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On 2-Reptiles in the Plane

Sze-Man Ngai∗, V́ıctor F. Sirvent†, J. J. P. Veerman, Yang Wang‡

School of Mathematics, Georgia Institute of Technology§

Atlanta, GA 30332, USA

December 20, 1999

Abstract

We classify all rational 2-reptiles in the plane. We also establish properties concern-
ing rational reptiles in the plane in general.

1991 Mathematics Subject Classification. Primary 52C20; Secondary 52C22.
Key words and phrases. Tiling, rational n-reptile, self-affine multi-tile.

1 Introduction

A compact set T ⊆ Rd is a tile of Rd if there exists a countable collection of sets {T1, T2, . . .},
where each Tj is congruent to T , such that their union is the whole of Rd and the intersection
of any two distinct Tj ’s has zero Lebesgue measure. A tile T has non-empty interior (by
Baire category theorem), and we will assume that it is the closure of its interior.

A tile T is a reptile, or more precisely an n-reptile, if T can be dissected into n compact
subsets Ω1, . . . ,Ωn with non-overlapping interiors such that all Ωj’s are congruent among
each other using translations and rotations (but not reflections), and each Ωj is similar to
T (again, no reflections).

By comparing the volume of T with the sum of the volumes of the Ωj’s we easily see
that each Ωj is scaled down from T by a factor of d

√
n. So we can formulate T by

d
√

n (T ) =

n
⋃

j=1

fj(T ), (1.1)

where each fj is an isometry in Rd (without reflection). Alternatively we may write equation

∗Research supported by NSF grant DMS-96-32032.
†Departamento de Matemáticas, Universidad Simón Boĺıvar, Caracas, Venezuela.

Research supported in part by Conicit (Venezuela).
‡Research supported in part by NSF grant DMS-97-06793.
§e-mail: wang@math.gatech.edu
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(1.1) as

T =

n
⋃

j=1

1
d
√

n
fj(T ). (1.2)

In other words T is the attractor of the iterated function system (IFS) {n− 1

d fj : 1 ≤ j ≤ n}
(see [Ba]).

In this paper we consider reptiles in the plane. By identifying R2 with C we may
formulate an n-reptile as

√
n (T ) =

n
⋃

j=1

(eiθj T + aj), θj ∈ R and aj ∈ C. (1.3)

It is well known that for any given θ1, . . . , θn and a1, . . . , an there exists a unique compact
set T satisfying (1.3). We will call a set T satisfying (1.3) a repset, or more precisely, an
n-repset in the plane. In most cases a repset fails to be a reptile because it has an empty
interior. So our goal is to determine the values of θ1, . . . , θn and a1, . . . , an for which the
corresponding repset T has non-empty interior. A straightforward inflation argument shows
that if a repset T has non-empty interior then it must tile the plane R2.

Reptiles in which all isometries fj in (1.1) use the same rotation (often called self-
similar tiles) have been studied extensively, often as a special case of the so-called self-
affine tiles. In the self-affine tile setting, all fj in (1.1) have identical linear part, but they
and the expansion factor are not required to be similarities. Self-affine tiles arise in many
contexts, including radix expansions ([Gi], [O]), the construction of compactly supported
wavelets ([GM], [LW2]), and Markov partitions ([Bo], [P]). They are also studied directly as
interesting tiles ([B], [HSV], [K1], [LW1]). The introduction of different rotational angles in
(1.3) makes reptiles far more difficult to study, especially since virtually all Fourier analytic
techniques that are so useful for the study of self-affine tiles no longer apply. Although
there have been some studies of reptiles in the plane, few definitive results are known, even
for n-reptiles with small n’s (see section C17 of [CFG], [G], and references therein).

In our study of 2-reptiles in the plane we focus on a class of reptiles called rational
reptiles (defined below). Here we can make substantial progress, partly as a consequence of
the studies of Bandt, Thurston, and Kenyon ([B], [T], [K2]).

Definition 1.1 A compact set T ⊂ C is called a rational n-repset in the plane if it satisfies
equation (1.3) for some θ1, . . . , θn ∈ R and a1, . . . , an ∈ C, and in which all differences
θi − θj are rational multiples of π. A rational n-repset T is called a rational n-reptile if it
is an n-reptile.

The following theorem allows us to completely classify all rational 2-reptiles in the plane.
The main ingredients for proving this theorem are results of Thurston [T] and Praggastis
[P].
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Theorem 1.1 Let T be a rational n-reptile satisfying

√
n (T ) =

n
⋃

j=1

(eiθjT + aj), θj ∈ R and aj ∈ C,

where θi − θj are rational multiples of π for all i, j. Then for each j,
√

ne−iθj is either an
integer or a nonreal quadratic integer.

To state our classification of rational 2-reptiles we show first (Lemma 3.2) that each
2-reptile is similar (no reflection) to a reptile satisfying the following canonical equation:

√
2eiφ (T ) = T ∪ (eiθT + 1), φ, θ ∈ R. (1.4)

Clearly, it is sufficient to restrict φ and θ to [0, 2π).

Theorem 1.2 Let T be a rational 2-repset satisfying the canonical equation
√

2eiφ (T ) = T ∪ (eiθT + 1), φ, θ ∈ [0, 2π) and θ/π ∈ Q.

