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Spatial and temporal variability of contaminants within estuarine
sediments and native Olympia oysters: A contrast between a developed
and an undeveloped estuary
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H I G H L I G H T S

• Spatio-temporal variability in contam-
inant deposition and uptake poorly
known

• Seasonal and spatial sampling of
oysters (biosphere) for contaminants
(anthroposphere)

• Sediment (lithosphere) sampled to
identify biota-sediment accumulation
factors

• Emerging and legacy contaminants
varied spatially and by season
(anthroposphere).
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Chemical contaminants can be introduced into estuarine andmarine ecosystems from a variety of sources includ-
ingwastewater, agriculture and forestry practices, point and non-point discharges, runoff from industrial, munic-
ipal, and urban lands, accidental spills, and atmospheric deposition. The diversity of potential sources contributes
to the likelihood of contaminatedmarinewaters and sediments and increases the probability of uptake bymarine
organisms. Despite widespread recognition of direct and indirect pathways for contaminant deposition and or-
ganismal exposure in coastal systems, spatial and temporal variability in contaminant composition, deposition,
and uptake patterns are still poorly known. We investigated these patterns for a suite of persistent legacy con-
taminants including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and
chemicals of emerging concern including pharmaceuticalswithin twoOregon coastal estuaries (Coos andNetarts
Bays). In themore urbanized Coos Bay, native Olympia oyster (Ostrea lurida) tissue had approximately twice the
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number of PCB congeners at over seven times the total concentration, yet fewer PBDEs at one-tenth the concen-
tration as compared to the more rural Netarts Bay. Different pharmaceutical suites were detected during each
sampling season. Variability in contaminant types and concentrations across seasons and between species and
media (organisms versus sediment) indicates the limitation of using indicator species and/or sampling annually
to determine contaminant loads at a site or for specific species. The results indicate the prevalence of legacy con-
taminants and CECs in relatively undeveloped coastal environments highlighting the need to improve policy and
management actions to reduce contaminant releases into estuarine and marine waters and to deal with legacy
compounds that remain long after prohibition of use. Our results point to the need for better understanding of
the ecological and human health risks of exposure to the diverse cocktail of pollutants and harmful compounds
that will continue to leach from estuarine sediments over time.

© 2016 Elsevier B.V. All rights reserved.

Metals
PCBs
Pesticides
Pharmaceuticals

1. Introduction

Estuarine and marine ecosystems provide the foundation for an
invaluable suite of ecosystem services, including provisioning, regulat-
ing, supporting, and cultural benefits (MEA, Millenium Ecosystem
Assessment, 2005). Over 50% of the global population currently resides
within 80 km of the coast, and ocean ecosystems are now recognized to
simultaneously be of great importance and under increased pressure
fromhuman populationsworldwide (UNEP, 2006). Pollutants including
persistent legacy contaminants and those of emerging concern present
an ongoing threat to marine ecosystems, and they have the potential to
damage and degrade a variety of ecosystem benefits as well as pose a
risk to human health (e.g., Fleming et al., 2006; Kimbrough et al.,
2008). Persistent legacy contaminants such as dichlorodiphenyltrichlo-
roethane (DDT) and polychlorinated biphenyls (PCBs) remain in the
environment long after they are introduced and several congeners are
potentially carcinogenic to humans and animals. Contaminants of
emerging concern (CECs) include pharmaceuticals, natural and synthet-
ic hormones, and chemicals in personal care products that, historically,
had less data available, butwhich, in recent years, have been recognized
as potentially serious environmental threats, particularly to the endo-
crine and reproductive systems (Glassmeyer et al., 2005). For example,
the sex ratio of white sucker fish (Catostomus commersonii) was biased
toward females and a large proportion of intersex fish was observed
downstream of wastewater treatment plant effluent that contained a
mixture of hormones and hormone-mimicking surfactant metabolites
(Vajda et al., 2008). Chronic exposure of a lake population of fathead
minnow (Pimephales promelas) to low concentrations (5–6 ng/L) of
the potent synthetic estrogen 17α-ethynylestradiol led to feminization
of males, altered oogenesis in females, and ultimately, a near extinction
of this species from the lake (Kidd et al., 2007).

