
support vector machines, neural nets) not well designed for 
exploration, or have limited model types or 
difficulty with nominal variables or stochasticity 
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• 52 variables 
 

• Variable types 
– P = patient characteristics (17 variables) 

– Y = symptoms (25): subjective reports 

– G = signs (4): objective indicators 

– C = cognitive deficits (5) 

– N = neurologic deficits (1) 
 

• N = 337; reduces to 175 or less if exclude missing data 

2. Preece data; approach  
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Variables (1/3)  

• Patient (P) variables (17) 

pinjgrp,5, pij Injury Group patient or control
page,7, pag age
psex,2, psx sex
pyred,6, pye years of education
pedlevel,8, ped highest level of education
puhrsleep,5, pul usual # of hrs of sleep: less than or greater than normal (8 hr)
precentill,3, pri recent illness 0 no 1 yes
pmedication,3, pmd current medications 0 no 1 yes
ppainkller,3, ppk currently on painkillers 0 no 1 yes
ppreheadinj,3, pph have they had previous head injury 0 no 1 yes
pprecon,3, ppc previous concussion 0 no 1 yes
pnumprecon,8, pnp how many previous concussions
pdbqerror,13, pqe Driver Behavior Questionaire self reported driving errors/violation
pdbqviol,14, pqv Driver Behavior Questionaire violations
plitigat,4, plg was the case litigated
prespacc,6, pac who was responsible for the accident
pfsiq,5, piq full scale IQ calculated from national adult reading test
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Variables (2/3)  

• Symptom (Y) variables (25) 

ypainscale,5, ypn standard painscale used by hospitals
yemoscale,5, yem sacle defining emotional state(0 no problems 1 few 2 moderate 3 many problems)
ydassd,5, ydd Depression Anxiety Stress Scales: depression
ydassa,6, yda Depression Anxiety Stress Scales: anxiety
ydasss,4, yds Depression Anxiety Stress Scales: stress
yheadache,6, yhs Rivermead    headache
ydizz,5, ydz Rivermead    dizzy
ynausea,5, yna Rivermead    nausea
ynoisesens,6, yns Rivermead    noise sensitivity
yslpdis,6, ysd Rivermead    sleep disorder
yfatigue,6, yfa Rivermead    fatigue
yirritable,6, yir Rivermead    irritable
ydepressed,5, ydp Rivermead    depressed
yanxious,6, yax Rivermead    anxious
yfrustrated,5, yfr Rivermead    frustrated
yforgtful,6, yfg Rivermead    forgetful
ypoorconc,6, ycn Rivermead    poor concentration
ylongthink,6, ytk Rivermead    long time to think
yblurredvis,6, ybr Rivermead    blurred vision
ylightsens,5, yls Rivermead    light sensitivity
ydoublevis,6, ydv Rivermead    double vision
yrestless,6, yrs Rivermead    restless
ydazed,5, yaz Rivermead    dazed
yrivmead,5, yrm summation of Rivermead post concussion symptom questionaire
ycrrectedvis,3, ycv corrected vision
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Variables (3/3)  

• Sign (G) & Deficit (C, N) variables (4, 5, 1) 
 

ghrssleep,5, ghl number of hours of sleep, divided in less than normal normal=8hr and greater than normal
ggcs,4, ggc Glasgow coma scale a measure of level of unconsciousness; lower = deeper unconsciousness
gextcause,8, gxc external cause of the injury
gpta,3, gpt post traumatic amnesia

chazpt,10, chp hazard perception test measures how quickly potential driving hazards are predicted
cnormsrt,6, cnr Spatial Reaction Time normalized for age and sex
cspatialreac,6, csr Spatial Reaction Time tests how quickly patient responds to a visual stimuli
cdgtcorrect,7, cdg Digit Symbol Substitution neuropsychological test
cstarcan,4, csc Star Cancelation Test a test of spatial neglect

nlogmar,4, nlr LogMAR   Logarithm of the Minimum Angle of Resolution: a visual acuity test
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2 types of model searches 
 

• Neutral: find relationships among all variables (‘clustering’) 
 

