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Experimental validation of phase using Nomarski
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Reconstruction of an image (or shape or wavefront) from measurements of the derivatives of the image in two
orthogonal directions is a common problem. We demonstrate how a particular reconstructor, commonly referred
to as the Fried algorithm, can be used with megapixel derivative images to recover the original image. Large
datasets are handled by breaking the derivative images into smaller tiles, applying the Fried algorithm and
stitching the tiles back together. The performance of the algorithm is demonstrated using differential interference
contrast microscopy on a known test object. © 2012 Optical Society of America

OCIS codes: 120.5050, 170.3660, 170.6935, 180.3170.

1. INTRODUCTION
Historically, Nomarski or differential interference contrast
(DIC) microscopy has been used only to derive qualitative
phase information. The goal of our efforts is to acquire quan-
titative measurements of phase using an unmodified DIC
microscope. In this paper, we assume that the phase is chan-
ging sufficiently slowly that the phase gradient varies
smoothly over several resolution elements. This avoids both
undersampling the wavefront and minimizing any diffractive
effects. These effects are especially problematic because tra-
ditional coherent imaging techniques cannot be used for cor-
rection because the DIC white-light illumination is partially
coherent.

Various researchers have been pursuing quantitative phase
by a variety of means. For example, Kou et al. [1] have used
the transport of intensity (TI-DIC) concept [2]. This idea relies
on acquisition of images at focus and on either side of focus,
and exploits the relationship between axial and transverse in-
tensity gradients. Subsequently, phase is recovered through
Fourier inversion of the Laplacian with regularization. This ap-
proach was demonstrated on a sample displaying no absorp-
tion, and the sensitivity of the approach to such absorption is
an issue remaining to be explored. Another approach due to
Preza et al. [3] uses DIC images at several azimuthal orienta-
tions to reconstruct phase. This so-called “rotational diversity”
approach, similarly to the TI-DIC approach, requires the speci-
men to be nonabsorbing. The issue of absorbing specimens is
avoided using the so-called “spiral phase integration” techni-
que [3], which makes use of Fourier transform integration
(with regularization) of the phase slopes. In essence, this is
a Wiener filtering operation that is subject to low spatial fre-
quency phase errors [4]. Shribak and Inoué [5] recovered re-
lative phase with a phase-stepping approach, making use of
the cosine relationship between the phase gradient and shear

axis directions, and quasi phase stepping using a precision ro-
tation stage. In principle, this approach could determine the
absolute phase (within a constant), but this remains to be de-
monstrated. Finally, Dana [6] performed a bias calibration and
chose a bias setting about which the relationship between
phase and intensity was approximately linear. Of course this
approach is limited to small phase excursions.

We previously introduced a technique to acquire quantita-
tive phase derivative information using a DIC microscope [7].
Such an approach was useful for characterizing the first- and
second-order directional scatter statistics for thin biological
specimens. Here, we are concerned with integration of ortho-
gonal phase slopes into a phase surface. We make use of the
so-called Fried algorithm [8–10] to produce a least-squares es-
timate tiling of the phase surface that may extend to thou-
sands of pixels in each direction.

The main drawback of the Fried reconstructor is that the
size of the reconstruction kernel grows with the fourth power
of the number of pixels on a side. Since this kernel must be
inverted, large images cannot be handled directly. We avoid
this problem by subdividing the image into smaller tiles having
kernel sizes that permit rapid reconstruction on a desktop
computer. Unfortunately, after reconstruction, the phase sur-
face for each tile will have an unknown constant of integra-
tion. A second step, which we call “stitching,” is used to
determine the constants of all tiles at once by minimizing
the differences along the edges. Once stitching is complete,
the final phase surface is known to within a single overall ar-
bitrary constant.

In the following discussion, we briefly review the Fried
algorithm, discuss a strategy for stitching together the indivi-
dually reconstructed image tiles, and demonstrate the perfor-
mance of the algorithm on a known phase object of our
construction.
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2. BACKGROUND
The Fried algorithm (Fig. 1) is based on expressing the gradi-
ents of the phase (Dxi;j and Dyi;j) at the pixel centers in terms
of the phase ϕi�1;j�1 specified at the vertices of these pixels,

Dxi; j �
�ϕi; j�1 � ϕi�1; j�1� − �ϕi; j � ϕi�1; j�

2
;

Dyi; j �
�ϕi�1; j � ϕi�1; j�1� − �ϕi; j � ϕi; j�1�

2
;