Persistent contaminants and CECs may be introduced into the
environment from a variety of sources. For example, although com-
mercial use of PCBs is largely prohibited in the US, several uses are
still authorized including incorporation into electrical and railroad
transformers, natural gas pipelines, circuit breakers, and carbon-
less copy paper, and other applications (Oregon Department of
Environmental Quality, ODEQ, 2003). Agricultural lands are an
ongoing source of pesticides and herbicides, such as DDT and
its breakdown products (dichlorodiphenyldichloroethane [DDD]
and dichlorophenyldichloroethylene [DDE]), dieldrin, and chlordane.
Household waste and dust are sources of polybrominated diphenyl
ether (PBDE) flame retardants, which are used in motor vehicles, elec-
tronics and furniture (Schreder and La Guardia, 2014). Dioxins and fu-
rans are by-products emitted from a variety of industrial activities.
Metals such as mercury may be transported to water bodies during
wet deposition and overland runoff. Pharmaceuticals and personal
care products (PPCPs) are discharged into the environment fromhouse-
holds, hospitals, health-care facilities and other commercial operations.
Consumers can excrete prescription or non-prescription pharmaceuti-
cals at low concentrations, and excess pharmaceuticals are often
flushed down the drain. Compounds in personal care products, such
as alkylphenol-based surfactant metabolites present in soaps and

detergents, are also washed away in sinks, showers, and lavatories.
Consequently, wastewater treatment systems and onsite waste
(i.e., septic) systems provide pathways of entry for these compounds
into freshwater and marine systems (e.g., Paul et al., 1997; Conn et al.,
2010). Several pharmaceuticals are also used to raise livestock; these
compounds may be excreted by livestock and carried into rivers and
streams (Barnes et al., 2002).

Little information is available on the occurrence of CECs and other
contaminants in ecologically-sensitive areas such as estuarine and ma-
rine waters. Recent studies in Oregon revealed the presence of several
different types of contaminants in the Willamette and Columbia Rivers
which drain to the Oregon coast, within the Coos Estuary on the Oregon
coast, and in wastewater effluent discharged into these waterbodies
(Fig. 1; Hope et al., 2012; Morace, 2012; Nilsen et al., 2014; Pillsbury
et al., 2015). However, very little information exists about contaminant
concentrations in marine and estuarine organisms that occur in regions
where the human population is low (i.e., less than 100,000 people along
the entire Oregon coast). Historical sampling of marine organisms by
the National Oceanographic and Atmospheric Administration (NOAA)
Mussel Watch Program included mussel (Mytilus spp.) samples from
six sites along the Oregon coast. This long term monitoring did not in-
clude CECs or Olympia oysters (Ostrea lurida; Kimbrough et al., 2008).
Other coastal monitoring efforts such as EPA's National Coastal
Condition Assessment do not include bivalves, which are important
foundation species that filter feed and thereby accumulate chemical
compounds. In the 1990s, sampling of softshell clams, oysters, and
Dungeness crab in Coos Bay detected contaminants including butyltins
and metals (ODEQ, personal communication).

Since exposure to multiple CECs with different modes of action may
be a coast-wide ecological problem and potential human health issue,
we examined the types and concentrations of contaminants and
spatio-temporal variability of those compounds in two Oregon estuar-
ies. Accumulation of persistent compounds and CECs in marine life has
implications for ecological community structure, recreational and tribal
shellfishing, and potential health consequences for human consumers
(Guéguen et al., 2011; Gaw et al., 2014). The native Olympia oyster,
the target species for this study, has drastically declined in abundance
and distribution along the Pacific coast since the mid-1800s (White
et al., 2009). In Oregon, several groups including NOAA, the South
Slough National Estuarine Research Reserve, the Oregon Department
of Fish and Wildlife, and The Nature Conservancy recently initiated ac-
tions to facilitate and guide restoration of Olympia oysters (Rumrill,
2010; Wasson et al., 2015). Recent sampling to examine CEC levels
in Dungeness crabs (Cancer magister), California mussels (Mytilus
californianus), and Oregon's coastal environment detected a suite of
persistent legacy contaminants and CECs (Rodriguez del Rey, 2010;
Granek, unpublished data).

Here we present new information about the chemical compounds
and contaminant concentrations in sediment and oyster tissues from
two Oregon estuaries that differ in the level of municipal, residential
and industrial development. Our specific hypothesis is that persistent
legacy contaminants and CECswill be elevated in sediments and oysters
sampled from Coos Bay where municipal and residential development
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is extensive. Althoughmoderate in urbanization compared to other U.S.
estuaries, Coos Bay is considered urban is comparison to other Oregon
estuaries. In contrast, we anticipate that contaminant levels will be
low in Netarts Bay where residential development is much lower and
industrial operations are non-existent. Both sites are inhabited by sig-
nificant and recovering populations of native Olympia oysters. We also
expect that seasonal variability (e.g., fromprecipitation) and spatial var-
iability (e.g., from land-use practices and population density) contribute
to variability in the concentrations of environmental contaminants ob-
served in the estuarine sediments and oyster tissues.