Then T is a 2-reptile if and only if (φ, θ) takes on one the following values:

(a) φ = kπ/4 and θ = ℓπ/2 where k and ℓ are integers, and k odd;

(b) φ = kπ/2 where k is odd, and θ = 0 or π;

(c) φ = kπ ± tan−1(
√

7), where k ∈ {0, 1} and θ = 0 or π.

Many of the pairs listed in this theorem yield equivalent tiles. We say that two tiles T1

and T2 are equivalent if one of them can be obtained from the other by a combination of
scaling, translation, rotation, and reflection. In other words, T1 and T2 “look alike.” We
show:

Theorem 1.3 There are exactly six non-equivalent rational 2-reptiles in the plane. The
equivalence classes have (φ, θ) represented by:

(
π

4
, 0), (

π

4
,
π

2
), (

π

4
,
3π

2
), (

3π

4
,
3π

2
), (

π

2
, 0), (tan−1(

√
7), 0).

The 2-reptiles in the six equivalence classes in Theorem 1.3 are shown in the following
table.

(φ, θ) 2-reptile

(π
4 , 0) twindragon

(π
4 , π

2 ) Lévy dragon

(π
4 , 3π

2 ) Heighway dragon

(3π
4 , 3π

2 ) triangle

(π
2 , 0) rectangle

(tan−1(
√

7), 0) tame twindragon
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One of the many unsolved problems concerning reptiles, proposed by Grunbaum and
listed in [CFG], is whether there exists a 2-reptile that is also a 3-reptile. We prove:

Theorem 1.4 There exists no rational 2-reptile that is also a rational 3-reptile.

The techniques used in this paper do not seem to apply to irrational repsets. This raises
a question: are there any irrational reptiles? Our numerical calculations indicate that there
are no irrational 2-reptiles. The answer is less clear for n-reptiles where n > 2. Conway’s
Pinwheel Tiling (see [R]) involves rotations by some irrational multiples of π, but it also
involves reflections, which are prohibited in our setting. We conjecture:

Conjecture 1.5 All reptiles are rational.

The rest of this paper is organized as follows: In §2, we establish several preliminary
results on self-affine multi-tiles, which are needed to prove our main theorems. In §3, we
prove Theorem 1.1 and one direction of Theorem 1.2 (the necessary condition). Complete
proofs of Theorems 1.2 and 1.3 are given in §4. In the last section §5, we prove Theorem 1.4
and the connectedness of 2-repsets in Rd.

Acknowledgments. The first author would like to thank the Southeast Applied Analysis
Center and the School of Mathematics, Georgia Institute of Technology, for supporting this
research. This study is completed during a visit by the second and the third authors to
the School of Mathematics, Georgia Institute of Technology. They would like to thank the
school for its support.

2 Preliminaries: Self-Affine Multi-tiles

In this section we introduce an extension of self-affine tiles, known as self-affine multi-tiles
([FW]). Our study of reptiles is based largely on the fact that a rational reptile can be
reformulated as a self-affine multi-tile.

We adopt the following notation and terminology: Let X,Y be subsets of Rd. We use
X + Y to denote the Minkowski sum of X and Y , X + Y = {x + y : x ∈ X, y ∈ Y }. The
union X ∪ Y is said to be essentially disjoint if X ∩ Y has zero Lebesgue measure.

Let A ∈ Md(R) be an expanding matrix, i.e. all its eigenvalues λ have |λ| > 1. Let
T1, T2, . . . , Tr be compact sets in Rd with nonempty interiors. Then we call the r-tuple of
compact sets (T1, T2, . . . , Tr) a self-affine multi-tile (with expansion factor A) if there exist
finite (possibly empty) subsets Dij ⊂ Rd for 1 ≤ i, j ≤ r such that

A(Ti) =

r
⋃

j=1

⋃

d∈Dij

(Tj + d) =

r
⋃

j=1

(Tj + Dij), 1 ≤ i ≤ r, (2.1)

where all unions on the righthand side are essentially disjoint. An important object associ-
ated to (2.1) is the r × r matrix S = [sij] given by sij = |Dij |, the cardinality of Dij . We
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call this matrix S the subdivision matrix of (2.1). Equation (2.1) (without the assumption
of essential disjointness of the unions) actually defines a graph-directed IFS, following the
terminology of Mauldin and Williams [MW]. Suppose that for each i at least one of the
sets Dij is nonempty for 1 ≤ j ≤ r. Then there always exists a unique r-tuple of nonempty
compact sets (T1, T2, . . . , Tr) satisfying (2.1) (see [MW]). But only in very special cases
(2.1) yields a solution (T1, T2, . . . , Tr) in which all Tj have nonempty interiors.

Example. Let A = [σ], T1 = [0, 1] and T2 = [0, σ] where σ = (
√

5 + 1)/2. Then (T1, T2) is
a self-affine multi-tile with expansion factor σ. In fact,

A(T1) = [0, σ] = T2,

A(T2) = [0, σ2] = [0, 1] ∪ ([0, σ] + 1) = T1 ∪ (T2 + 1).

Here D11 = ∅, D12 = {0}, D21 = {0} and D22 = {1}.

Proposition 2.1 Let (T1, . . . , Tr) be a self-affine multi-tile in Rd satisfying (2.1). Then
T o

i = Ti for all 1 ≤ i ≤ r, and there exist discrete sets J1, . . . , Jr in Rd such that

r
⋃

i=1

(Ti + Ji) = Rd

is a tiling of Rd.