• Directed: predict C, N variables from P, Y, G (‘classification’) 
– reference = independence model 

– predictive success (information captured) measured by 
• %∆H = %reduction of uncertainty: (information-theoretic measure) 

                        Uncertainty is like variance 
                        Rule of thumb: %∆H = 8% can be a sizeable effect  

• %c = %correct (general measure) 

– want low model complexity = ∆df 
 

 

Approach (1/3)   
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Approach (2/3)   

3 degrees of search refinement (IVs: A,B,C…; DV: Z ) 
 

• Coarse search: variable-based models w/o loops, e.g., A B Z , … 

                                        Fast, can handle many variables 
 

• Fine search:  variable-based models w’ loops,   e.g., A B Z : B C Z 

                                    Slow, can handle 100s of variables 
 

• Ultra-fine search: state-based models, e.g., A2 B1 Z : B0 Z 

                                            Very slow, less than 10 variables 
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No loops 
COARSE 

With loops 
FINE 

State-based 
ULTRA-FINE 

Complexity 

(degrees of 
freedom) 

Variable-based 

Three degrees of search refinement   

data 

independence 

Models: 
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Approach (3/3)   

3 model selection criteria (information-complexity tradeoff) 

• Conservative: Bayesian Information Criterion (BIC) 

• Aggressive:   Akaike Information Criterion     (AIC) 

                      Incremental p-value               (IncrP) 
 

• AIC & BIC: linear combinations of error (opposite of information) & 
complexity; BIC penalizes more for complexity: weights it by ln(N) 

 

• IncrP uses Chi-square p-values to pick models whose difference from -- 
& every incremental step from -- independence is statistically significant 
 

Some issues: binning, missing data, small N, validation 
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3. Results on Preece dataset  

 
• Neutral coarse searches 

– find associations among all P, Y, G, C, N variables 
 

• Directed coarse, fine, ultra-fine searches  
– predict C, N from P, Y, G & from other C, N variables 
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Neutral coarse search (graph of associations)  

• 15 p ≤ 0.05 associations in BIC model (2 involve C) 
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• Predictive success (%∆H, ∆%c relative to independence) (p ≤ 0.05) 

v1 v2 %∆H(2|1) %∆H(1|2) p-value N∆%c(2|1) ∆%c(1|2) v1 v2
Ggc Pij 34.5 86.5 0.000 196 9.7 7.7 glasgow coma scale Injury patient/control
Gxc Pij 32.9 12.6 0.000 280 20.4 14.3 external cause Injury patient/control
Ped Pye 41.3 34.8 0.000 248 32.3 27.4 highest educ level years of education
Yem Ypn 6.4 6.1 0.000 218 5.0 2.3 emotional problems painscale
Yds Yem 6.0 27.8 0.000 210 3.8 0.0 stress emotional problems
Ydd Yds 43.6 26.0 0.000 210 1.4 1.9 depression stress
Yda Yds 54.7 32.6 0.000 210 0.0 2.9 anxiety stress
Pmd Ppk 50.7 57.6 0.000 230 28.3 15.7 current medications painkillers
Gpc Pnp 57.0 100.0 0.000 52 11.5 30.8 previous concussion # previous concussion
Pac Plg 26.5 12.3 0.000 201 0.0 12.4 caused accident case litigated
Cnr Csr 48.6 48.3 0.000 210 34.3 31.0 reaction time norm reaction time 
Psx Ycv 6.5 8.8 0.000 197 2.0 0.0 sex corrected vision
Gpc Ydz 13.7 21.9 0.003 52 0 9.6 previous concussion dizzy
Csr Pph 5.3 2.3 0.010 187 5.3 4.8 reaction time previous head injury
Gpc Yfr 9.1 17.3 0.011 52 1.9 9.6 previous concussion frustrated

Neutral coarse search (15 associations)  
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Directed searches: DVs = deficit variables  

• Priorities (Dr. Carney): focus here on predicting Cdg, Cnr  
• #bins excludes missing values ; will often aggregate states into fewer bins 
 