2. Methods

2.1. Study sites

Olympia oysters (Ostrea lurida) were historically abundant but have
been lost frommuch of their native range along theUSWest Coast (Beck
et al., 2011). In Oregon, populations persist in Coos Bay, Yaquina Bay,
and Netarts Baywhere native oyster restoration efforts and commercial
shellfish operations have helped enhance the populations. We focused
our sampling within Coos Bay and Netarts Bay (Fig. 1, Table 1) where
sufficient numbers of Olympia oysters can be collected without harm
to the recovering populations.

Netarts Bay is a small lagoonal estuary with a very low human pop-
ulation density (Table 1). Rural residential development is concentrated
along the north and eastern shoreline, and scattered homes and small
farms occur throughout thewatershed. Less than 1000 residents inhabit
the shoreline and watershed of Netarts Bay (U.S. Census Bureau, 2008),
which does not receive any major discharges from eitherWWTPs or in-
dustries. The upper Netarts watershed is managed primarily for com-
mercial forest production (1914 km2; 65.9%) and the lower elevation
lands are used predominantly for agriculture (62 km2; 2.1%). Netarts
Bay is not dredged and is classified as a Conservation Estuary by the Or-
egon statewide land-use planning system.

In contrast, Coos Bay, a drowned river-mouth estuary, is the largest
estuary located entirely within Oregon, and the surrounding area is
inhabited by the largest human population along the Oregon coast
(Table 1). In 2010, a total of about 25,000 residents lived in the primary
cities of Coos Bay and North Bend (U.S. Census Bureau, 2008), andmany

thousand more people reside in smaller towns located along the shore-
line (e.g., Charleston, Barview, Empire, Glasgow, Eastside, Englewood,
and Millington). The estuary receives effluent from two major WWTPs
as well as stormwater run-off from the surrounding population center.
The coastal watershed is managed for commercial forest production
with a small amount of agricultural lands (Table 1). The Coos estuary
has experienced a long legacy of shoreline municipal development
and industrial operations, including development of the cities and bay
as centers for commercial fishing and seafood processing, ship-
building, maritime commerce, railroad operations, commercial truck-
ing, wood products mills, and shoreline dairy operations. The naviga-
tional channel of the Coos estuary is routinely dredged to a depth of
45 ft below MLLW (mean low water), and the bay is classified as a
Deep-Draft Development Estuary by the Oregon statewide land-use
planning system. Coos Bay currently leads the state of Oregon in com-
mercial mariculture of Pacific oysters (Crassostrea gigas).

2.2. Field sampling

Oyster samples were collected three times (summer 2013, fall 2013
and spring 2014) at each site from a single location in the respective es-
tuary (Table 2). Olympia oysters were collected during low tide at sites
identified by ODFW as having sufficient numbers of oysters to support

Fig. 1. a) Map of Oregon illustrating study sites. Insets show sampling sites at b) Netarts Bay and c) Coos Bay, with urban areas, coastal rivers and estuaries, wastewater treatment plants
(WWTPs), and onsite waste treatment systems highlighted.Watersheds are 10-digit hydrologic units (USDA [US Department of Agriculture], 2015). Locations ofWWTPs and onsite waste
treatment systems obtained from Oregon Department of Environmental Quality (2015).

Table 1
Characteristics of Coos and Netarts Bays (USEPA, 2009). OWTS= onsite waste treatment
system, WWTP= wastewater treatment plant.

Characteristic Netarts Bay Coos Bay

General location Northern Oregon coast Southern Oregon coast
Estuary classification Conservation Deep draft development
Area of estuary 9.4 km2 54 km2

Watershed area 2,951 km2 2,332 km2

Annual precipitation 229 cm 163 cm
Shoreline population b1000 N25,000
Land use Forest, rural residential,

agricultural
Residential, industrial

Distance to WWTP 6.0 km 2.1 km
OWTS density in watershed 0.055 OWTS/sq km 0.021 OWTS/sq km
# of WWTPs in
watershed

0 3
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collection of 70–100 individuals (T. D'Andrea, pers. comm.). All mem-
bers of the collection teamwore gloves and hats during field collection,
and gloves, hats andmaskswereworn during sample processing to pre-
vent contamination. Ambient seawater (1 L) was also collected at low
tide from the immediate vicinity of the oyster bed to provide rinse
water for the processing of oyster gut contents in the laboratory. The
Olympia oysters had shell lengths between 30–46 mm and a total wet
weight of 4–14 g (shell + tissue).