Proof. Let T ′
i = T o

i for each i. Since each Ti has nonempty interior, T ′
i 6= ∅. But

(T ′
1, . . . , T ′

r) also satisfies (2.1). It follows from the uniqueness that T ′
i = Ti.

The existence of the tiling sets J1, . . . , Jr is proved in Flaherty and Wang [FW] (in
it A is assumed to be an integral matrix, but the argument clearly holds for nonintegral
matrices).

Many useful results concerning self-affine multi-tiles can be derived by iterating equation
(2.1). Assume that

Am(Ti) =

r
⋃

j=1

(Tj + D(m)
ij ), (2.2)

where m is an arbitrary positive integer. Then for each 1 ≤ i ≤ r,

Am+1(Ti) = Am
r

⋃

k=1

(Tk + Dik)

=
r

⋃

k=1

(Am(Tk) + AmDik)

=
r

⋃

k=1

(

r
⋃

j=1

(Tj + D(m)
kj ) + AmDik

)

=

r
⋃

j=1

(

Tj +

r
⋃

k=1

(AmDik + D(m)
kj )

)

.
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This yields

D(m+1)
ij =

r
⋃

k=1

(AmDik + D(m)
kj ).

By iterating the above equation we now obtain

D(m)
ij =

r
⋃

k1, ..., km−1=1

(Am−1Dik1
+ Am−2Dk1k2

+ · · · + ADkm−2km−1
+ Dkm−1j). (2.3)

Lemma 2.2 Let (T1, . . . , Tr) be a self-affine multi-tile satisfying (2.1), with expansion fac-
tor A and subdivision matrix S. Then for any positive integer m, (T1, . . . , Tr) is a self-affine
multi-tile satisfying (2.2), with expansion factor Am and subdivision matrix Sm.

Proof. It is clear that (T1, . . . , Tr) satisfies (2.2). The question is whether the unions on the
righthand side of (2.2) are essentially disjoint. But this is clearly so, because it is obtained

by iterating (2.1). The subdivision matrix for (2.2) is given by [|D(m)
ij |]. By (2.3) and the

essential disjointness,

|D(m)
ij | =

r
∑

k1, k2, ..., km−1=1

sik1
sk1k2

· · · skm−1j = s
(m)
ij ,

where [s
(m)
ij ] = Sm. This proves the lemma.

Lemma 2.3 Let T1, . . . , Tr be compact sets in Rd satisfying (2.1). Then for each 1 ≤ i ≤ r
we have

Ti =

r
⋃

k1, k2, k3, ...=1

(

A−1Dik1
+ A−2Dk1k2

+ A−3Dk2k3
+ · · ·

)

. (2.4)

Proof. By (2.2) we have

Ti =
r

⋃

j=1

(

A−m(Tj) + A−mD(m)
ij

)

.

The lemma now follows by applying (2.3) and letting m→∞. Observe that A−m(Tj) → {0}
as m→∞.

For the rest of this section, we focus on self-affine multi-tiles in R2 (identified with C)
in which the expansion factor is a complex number τ with |τ | > 1:

τ(Ti) =

r
⋃

j=1

(Tj + Dij), 1 ≤ i ≤ r. (2.5)

The following result, essentially due to Thurston [T], serves as a basis for most of our results.
Recall that a complex number τ is a complex Perron number if it is an algebraic integer and
all its Galois conjugates other than τ have moduli strictly smaller than that of τ . Complex
Perron numbers include real Perron numbers.
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Proposition 2.4 (Thurston) Let (T1, . . . , Tr) be a self-affine multi-tile in C satisfying
(2.5), where τ ∈ C and |τ | > 1. Suppose the following hold:

(i) The subdivision matrix S is primitive, i.e. Sk > 0 for some k ≥ 1.

(ii) For some 1 ≤ i ≤ r we have 0 ∈ Dii and 0 ∈ T o
i .

Then τ is a complex Perron number.

Proof. Without loss of generality we assume that 0 ∈ D11 and 0 ∈ T o
1 . Since 0 ∈ T o

1 ,
⋃∞

m=1 τm(T1) = C. Now by (2.2) we must have D(m−1)
1j ⊆ D(m)

1j for all j. This means

τm−1(T1) ⊆ τm(T1). Let

D(∞)
1j :=

∞
⋃

m=1

D(m)
1j .

It follows that
r

⋃

j=1

(Tj + D(∞)
1j ) =

∞
⋃

m=1

(Tj + D(m)
1j ) = C (2.6)

is a tiling of C. This tiling satisfies the first three hypotheses of a self-similar tiling defined in
Kenyon [K2]. We need only to verify that the tiling is quasiperiodic (the fourth hypothesis
in [K2]). But this follows from the fact that 0 ∈ T o

1 and S is primitive, by a result of
Praggastis [P] (see also Lemma 4 in [K2]). Hence the tiling (2.6) is a self-similar tiling.
Now it follows from Thurston’s theorem (see [T]) that τ is a complex Perron number.

Lemma 2.5 Suppose that τ ∈ C has the property that τk is a complex Perron number for
all sufficiently large k. Then τ must itself be a complex Perron number.