 
#bins N

cdgtcorrect 6 Cdg 255 Digit Symbol Substitution neuropsychological test
Most important/reliable test

cnormsrt 6 Cnr 210 Spatial Reaction Time normalized for age and sex
cspatialreac 6 csr 214 Spatial Reaction Time test: how quickly patient responds to visual stimuli

nlogmar 3 Nlr 209 LogMAR   Log of Minimum Angle of Resolution (visual acuity)

Less important/reliable
cstarcan 3 csc 50 Star Cancelation Test a test of spatial neglect

chazpt 9 chp 282 Hazard perception test: how quickly potential driving hazards are predicted
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Cdg directed coarse, fine, ultra-fine searches  
Predict Cdg: digit symbol substitution test (rebin |Cdg| = 2: ~ 50-50) 

MODEL (IV component omitted) ∆df p %∆H %c
COARSE, single predictors ∆BIC N=240
Pij Cdg 3 0.00 11.9 68.3 47.6 patient injury type
Ped Cdg 7 0.00 11.7 65.0 5.9 education level
Ggc Cdg 3 0.00 5.6 65.0 18.3 Glasgow coma scale
Cnr Cdg 5 0.00 3.5 60.8 6.1 spatial reaction, normalized
Pye Cdg 1 0.00 3.0 68.3 27.9 years education
Csr Cdg 5 0.00 2.5 63.3 0.4 spatial reaction
Cdg (independence=reference)                     0 1.00 0.0 50.8 0
FINE Criterion N=240 |Cnr|=6, incl missing
Pij Cdg : Pye Cdg 4 0.00 25.5 72.9 BIC
Pij Cdg : Pye Cdg : Cnr Cdg 9 0.00 32.8 76.7 AIC
Pij Cdg : Psx Cdg : Pye Cdg : Cnr Cdg 10 0.00 32.9 76.3 IncrP sex
ULTRA-FINE (state-based model) N=175 |Cnr|=2, no missing
Pij2 Cnr1 Cdg : Pye0 Cdg 2 0.00 13.5 68.6 BIC
Cdg (independence=reference)          0 1.00 0.0 50.9
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Model: Pij2 Cnr1 Cdg : Pye0 Cdg 

Odds (high is good) = Cdg1/Cdg0(model) = p(high digit score)/p(low score) 
Pij1 control, Pij2 mild head injury; Pye0 low years educ.; Cnr0 = fast reaction 
 

         conditional probabilities of DV 
               IV states data model 

Pij Pye Cnr N Cdg0 Cdg1 Cdg0 Cdg1 Odds p 
1 0 0 18 0.50 0.50 0.59 0.41 0.7 .41 
1 0 1 22 0.68 0.32 0.59 0.41 0.7 .36 
1 1 0 38 0.21 0.79 0.27 0.73 2.7 .01 
1 1 1 20 0.35 0.65 0.27 0.73 2.7 .05 
2 0 0 15 0.53 0.47 0.59 0.41 0.7 .45 
2 0 1 24 0.88 0.13 0.86 0.14 0.2 .00 
2 1 0 18 0.33 0.67 0.27 0.73 2.7 .06 
2 1 1 20 0.60 0.40 0.62 0.38 0.6 .26 

175 0.49 0.51 0.49 0.51 1.0 

Cdg ultra-fine (state-based) model 3/3  
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Digit Symbol score odds (prob. high performance/ prob. low performance) & 
p-values relative to marginal prob. (odds = 1):  

.6  .26 

2.7  .06 

low 

high 

Years education 

fast 
mild head 

control 
(orthopedic) 

Patient injury 

.7  .22 

low 

high 

Years education 

2.7 .00 

Reaction time 
.7  .45 

.2  .00 slow 

fast 

slow 
Reaction time 

Cdg decision tree from conditional probabilities 
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• For all patients, education predicts performance on digit 
symbol test: more education predicts better performance. 
– Education is a confounding variable for digit symbol test in 

discriminating concussion, & must be controlled for  
 

• For controls (orthopedic), reaction time does not predict 
digit symbol score. 
 