Sediment samples were collected one time during summer 2013 at
low tide from tidal flat areas adjacent to the oyster beds. The sediment
samples were collected at one location per estuary at a recently drained
intertidal area that lacked emergent terrestrial vegetation, and the sub-
strata consisted largely of unconsolidated mud. A 1 m2 quadrat was se-
lected at random from the tideflat, and a plastic scoop was used to
remove the uppermost 5 cm of sediment from five locations within
the quadrat. Each sediment sample was sieved in the field through a
2 mm stainless steel mesh into a stainless steel mixing bowl, homoge-
nized by stirring, transferred into a clean glass collection jar, and placed
on ice. A new scoopwas used for each sample site, and the stainless steel
sieve and bowl were rinsed between sites with de-ionized water and
then rinsed with ambient seawater.

The oyster and sediment data collected in this study were
complemented by similar data for soft shell clams collected by Oregon
Department of Fish & Wildlife (ODFW) and analyzed by ODEQ.

2.3. Sample preparation

Individual Olympia oysters were collected by hand, wrapped in alu-
minum foil and transported on dry ice to the laboratory where they
were weighed and measured. Oysters prepared for CEC analysis were
subsequently shucked, dissected to expose the gut, and rinsed with am-
bient seawater to remove mud, sand, and food particles. Groups of 10
oysters were then double packaged in foil wraps, bagged, and frozen
at −80 °C. Oyster samples collected in summer 2013 were split into
two groups: (1) half were sent by vehicle to the Oregon Department
of Environmental Quality (ODEQ) analytical lab in Hillsboro, OR, USA
formeasurement of persistent contaminants; and (2) half were shipped
(via air/ground transportation) frozen on wet ice to AXYS Analytical
Laboratory in Sidney, British Columbia, Canada, for CEC analysis. Per
EPA protocol (USEPA, 2000), oysters selected for analysis ofmetals, pes-
ticides and other legacy contaminants were not dissected upon return
from the field. Oyster samples collected in fall 2013 and spring 2014
were only sent to AXYS Analytical Laboratory for analysis. Tissue and
sediment samples analyzed by ODEQ were prepared for analysis by
freeze drying and storage at −20 °C. Oyster tissue samples processed
by the AXYS Analytical Laboratory were also stored at −20 °C.

2.4. Analysis

Sediments and oyster tissue collected from Netarts and Coos Bays
were analyzed for metals, PCBs, PBDEs, pesticides and dioxins/furans,
PPCPs, and alkylphenols as described in Table 2 (individual compounds
listed in the Supporting Information). Oyster tissue samples were ana-
lyzed at AXYS Analytical for PPCPs and alkylphenols. Detailed informa-
tion about the analytical methodology is available in the Supporting
Information. Briefly, samples were analyzed for a total of 59 PPCPs by
solvent extraction followed by analysis by high performance liquid
chromatography coupled to a triple quadrupole mass spectrometer
(LC–MS/MS).

Oyster tissue samples from spring 2014 were analyzed for four
alkylphenols (4-nonylphenol, 4-n-octylphenol, 4-nonylphenol
monoethoxylate, and 4-nonylphenol diethoxylate) at AXYS Analytical
by solvent extraction followed by LC–MS/MS.

Tissue samples from summer 2013 were analyzed at the ODEQ lab-
oratory for several classes of inorganic and organic contaminants. Fol-
lowing EPA 6020A, tissue samples were freeze dried, digested and
analyzed for three metals (arsenic, cadmium, and selenium) on an in-
ductively coupled plasma mass spectrometer. Mercury in oyster tissue
was analyzed following EPA 7473 on a thermal decomposition atomic
absorption spectrometer. Digestion and analysis for inorganic arsenic
occurred following EPA 1632A on an atomic absorption spectrometer.
Samples were extracted for four main classes of organic contaminants,
PCBs (EPA 1668), PBDEs (EPA 1614), dioxins and furans (EPA 1613)
and legacy pesticides (EPA 1699), and analyzed on a gas chromatograph
high resolution mass spectrometer; Butyltins were extracted and ana-
lyzed on a gas chromatograph flame photometric detector following
the CAS SOC-Butyl internal reference (based on EPA 515.4 Rev 1) by
ALS Environmental Laboratory in Kelso, Washington (certified by the
Oregon Laboratory Accreditation Program; ORELAP). Tissue results are
reported in wet weight (Cw) based on the following: Cw = (Cd ∗ %
solids) / 100, where Cd = concentration measured in dry weight.