Proof. We prove the lemma by contradiction. Assume that τ is not a complex Perron
number. Then τ has a Galois conjugate λ such that λ 6= τ and |λ| ≥ |τ |. Fix any large k
such that τk is complex Perron. Let f(x) = xm+am−1x

m−1+ · · ·+a0 ∈ Z[x] be the minimal
polynomial of τk, and let µ1, . . . , µm−1 be the Galois conjugates of τk. Then f(µi) = 0 by
definition. Since f(τk) = 0 and λ is a Galois conjugate of τ , we also have f(λk) = 0. This
leads to

a0µ
0
i + a1µ

1
i + · · · + µm

i = 0, 1 ≤ i ≤ m + 1,

where we set µm = τk and µm+1 = λk. But this can happen only if the Vandermonde matrix
[µj

i ] is singular, which is equivalent to µi = µj for some i 6= j. Since µ1, . . . , µm−1, µm are all
distinct, we therefore have µm+1 = λk = µi for some i ≤ m. But µm = τk is complex Perron
and |λ| ≥ |τ |; it follows that we must have λk = τk or λk = τk. Since k is arbitrary, so long
as it is sufficiently large, we conclude that (τ/λ)k = 1 or (τ/λ)k = 1 for all sufficiently large
k. Hence we can find two sufficiently large coprime integers k1 and k2 such that (τ/λ)k1 = 1
and (τ/λ)k2 = 1 at the same time, or (τ/λ)k1 = 1 and (τ/λ)k2 = 1 at the same time.
The fact that k1, k2 are coprime now yields either τ/λ = 1 or τ/λ = 1, contradicting the
assumption that λ 6= τ and λ 6= τ . This proves the lemma.

We now prove the following extension of Proposition 2.4.
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Theorem 2.6 Let (T1, . . . , Tr) be a self-affine multi-tile in C satisfying

τ(Ti) =

r
⋃

j=1

(Tj + Dij), 1 ≤ i ≤ r,

where τ ∈ C, |τ | > 1 and all unions are essentially disjoint. Suppose that the subdivision
matrix S is primitive. Then τ is a complex Perron number.

Proof. We first consider the case where S > 0, i.e. all Dij are nonempty. Since T o
1 6= ∅,

by Lemma 2.3 we can find a sequence (k1, k2, k3, . . .) such that
∑∞

m=1 τ−mdm ∈ T o
1 , where

d1 ∈ D1k1
, d2 ∈ Dk1k2

, . . .. Because the sets Dij are uniformly bounded and |τ | > 1, for
sufficiently large K > 0 we have

K−1
∑

m=1

τ−mdm +

∞
∑

m=K

τ−mem ∈ T o
1 (2.7)

for all em ∈ Dij , 1 ≤ i, j ≤ r. Set

x0 =

K−1
∑

m=1

τ−mdm + τ−KeK , where eK ∈ DkK−11.

Then τKx0 ∈ D(K)
11 , and by (2.7),

x∗ = x0 + τ−Kx0 + τ−2Kx0 + · · · ∈ T o
1 .

We now let T̃1 = T1 − x∗ and T̃j = Tj for j > 1. Note that

x∗ =
x0

1 − τ−K
=

τKx0

τK − 1
.

Thus

τK(T̃1) = τK(T1) − τKx∗ =
r

⋃

j=1

(Tj + D(K)
1j ) − τKx∗

=
(

T̃1 + D(K)
11 + x∗ − τKx∗

)

∪
(

r
⋃

j=2

(T̃j + D(K)
1j − τKx∗)

)

.

Similar expressions can be derived for τK(T̃i) with i > 1. It is therefore clear that
(T̃1, . . . , T̃r) is a self-affine multi-tile with expansion factor τK satisfying

τK(T̃i) =
r

⋃

j=1

(T̃j + D̃(K)
ij ), 1 ≤ i ≤ r,

in which D̃(K)
11 = D(K)

11 +x∗−τKx∗. But τKx∗−x∗ = τKx0 ∈ D(K)
11 , so 0 ∈ D̃(K)

11 . Combining
this fact with 0 ∈ T̃ o

1 we prove that τK is complex Perron. But K is an arbitrary integer
provided it is sufficiently large. Thus τ is a complex Perron number by Lemma 2.5.

Finally, in the general case in which S is not positive we have Sk > 0 for sufficiently
large k. Since (T1, . . . , Tr) is also a self-affine multi-tile with expansion factor τk and sub-
division matrix Sk, we conclude that τk is a complex Perron number for sufficiently large
k. Therefore τ must be a complex Perron number.
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3 Necessary Conditions

Let T be a rational n-reptile in the plane C. So it satisfies

√
n (T ) =

n
⋃

j=1

(eiθj T + aj) (3.1)

in which (θi − θj)/π ∈ Q for all 1 ≤ i, j ≤ n. Therefore there exists a positive integer r and
φ0 = 2π

r such that

√
ne−iθ1 (T ) =

n
⋃

j=1

(eipjφ0T + bj), (3.2)

where bj = e−iθ1aj and pj ∈ Z for all j with p0 = 0. We shall assume that r is the minimal
of such integers, and without loss of generality we can always require all 0 ≤ pj < r. The
minimality of r implies that

g.c.d. (r, p1, . . . , pn) = 1. (3.3)

A key observation is that T can be reformulated in terms of self-affine multi-tiles. Let
τ =

√
ne−iθ1 and ω = eiφ0 . If we denote

T0 = T, T1 = ωT, . . . , Tr−1 = ωr−1T,

then (T0, T1, . . . , Tr−1) is a self-affine multi-tile with expansion factor τ :

τ (Tk) =
n
⋃

k=1

(Tpj+k + ωkbj), 0 ≤ k < r, (3.4)

where Tk := Tk−r for k ≥ r. This self-affine multi-tile formulation allows us to prove
Theorem 1.1. First we establish the following lemma concerning complex Perron numbers:

Lemma 3.1 Let τ ∈ C with |τ | =
√

n. Then τ is a complex Perron number if and only if
τ is an integer, or a nonreal quadratic integer.