(1)

where i and j are the pixel row and column. Dxi; j and Dyi; j
have units of phase/pixel. The notation X̄ denotes a nm × 1
vector that represents the m × n matrix X in column-major
form,

Xi; j ≡ X̄mj−m�i:

If the Φ consists of the phase elements ϕi; j and Dx and Dy

contain the phase derivatives, then Eq. (1) can be rewritten

�
Wx

Wy

�
Φ̄ �

�
D̄x

D̄y

�
;

where Wx and Wy are mn × �m� 1��n� 1� sparse matrices
with nonzero values of � 1

2 specified by Eq. (1). If W−1 repre-
sents the pseudo-inverse of W, then

Φ̄ � W−1D̄; (2)

where W−1 has dimensions of �m� 1��n� 1� × 2mn and D̄ is
a 2mn × 1 vector of the (measured) gradients. The matrix Φ
will be one row and one column larger than the derivative
matrices, Dx and Dy.

The dimensions m and n must be moderate to permit W−1

to be calculated. For example, if m � n � 32, then W will
have dimensions of 2048 × 1089—a size that is readily inverted
on current desktop computers. The number of elements in W
grows as the fourth power of the linear dimension and W is
prohibitively large for megapixel images. Since the number of
operations required to invert a N × N matrix is O�N2.4�,

directly applying the Fried technique to a 1024 × 1024 image
would take 107 times as long as a 32 × 32 image.

To avoid the difficulty of reconstructing the entire phase
matrix at once, we divide the large gradient matrices, Dx

and Dy, into a k × ℓ grid of contiguous tiles, each of a conve-
nient size, say 32 × 32. The phase matrix for each individual
tile is then reconstructed. Unfortunately, an unknown con-
stant of integration cu;v is associated with each tile and must
be determined before the phase matrices for all the tiles may
be recombined. The unknown constants form a k × ℓ matrix c
that is determined during the stitching process.

The reconstruction accuracy of the Fried technique at dif-
ferent spatial frequencies is shown in Fig. 3. To generate this
figure, the x-and y-derivatives of the periodic phase grating

ϕ�x; y� � sin�2π�x� y�f � (3)

were found analytically. The derivatives were evaluated at
pixel centers to generate phase gradient matrices Dx and
Dy. The reconstructed matrix Φ generated using the Fried
method was compared with expected phases by calculating
the standard deviation of the difference over a single 32 ×
32 tile. The Fried algorithm performs best when the phase gra-
dients vary over several resolution elements. When the phase
changes by 2π over only three elements, the standard error is
as large as the original signal; when the phase changes over
six elements, the error drops to about 10%. Even lower spatial
frequencies resulted in even smaller reconstruction errors. Fi-
nally, the reconstruction errors for 8 × 8 and 16 × 16 tiles were
essentially equivalent to those shown in Fig. 3.

3. TILE STITCHING STRATEGY
The stitching process determines the unknown constants cu;v
associated with the tile Mu;v. The basis for our tile stitching
algorithm is to use the overlap by one row and/or one column
between the contiguous reconstructed tiles (Fig. 2). Specifi-
cally, we set the difference between cu;v�1 and cu;v to the aver-
age difference between the pixels on the right edge of tileMu;v

and those on the left edge of tile Mu;v�1:

Fig. 1. Illustration of Fried geometry. The derivative values �Dxi; j;
Dyi; j� for each pixel are known and are related to the unknown values
ϕi;j at each corner through Eq. (1).

Fig. 2. Each tileMi; j is a �m� 1� × �n� 1�matrix of pixels and over-
laps adjacent tiles. The unknown constant of integration ci; j for each
tile is chosen to minimize the differences along the tile edges.
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cu;v�1 − cu;v �
1
n

Xm�1

i�1

�Mi;n�1
u;v −Mi;1

u;v�1� � Exu;v; (4)

where Mi;j
u;v designates the �i; j� element in tileMu;v. Similarly,

the difference between the top and bottom of adjacent vertical
tiles is

cu�1;v − cu;v �
1
n

Xn�1

j�1

�Mm�1;j
u;v −M1;j

u�1;v� � Eyu;v: (5)

This set of equations can be written as

�
Vx

Vy

�
c̄ �

�
Ēx

Ēy

�
; (6)

where the error matrices Ex and Ey have dimensions k × ℓ and
so Ē has dimensions 2kℓ × 1. Eq. (6) can be written as

Vc̄ � Ē; (7)

and the ��k − 1�ℓ� k�ℓ − 1�� × kℓ sparse system matrix V has
only �1 as nonzero entries and is determined by Eqs. (4)
and (5). For instance, the 3 × 3 subset of tiles in Fig. 2 is