Sediment samples from summer 2013 were analyzed by the ODEQ
laboratory for the same classes of contaminants following the same
methods as the tissue samples. Fifteen additional metals and mercury
were analyzed from the sediments, and inorganic arsenic was not ana-
lyzed in sediment. Butyltins in sediment were measured following the
same method used for oyster tissues. Sediment results are reported in
dry weight.

2.4.1. Quality control and reporting
Triplicate samples of tissue were analyzed at all sites during all sea-

sons. Quality control samples were includedwith each batch of 20 sam-
ples for all methods in accordance with each laboratory's quality
assurance plan. Each batch contained a laboratory blank, blank spike,
matrix spike, and matrix spike duplicate. The inorganic arsenic method
also included a laboratory duplicate. A tissue or sediment standard or
certified reference material was included in each batch of samples ana-
lyzed by ODEQ (Table 3). In contrast, sample batches for mercury anal-
ysis included a laboratory blank, laboratory duplicate, and standard
referencematerial. When available, isotopically-labeled surrogate com-
pounds were added to AXYS Analytical samples prior to extraction. The
use of isotope dilution/recovery correction in each sample allows for
compensation of loss of a target compound during the extraction and
cleanup process.

At the ODEQ laboratory, initial instrument calibrations included at
least three non-zero standards for linear calibrations and five non-
zero standards for non-linear calibrations. Calibration verifications
were performed and utilized second source standards when available.

All quality control sample results were compared to acceptable
limits for the laboratory protocol. If results were outside acceptable
ranges, any affected sample results were flagged according to method-
specific requirements, project reporting requirements, or laboratory
standard operating procedures. Surrogate spike recoveries were

Table 2
Chemical groups analyzed by season and sample type. (Analyzing laboratory: ODEQ, Oregon
Department of Environmental Quality; AXYS, AXYS Analytical, LTD. PCBs=polychlorinated
biphenyls; PBDEs=polybrominated diphenyl ethers; PPCPs=pharmaceuticals and personal
care products. See Appendix Tables for complete list of parameters.)

Season Sample type Analyzing
laboratory

Oyster Sediment

Summer 2013 Metals Metals ODEQ
PCBs PCBs ODEQ
PBDEs PBDEs ODEQ
Dioxins/furans Dioxins/furans ODEQ
Pesticides Pesticides ODEQ
PPCPs No sample AXYS

Fall 2013 PPCPsa No sample AXYS
Spring 2014 PPCPs No sample AXYS

Alkylphenols No sample AXYS

a Analyzed at Coos Bay only.

872 E.F. Granek et al. / Science of the Total Environment 557–558 (2016) 869–879



generally acceptable and are reported in the Supporting Information.
Only acceptable quality data are reported below. For example, results
are reported as not detected if the concentration in an environmental
sample was less than two times the concentration detected in the asso-
ciated laboratory blank sample. Eythromycin-H2O, 4-nonylphenol and
4-nonylphenolmonoethoxylate were detected in laboratory blank sam-
ples, resulting in censoring of one or more environmental samples. For
AXYS Analytical methods, concentrations in environmental samples
thatwere less than two times the blank detection limit andwere not de-
tected in the blank samplewere qualifiedwith a “^” in Table 4, andwere
not included as detections in subsequent calculations and associatedfig-
ures, with the exception of the PCA analysis. For ODEQ methods, only
detections above the reporting limit are included, with the exception
of reporting for the Total Substituted TEQ. This calculation involves the
sum of isomers, some of which may have a concentration above the in-
strument signal to noise ratio but below the reporting limit. ODEQ data
of known quality (Category “A”) and data of known but lesser quality
(Category “B”) are reported while data of unacceptable quality (Catego-
ry “C”) are not reported. Original data, associated qualifiers, and qualifi-
er descriptions for ODEQ analyses are housed in ODEQ Laboratory Data
Repository and are reported in the Supporting Information. Finally, we
examined spatial and temporal patterns in PPCP occurrence in oyster
tissue using multivariate statistics. We performed a principal compo-
nents analysis (PCA) on the concentrations of PPCPs in oysters during
the spring and summer sampling periods, as we were limited to time

frames when the same analytes were tested at both sites. The PCA was
performed in R version 3.1.3 (R Development Core Team, 2015).