Proof. If τ ∈ R then τ = ±√
n. Unless τ ∈ Z, it is not a complex Perron number because

its Galois conjugate is −τ . Suppose that τ is not real. Observe that τ = n/τ is also complex
Perron, and its Galois conjugates are n/λ for all Galois conjugates λ of τ . If some |λ| < |τ |
then |n/λ| > |τ |, contradicting τ being complex Perron. So all Galois conjugates λ of τ
satisfy |λ| ≥ |τ |, which implies that the only Galois conjugate of τ is τ . Of course, this
means that τ is a quadratic integer.

Proof of Theorem 1.1. We prove that τ =
√

ne−iθj is a complex Perron number for
j = 1. Others follow from the same argument. By Theorem 2.6 we only need to show that
the subdivision matrix S = [sij] is primitive. The matrix S has the property that each
row is the cyclical shift of the previous row to the right by one position. If r = 1 then the
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primitivity of S is trivially true because s00 > 0. For such a cyclical matrix it is well known
(and easy to verify) that S has r eigenvectors given by

v = [1, ν, . . . , νr−1]T , where ν = 1, ω, . . . , ωr−1.

Since ω is a primitive r-th root of unity, the standard property of a Vandermonde matrix
implies that the above r eigenvectors are independent. The eigenvalues corresponding to
the eigenvectors are f(ν), where f(x) is the polynomial

f(x) =
n

∑

j=1

xpj .

To show that S is primitive, we first note that (3.3) implies that |f(ωk)| < |f(1)| for
0 < k < r (f(1) is the Perron-Frobenius eigenvalue). So we now only need to show that S is
irreducible (see Theorem 1.7 of [BP]). For irreducibility, we observe that [1, 1, . . . , 1]T > 0
is the (unique up to a scalar multiple) Perron-Frobenius eigenvector for both S and ST . So
S is irreducible (see Corollary 3.15 of [BP]), and hence primitive. This proves the theorem.

We now consider 2-reptiles in the plane. It is convenient to consider only 2-reptiles in
the canonical form, as a result of the following lemma:

Lemma 3.2 Let T ′ be a 2-reptile in the plane. Then there exists a 2-reptile T similar to
T ′ (via translation, rotation and scaling) such that T satisfies the following equation

√
2eiφ (T ) = T ∪ (eiθT + 1), (3.5)

for some φ, θ ∈ R. Furthermore, T ′ is rational if and only if T is.

Proof. Suppose that T ′ satisfies

√
2 (T ′) = (eiθ1T ′ + a1) ∪ (eiθ2T ′ + a2).

A simple translation T1 = T ′ − a1√
2−eiθ1

yields

√
2(T1) = eiθ1T1 ∪ (eiθ2T1 + b2), where b2 = a2 −

√
2−eiθ2√
2−eiθ1

a1.

Note that b2 6= 0, for otherwise T1 = {0} would be the solution to the above equation.
Now let T = eiθ1T1/b2. Then it is easy to check that T satisfies (3.5) with φ = −θ1 and
θ = θ2 − θ1. The last assertion now follows from the identity

√
2 (T ) = eiθ1T ∪ (eiθ2T + eiθ1).

Lemma 3.2 in fact holds for any 2-repset T ′ that is not degenerated (i.e. not a single
point). For the rest of this paper it is convenient to introduce the following terminology:
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Definition 3.1 We say that a 2-repset T is the canonical 2-repset corresponding to (φ, θ)
if T is given by (3.5). A 2-repset T ′ is said to have a canonical representation (φ, θ) if T ′

is similar (via translation, scaling, rotation) to the canonical 2-repset T corresponding to
(φ, θ).

As we shall see in §4, a 2-repset may have more than one canonical representations. In
Proposition 4.3 we list several canonical representations that yield equivalent 2-repsets.

Now let T be a rational 2-reptile satisfying the canonical equation (3.5), in which θ/π ∈
Q. We apply Theorem 1.1 to reduce the number of admissible pairs (φ, θ). First:

Lemma 3.3 Let τ be a complex Perron number such that |τ | =
√

2. Then τ must be one
of the following complex numbers:

±1 ± i, ±
√

2i, or ± 1

2
±

√
7

2
i.

Proof. By Lemma 3.1 τ must be a nonreal quadratic integer (it cannot be an integer),

which is equivalent to τ = ±a
2 ±

√
b

2 i for integers a ≥ 0 and b > 0. The lemma follows
immediately from |τ |2 = 2.

Lemma 3.4 Let T be a rational 2-reptile having a canonical representation (φ, θ) with
θ/π ∈ Q. Then (φ, θ) takes on one the following values:

(a) φ = kπ/4 and θ = ℓπ/2 for some integer ℓ and odd integer k;

(b) φ = kπ/2 with k odd, and θ = 0 or π;

(c) φ = kπ ± tan−1(
√

7) where k ∈ {0, 1}, and θ = 0 or π.