Vx �

2
6666664

−1 0 0 �1 0 0 0 0 0
0 −1 0 0 �1 0 0 0 0
0 0 −1 0 0 �1 0 0 0
0 0 0 −1 0 0 �1 0 0
0 0 0 0 −1 0 0 �1 0
0 0 0 0 0 −1 0 0 �1

3
7777775
:

Again, in Eq. (7), we have more equations than unknowns
(the tile constants of integration) and thus seek a least-squares
solution using the pseudo-inverse V−1. Like the Fried algo-
rithm, this system matrix is ill-conditioned and we resort to
use of the singular value decomposition to compute the in-
verse. We next discuss performance of this reconstruction
and tiling algorithm on a known phase object.

4. MATERIALS AND METHODS
A. Test Object
The test object was fabricated using thermal evaporation. De-
position was performed with a modified Edwards E-306 coat-
ing system, with a base pressure of 9 × 10−7 Torr. Due to the
thickness of coating required, a large shielded tantalum boat
was used; the size increase required modification of the power
to four times the normal current capability of the original sys-
tem, from 100 to 400 A. A razorblade attached to a Daedal, Inc.
linear translator was utilized to make the steps. The blade,
which was close to the sample substrate, was moved manually
using a rotational feedthrough in the chamber. The glass sub-
strate was a 170 μm thick glass cover slip (Erie Scientific Gold
Seal #3307), and the steps were fabricated with magnesium
fluoride powder (Johnson Matthey Electronics, 98% magne-
sium fluoride #46102) placed in a tantalum boat (R. D. Mathis).
Typical coating times were approximately 60 s per layer, with
a coating rate of 1.0 nm ∕s; process pressure was roughly
10−5 Torr.

Once the steps were fabricated and determined not to be
under high stress (as evinced by crazing), the thickness of
the test object was scanned using an atomic force microscope
(AFM, Park Scientific M5). The thickness accuracy was
verified by contact-mode AFM using a calibration standard
(Nanosurf BT00250). The phase of the test object (relative
to air) was calculated using the measured thicknesses
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Fig. 3. (Color online) Intrinsic reconstruction error of the Fried
algorithm for a periodic phase grating.

Fig. 4. Phase derivatives Dx and Dy obtained from DIC measurements of the test object. The white square shows the area on the bottom
(uncoated) step that was averaged and subtracted to set the phase for this step to zero.
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h�x; y� and the published [11] refractive index for magnesium
fluoride, n�0.405 μm� � 1.3895,

ϕ�x; y� � 2πh�x; y�
λ

�n�λ� − 1�

B. DIC Microscopy
Each DIC image was acquired using a Zeiss Axio Imager with
an Epiplan NeoFluar HD DIC 10× (0.3 NA) objective. The mi-
croscope was set up to provide Köhler illumination. The illu-
minating white light passed through a linear polarizer, a
405 nm bandpass filter, and a condenser Nomarski prism
(DIC-I) before reaching the MgF2 test object. The bias/phase
offset for each image was controlled using the set screw in the
housing of the objective Nomarski prism. Images were cap-
tured with a color camera (Nikon Digital Sight, DS-Fi1).
The exposure on the camera was manually set to 1 ∕250 s.
All images were 2560 × 1920 pixels.

C. Phase Gradient Images
Gradient images in the two orthogonal directions were ac-
quired using a DIC microscope using the methods described
in Duncan et al. [7]:

1. acquire four DIC images with evenly spaced bias set-
tings (one full turn of the bias screw on the objective
Nomarski prism),

2. acquire four more images with the sample rotated so
that the DIC shear is at 90° with respect to the
first group,

3. rotate the images so that the direction of shear is along
the rows or columns of each image,

4. register the 0 and the 90° images,
5. do Carré phase stepping calculations to extract the

phase gradients in the x and y directions [7],
6. subtract a constant background phase gradient from

the gradient images, and
7. scale the phase gradients by the shear and pixel size to

obtainDx andDy with dimensions of radians/pixel [12],

The shear of the microscope at λ � 0.405 μm was
2.4λ ≈ 0.97 μm. The pixel size was 2.95 μm. The starting phase
derivative images are shown in Fig. 4.

The gradient images obtained in step 6 above were also pro-
cessed using spiral phase integration [4]. We did not include
mirror reflecting to mitigate edge effects, nor did we window
Arnison’s H�m;n� function to reduce high-frequency noise,
because neither issue arose.