• For TBI patients, fast reaction time predicts better digit 
symbol performance beyond influence of education. 

 

Cdg decision tree, verbally  
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Cnr directed coarse, fine, ultra-fine searches  
Predict Cnr: reaction time, normalized by age, sex (rebin |Cnr| = 2: ~ 50-50) 

MODEL ∆df p %∆H %c N=175
COARSE, single predictors
Cdg Gpt Cnr 3 0.00 10.6 64.6 BIC, AIC  Cdg = digit symbol test
Pph Cdg Gpt Cnr 7 0.00 13.1 66.9 IncrP  Gpt = amnesia
Cnr   (independence=reference)                     0 1.00 0.0 50.9  Pph = previous head injury
FINE
Cdg Cnr : Gpt Cnr 2 0.00 8.8 64.6 BIC
Pri Cnr : Pph Cnr : Cdg Gpt Cnr 6 0.00 14.7 70.3 AIC  Pri = recent illness
Pye Cnr : Pph Cnr : Cdg Gpt Cnr 5 0.00 12.9 67.4 IncrP  Pye = years education

ULTRA-FINE (state-based model)
Pph1 Cdg1 Cnr : Cdg0 Gpt1 Cnr 2 0.00 12.4 64.8 BIC
Cnr   (independence=reference)                     0 1.00 0.0 50.9



23 

Model: Pph1 Cdg1 Cnr : Cdg0 Gpt1 Cnr 

Odds (high is good) = Cnr0/Cnr1(model) = p(fast = normal reaction)/p(slow) 
Pph1 previous head injury, Cdg1 high digit score; Gpt1 amnesia 
 

          conditional probabilities of DV 
              IV states data model 

Pph Cdg Gpt N Cnr0 Cnr1 Cnr0 Cnr1 Odds p 
0 0 0 20 0.40 0.60 0.52 0.48 1.1 .92 
0 0 1 19 0.16 0.84 0.16 0.84 0.2 .00 
1 0 0 30 0.57 0.43 0.52 0.48 1.1 .90 
1 0 1 18 0.17 0.83 0.16 0.84 0.2 .00 
0 1 0 24 0.50 0.50 0.52 0.48 1.1 .91 
0 1 1 13 0.61 0.39 0.52 0.48 1.1 .93 
1 1 0 38 0.76 0.23 0.73 0.27 2.7 .01 
1 1 1 14 0.64 0.36 0.73 0.27 2.7 .09 

176 0.51 0.49 0.51 0.49 1.0 

Cnr ultra-fine (state-based) model  
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Reaction time score odds (probability normal/ probability slow)  
& p-values relative to marginal prob. (odds = 1)  

no 

yes 

Previous head injury 
normal 

low 

Digit symbol score 

no 

yes 

Amnesia 

2.7 .01,.09 

1.1  .91 

.2 .00 

Cnr decision tree from conditional probabilities 

1.1  .92 
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• For low performance on digit symbol test, amnesia 
predicts slow reaction time. 
 

• For normal performance on digit symbol test, previous 
head injury increases the probability of fast (normal) 
reaction time.  THIS IS ANOMALOUS.  
– We need to see if it would be replicated in another data set.  
– One possible explanation: prior exposure to Reaction Time test 

introduces a practice effect. 
– If Reaction Time is so vulnerable to a practice effect that it no 

longer discriminates concussed from non-concussed, then it’s 
probably not an appropriate measure for this purpose. 

 

Cnr decision tree, verbally  
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Future (1/2)  

• Preece data a test bed for future analyses. 
 

• Results are preliminary & tentative, illustrative of 
type of results from exploratory analysis. 
 

• Need to confirm results with other data sets or 
future studies. 
 
 
 

 
 



• Hoping for more data sets (accident, military, 
sports), higher N, fewer missing data, additional 
types of variables ( imaging, genomic, 
proteomic). 
 

• Work to be fully collaborative with investigators 
sharing data.  
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Future (2/2)  



• THANK YOU 

28 
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RA (DMM) web page 
http://pdx.edu/sysc/research-discrete-multivariate-modeling 

zwick@pdx.edu 
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