Proof. Let τ =
√

2eiφ and ω = eiθ. By Theorem 1.1 both τ and τω−1 are nonreal quadratic
integers. This fact together with the assumption θ/π ∈ Q immediately yield the following
constraints on τ and ω:

(i) τ = ±1 ± i or τ = ±
√

2i, and τω−1 = ±1 ± i or τω−1 = ±
√

2i;

(ii) τ = ±1
2 ±

√
7

2 i and ω−1 = ±1.

To prove our lemma we would have to show that some of the combinations listed in
(i) and (ii) are not possible. These are τ = ±1 ± i and τω−1 = ±

√
2i, or τ = ±

√
2i and

τω−1 = ±1 ± i. Here we show that T cannot have τ = 1 + i and τω−1 =
√

2i. The
impossibility of other combinations are proved by an identical argument.

Suppose that T does have τ = 1 + i and τω−1 =
√

2i. Without loss of generality we
may assume T is the canonical 2-reptile. Then ω = e−i π

4 and

√
2 (T ) = e−i π

4 T ∪ (e−i π
2 T + ω) = ωT ∪ (ω2T + ω).
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Let Tj := ωjT for j = 0, 1, 2, 3. Then (T0, T1, T2, T3) is a self-affine multi-tile with expansion
factor

√
2: √

2(Tk) = Tk+1 ∪ (Tk+2 + ωk+1), k = 0, 1, 2, 3,

where Tj := Tj−4 for j ≥ 4. The subdivision matrix is

S =









0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0









.

This matrix is primitive. It follows from Theorem 2.6 that
√

2 must be a complex Perron
number, which it is a contradiction. By the same argument, it is impossible to have τ =
±1 ± i and τω−1 = ±

√
2i, or vice versa.

4 Sufficient Conditions

In this section, we complete the proof of Theorem 1.2 by showing that the pairs (φ, θ) listed
in the theorem indeed give rise to 2-reptiles. We will also study the equivalences of these
tiles and classify them into six equivalence classes.

We begin by stating a theorem of Bandt [B, Theorem 2]. Let A ∈ Md(Z) be an expanding
matrix with q = |det(A)|. A finite group S of integer matrices with determinant ±1 is called
a symmetry group of A if AS = SA.

Theorem 4.1 (Bandt) Let A ∈ Md(Z) be an expanding matrix with q = |det(A)|. Suppose
that {s1, . . . , sq} is contained in a symmetry group of A such that

Zd =

q
⋃

i=1

s−1
i (AZd + bi). (4.1)

Then the attractor T of the IFS {fi(x) = siA
−1x + bi : 1 ≤ i ≤ q} has nonempty interior

and T = T o. Furthermore, T tiles Rd.

Theorem 4.1 leads to the following lemma:

Lemma 4.2 Let T be a 2-repset with a canonical representation (φ, θ). Suppose that φ =
kπ/4 for an odd integer k and θ = ℓπ/2 for an integer ℓ. Then T is a 2-reptile.

Proof. Clearly we only need to consider k ∈ {1, 3, 5, 7} and ℓ ∈ {0, 1, 2, 3}. For k ∈
{1, 3, 5, 7} the corresponding τ ’s are τ = ±1± i. The maps x 7→ τx in C correspond to the
maps x 7→ Ax in R2 with A being one of the following four matrices in A:

A =
{

[

1 −1
1 1

]

,

[

−1 −1
1 −1

]

,

[

−1 1
−1 −1

]

,

[

1 1
−1 1

]

}

.
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Define

S =
{

[

1 0
0 1

]

,

[

0 1
−1 0

]

,

[

−1 0
0 −1

]

,

[

0 −1
1 0

]

}

.

Then S is a symmetry group for each A ∈ A; in fact AS = A = SA. It remains to be
shown that for each A ∈ A and each s ∈ S,

Z2 = AZ2 ∪
(

sAZ2 +

[

1
0

]

)

. (4.2)

Since AZ2 dilates Z2 by a factor of
√

2 and then rotates it through kπ/4, the resulting lattice
is invariant under a π/2-rotation. Hence, sAZ2 = AZ2 for all s ∈ S, and (4.2) follows.

The proof for the sufficiency of Theorem 1.2 can be made easier after we explore the
equivalences of the reptiles. Recall that two reptiles, or repsets in general, are equivalent if
they can be obtained from each other by any combination of translation, rotation, dilation,
and reflection. Since each 2-repset (other than the degenerate ones made up by a single
point) is similar to a canonical 2-repset corresponding to some (φ, θ), we shall use the
notation (φ, θ) ∼ (φ′, θ′) to denote the equivalence of two 2-repsets having the respective
canonical representations.

Proposition 4.3 Using the canonical representation (φ, θ) we have the following equivalent
2-repsets:

(a) (φ, θ) ∼ (φ − θ,−θ) ∼ (−φ,−θ) ∼ (−φ + θ, θ).

(b) (φ, 0) ∼ (φ + π, 0) ∼ (φ, π) ∼ (φ + π, π).