5. RESULTS
The Carré algorithm recovers the phase gradients to within an
overall constant. The background constant for the phase gra-
dients is determined by selecting a portion of the image
(square in Fig. 4) that is known to have a constant value—
in our case a portion of the lowest step not coated with MgF2.

The derivative images Dx and Dy were subdivided into 32 ×
32 tiles. The phase across each tile was acquired using Eq. (2).
The unknown constants of integration were acquired using
Eq. (7) and added to the elements of each tile. The phase tiles

Fig. 5. Recovered phase in radians. The square indicates the region
that corresponds to the area measured with the AFM.

Fig. 6. (Color online) Phase estimates obtained using AFM (left) and DIC (right). The color bar on the right has units of radians. The vertical
dashed line indicates the phases graphed in Fig. 7.
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were then recombined into a single large phase image (Fig. 5)
using the tile stitching strategy described above.

The square in Fig. 5 shows the area of the test object
scanned using the AFM. The AFM and the DIC phase esti-
mates are shown in Fig. 6. The spiral phase integration result
was visually indistinguishable from the AFM result and is not
shown. Figure 7 is a comparison of the staircase phase pro-
files along the dashed lines in Fig. 6. Also included in this fig-
ure are the spiral phase integration results along the same line
of pixels. Finally, Fig. 8 shows the correlation of the AFM and
DIC phase estimates for every pixel in Fig. 6.

6. DISCUSSION AND CONCLUSIONS
As seen in Figs. 7 and 8, the agreement between the DIC-
derived phase estimate and that of the test object is very good;
correlation between phase estimates (Fig. 8) exceeds 0.99.
The 8% slope discrepancy can be attributed to uncertainty
in the estimate of the background phase gradient. The spiral
phase integration result is surprisingly good considering that

this phase object has significant low frequency content (which
is filtered out by algorithm).

We believe this is the first demonstration of the reconstruc-
tion of the quantitative phase of a tenuous object (analogous
to a thin biological specimen) using DIC phase stepping with
an unmodified microscope. Our particular approach has some
drawbacks: the need to collect eight DIC images, image regis-
tration, manual rotation of the sample, and subtraction of the
global phase gradient. Further, our stitching algorithm also
has matrices that grow rapidly with the number of tiles used.
On the other hand, there are a number of distinct advantages
to our approach. The Fried matrices are sparse and only need
to be inverted once, the Carré approach is expected to be in-
sensitive to absorption effects, and real biological samples are
not expected to exhibit background phase gradients.

One solution to the stitching algorithm described above
would be a straightforward pyramid application of the algo-
rithm. Another alternative that we have used is a sequential
stitching process that proceeds in a raster or serpentine fash-
ion. Such an algorithm performs nearly as well, and can be
applied to arbitrarily large images. Many of the disadvantages
of our approach can be obviated using active optical compo-
nents (that are not available in conventional DIC micro-
scopes). Finally, we have demonstrated an unambiguous
experimental validation of the concept.

Errors in the reconstruction algorithm are composed
of both intratile (reconstructor-based, Fig. 3) and intertile
(stitching-based) components. The phase gradient between
steps in the test image is too low (about 28 pixels ∕cycle at
the steepest step) to have significant intra-tile errors. How-
ever, the intertile artifacts can be seen in the reconstruction
of Fig. 5. Other reconstructors are possible, such as the
Hudgin [13,14] or Southwell [15]. For the Hudgin reconstruc-
tor, the intratile root-mean-square errors are lower than for
the Fried reconstuctor. However, the reconstructed tiles
(as in the Southwell case) have the same dimensions as the
gradient tiles. Consequently, there is not an extra row and col-
umn that overlap adjacent tiles, and the errors arising from tile
stitching are higher. For use of these alternative reconstruc-
tors, the strategy for developing the error vector, Ē, may have
to be modified.

Fig. 7. (Color online) Comparison phases obtained with the DIC, AFM, and SPI (spiral phase integration) techniques along the dashed lines shown
in Fig. 6.

Fig. 8. (Color online) Relationship between the phases of each pixel
determined using AFM (horizontal axis) and DIC (vertical axis)
methods. The least-squares fit is ϕDIC � −0.045� 1.08ϕAFM.
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Other effects remaining to be explored are those due to mis-
registration between the gradient images, noise, and the num-
ber of quantization levels. The effect of these details can be
characterized through simulation using a series of sinusoidal
fringe patterns and in terms of a global or local optical transfer
function [16,17]. Results of these studies will be the subject of
a future publication.
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