Proof. Observe that √
2eiφ(T ) = T ∪ (eiθT + 1) (4.3)

is identical to √
2ei(φ−θ)(T ) = (T + e−iθ) ∪ (e−iθT ),

which has canonical representation (φ − θ,−θ) by Lemma 3.2. So (φ, θ) ∼ (φ − θ,−θ).

By taking complex conjugates we see that (4.3) is also identical to

√
2e−iφ(T̄ ) = T̄ ∪ (e−iθT̄ + 1),

where T̄ := {z̄ : z ∈ T}. Consequently the canonical 2-repset corresponding to (−φ,−θ) is
simply the complex conjugate (i.e. reflection about the real axis) of the canonical 2-repset
corresponding to (φ, θ). This fact and the fact (φ, θ) ∼ (φ − θ,−θ) immediately yield (a).

We now prove (b). Write τ =
√

2eiφ. Since θ = 0, (4.3) is

τ(T ) = T ∪ (T + 1). (4.4)

Let T1 be the canonical 2-repset corresponding to (φ + π, 0):

−τ(T1) = T1 ∪ (T1 + 1). (4.5)
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Iterating (4.4) and (4.5) yields

τ2(T ) = T ∪ (T + 1) ∪ (T + τ) ∪ (T + 1 + τ), (4.6)

τ2(T1) = T1 ∪ (T1 + 1) ∪ (T1 − τ) ∪ (T1 + 1 − τ). (4.7)

Set T2 = T1 − τ/(τ2 − 1). Then (4.7) becomes

τ2(T2) = (T2 + τ) ∪ (T2 + 1 + τ) ∪ T2 ∪ (T2 + 1), (4.8)

The uniqueness now implies that T2 = T . Since T2 is a translate of T1, this proves (φ, 0) ∼
(φ + π, 0).

Finally, if T satisfies the equation (4.4) then so does T3 = −T + a for a = 1/(τ − 1), a
fact that is easy to verify. Hence T = −T + a. Substituting this into (4.4) yields

τ(T ) = T ∪ (−T + a + 1).

Note that a + 1 6= 0. It follows from Lemma 3.2 that T has a canonical representation
(φ, π). This proves (φ, 0) ∼ (φ, π). Of course, it also yields (φ, 0) ∼ (φ + π, π) because
(φ, π) ∼ (φ + π, π) by (a).

Lemma 4.4 A 2-repset T having a canonical representation (φ, θ) in the form of φ = kπ/2
for k ∈ {1, 3} and θ ∈ {0, π} is a 2-reptile. In fact, T is a rectangle whose long and short
sides have a length ratio of

√
2.

Proof. Consider the case (φ, θ) = (π/2, 0). It follows from a direct check that the rectangle
[2
√

2/3,
√

2/3] × [−4/3, 2/3] satisfies
√

2eiπ/2(T ) = T ∪ (T + 1).

Hence for (φ, θ) = (π/2, 0) the corresponding canonical 2-repset T is the aforementioned
rectangle. By Proposition 4.3 (b) all the other cases yield equivalent 2-repsets. This proves
the lemma.

Lemma 4.5 A 2-repset T having a canonical representation in the form of φ = kπ ±
tan−1(

√
7) for k ∈ {0, 1} and θ ∈ {0, π} is a 2-reptile.

Proof. Again, by Proposition 4.3 it suffices to consider the case (φ, θ) = (tan−1(
√

7), 0); all
other cases yield equivalent 2-repsets. τ = 1/2 + i

√
7/2 corresponds to the matrix

A =
1

2

[

1 −
√

7√
7 1

]

.

With respect to the basis {(1, 0), (1/2,−
√

7/2)}, A takes the form

[

1 2
−1 0

]

. This gives a

self-affine 2-reptile known as the tame twindragon (see [B]).

Proof of Theorem 1.2. The theorem is now the consequence of the combination of
Lemma 3.4 and Lemmas 4.2, 4.4, and 4.5.

Proof of Theorem 1.3. Among the sixteen 2-reptiles stated in Theorem 1.2 (a), (π/4, θ)
and (7π/4, 2π−θ) are reflections of each other, so are (3π/4, θ) and (5π/4, 2π−θ). We need
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only consider the remaining eight 2-reptiles. By Proposition 4.3, (π
4 , 0), (π

4 , π), (3π
4 , 0), and

(3π
4 , π) are all equivalent. The same is true for (π

4 , 3π
2 ) and (3π

4 , π
2 ). Hence, there are only

four equivalence classes in this collection. They are represented by

(
π

4
, 0), (

π

4
,
π

2
), (

π

4
,
3π

2
), (

3π

4
,
3π

2
).

They correspond respectively to the well-known twindragon, Lévy dragon, Heighway dragon
(see [DK], [E]), and the 45◦ right-angled triangle.

By Lemma 4.4 the four 2-reptiles in Theorem 1.2 (b) are rectangles and hence equivalent.
The reader can easily check by using Proposition 4.3 and Lemma 4.5 that the eight reptiles
in Theorem 1.2 (c) are all equivalent; they are all tame twindragons.

Altogether the twenty-eight 2-reptiles account for all six equivalence classes listed in
Theorem 1.3.

To show that the six 2-reptiles are mutually non-equivalent, we first notice that two
reptiles can be equivalent only when their boundaries have the same Hausdorff dimension.
For each of the six 2-reptiles here, the dimension of its boundary is known. For the triangle
and the rectangle the dimension is 1; for the others the dimension is given by dimH(∂T ) =
2 log λmax/ log 2, where λmax is the largest eigenvalue of some characteristic polynomial
associated to the tile (see [V], [SW], [DKe], [DKV], [E], [KLSW]). We summarized the
results below:

2-reptile Characteristic polynomial Dimension of boundary

twindragon λ
3
− λ

2
− 2 1.5236270862 . . .

Lévy dragon λ
9
− 3λ

8 + 3λ
7
− 3λ

6 + 2λ
5 + 4λ

4
− 8λ

3 + 8λ
2
− 16λ + 8 1.9340071829 . . .

Heighway dragon λ
3
− λ

2
− 2 1.5236270862 . . .

tame twindragon λ
3
− λ − 2 1.2107605332 . . .

Since the triangle and the rectangle are clearly non-equivalent, it suffices to show that
the twindragon and the Heighway dragon are also non-equivalent. Let Tt be the twindragon
satisfying

(1 + i)Tt = Tt ∪ (Tt + 1). (4.9)

Then T ′
t = −Tt − i also satisfies (4.9). So T ′

t = Tt and hence the twindragon is centrally
symmetric. We show that the Heighway dragon is not. Assume that the Heighway dragon
TH satisfies

(1 + i)TH = TH ∪ (−iTH + 1)

and is centrally symmetric, i.e. TH = −TH + a for some a ∈ C. Then

(1 + i)TH = TH ∪ (iTH + 1 − ia). (4.10)

But (4.10) is satisfied by the Lévy dragon. This is a contradiction. Therefore the twindragon
and the Heighway dragon are non-equivalent. This proves the theorem.

For convenience of the reader, we include in Figure 4.1 pictures of four of the 2-reptiles.
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Figure 4.1: 2-reptiles with (φ, θ) values given by (a) (π
4 , 0), (b) (π

4 , π
2 ), (c) (π

4 , 3π
2 ), (d)

(tan−1(
√

7), 0).
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5 Some Geometric and Topological Properties

In this section we prove that a rational 2-reptile cannot be at the same time a rational
3-reptile. We then show that all 2-repsets in Rd are connected.

Proof of Theorem 1.4. Suppose that the theorem is false. Then there exists a T that is
both a rational 2-reptile and a rational 3-reptile such that

τ(T ) = T ∪ (ωT + 1) and σ(T ) = (T + a1) ∪ (ω2T + a2) ∪ (ω3T + a3), (5.1)

where |ω| = |ω1| = |ω2| = 1, |τ | =
√

2 and |σ| =
√

3. Note that T must also be a rational
6-reptile satisfying

τσ(T ) =
6

⋃

j=1

(eiθj T + bj)

in which θ1 = 0. It follows from Theorem 1.1 that τ , σ and τσ are all nonreal quadratic
integers.

Since σ is a nonreal quadratic integer of modulus
√

3, we have

σ =
a ± i

√
12 − a2

2
, where a ∈ {0,±1,±2,±3}.

The only combinations τ and σ that make τσ a nonreal quadratic integer are τ = ±
√

2i
and σ = ±1 ±

√
2i. But in these cases the corresponding 2-reptile is a rectangle. Since the

angle of rotation by σ is not a multiple of π/2, σ(T ) can never be tiled by copies of T in
which one of the copies is a translation of T , for some corners will not fit. So the second
equation of (5.1) cannot be satisfied. This is a contradiction.

To prove the connectedness of 2-repsets in Rd, we first state a proposition. The proof
of it is essentially a direct generalization of [KL, Theorem 4.3].

Proposition 5.1 Let A1, . . . , An ∈ Md(R) be expanding matrices and d1, . . . , dn ∈ Rd. Let
T be the unique compact set given by

T =

n
⋃

j=1

A−1
j (T + dj).

Denote T = {A−1
j (T + dj) : 1 ≤ j ≤ n}. Suppose that for each pair U, V ∈ T there exists

a finite subcollection {U1, . . . , Uℓ} ⊆ T such that U = U1, V = Uℓ, and Ui ∩ Ui+1 6= ∅ for
i = 1, . . . , ℓ − 1. Then T is connected.

It is known that all self-affine tiles in Rd with two digits are connected (see [HSV]). The
following corollary generalizes this result to 2-repsets. For E ⊆ Rd and ǫ > 0, we call the
set Eǫ := {x : dist(x,E) < ǫ} the (open) ǫ-neighborhood of E.

Corollary 5.2 A 2-repset in Rd is connected.
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Proof. Let T be defined by

T = A−1
1 (T + d1) ∪ A−1

2 (T + d2), (5.2)

where both A−1
1 and A−1

2 have contraction ratio 2−1/d. According to Proposition 5.1 we
need only to show that

A−1
1 (T + d1) ∩ A−1

2 (T + d2) 6= ∅.
Let us suppose that the intersection is empty. By iterating (5.2) we see that T is totally
disconnected. Therefore it must have Lebesgue measure zero. Since the two sets on the
righthand side of (5.2) are compact, there must be an ǫ > 0 such that their ǫ-neighborhoods
do not intersect either. Thus the IFS given by (5.2) satisfies the open set condition [H].
Hence the Hausdorff dimension of T must be d, and the Hausdorff measure in its dimension,
which is the Lebesgue measure, must be strictly positive. This is a contradiction.
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