Biota-sediment accumulation factors (BSAFs) compare the concen-
tration of a given contaminant measured in an organism to the concen-
tration of the contaminant measured in the sediment (Shirneshan and
Bakhtiari, 2012). BSAFs were calculated by dividing the summer 2013
oyster tissue concentration by the sediment concentration.

3. Results

3.1. Oyster tissue

Chemical detections and concentrations varied by estuary, time
period and compound category. All of the compound groups, with the
exception of dioxins/furans, were detected in oyster tissue during
at least one season (Tables 4 and 5). Of the CECs, three (of 4 tested)
alkylphenols and five (of 59) PPCPswere detected. The pharmaceuticals
detected included antibiotics, an antihistamine, and an anti-
inflammatory substance (Table 4). One (of 4) heavy metals (mercury)
and 13 (of 69) pesticides, including four DDT breakdown products
were detected. Twelve (of 37) PBDE congeners and 102 (of 194) PCB
congeners were detected (Table 5). The only individual dioxin or
furan detected above the reporting limit was octachlorodibenzodioxin
(OCDD) in oyster tissue from Coos Bay.

The pattern of contaminant detections varied between estuaries
(Fig. 2) with no clear signal of higher contamination at the urbanized
site across all contaminant categories. For example, in summer 2013,
nearly twice the number of PCB congeners were detected in oyster tis-
sue from Coos Bay as compared to Netarts Bay. A total of 102 PCB con-
geners with a summed concentration of 59,500 ng/kg dry weight
were detected in Coos Bay. In contrast, only 55 PCB congeners with a
summed concentration of 7690 ng/kg dry weight were detected in
Netarts Bay. This difference in concentration is not fully explained by
lipid content, which averaged 1.45% of wet weight in Coos Bay and
0.99% of wet weight in Netarts Bay oysters. On the other hand, we ob-
served more PBDE detections and higher concentrations in Netarts
Bay (Table 5, Fig. 2). Twelve PBDE congeners were detected in Netarts
Bay for a summed concentration of 54,300 ng/kg dry weight. Only five
PBDE congeners were detected in Coos Bay with a summed concentra-
tion of 5460 ng/kg, approximately ten times lower than the concentra-
tion in Netarts Bay (Table 5). Three PBDE congenerswith OregonHealth
Authority screening values were detected in oyster tissue (at levels
below the screening values): congeners 99, 153, and 209, as well as 9
other congeners: 15, 17, 28, 47, 49, 66, 71, 100, and 154 (Table 5).

The pharmaceuticals detected during summer 2013 (diphenhydra-
mine and naproxen) differed from those detected during spring 2014
(azithromycin and sulfamethoxazole), and no pharmaceuticals were
detected in oyster tissue collected during fall 2013. No personal care
products were detected. The detection limits at AXYS Analytical Labora-
tory are extremely low, typically less than 0.5 μg/kg, so lack of detection
is unlikely due to insufficient sensitivity. Our examination of seasonal
and spatial patterns of PPCPs in oyster tissue using principal compo-
nents analysis demonstrates that the two sites were similar in the
summer but highly divergent in the spring (Fig. 3).

3.2. Bed sediment

Individual compounds from each of the persistent chemical groups
were detected in sediment collected in summer 2013 (Table 6). Twelve
(of 17 tested) heavy metals, nine (of 69) pesticides, two (of 17) conge-
ners of dioxins/furans, 2 (of 37) PBDEs, and 84 (of 194) PCB congeners
were detected in sediments collected in summer 2013 (Table 6).

Occurrence and concentrations in the sediment were similar be-
tween sites for some compound groups and varied between sites for
other compound groups. Occurrence and concentrations of metals and
dioxins/furans were similar between sites. Elevenmetals were detected

Table 3
Methods used to analyze legacy contaminants in oyster tissue and sediment samples.

Matrix Method(s) Standard reference material

Tissue EPA 1668, 1614, 1699 NIST SRM 1947, Lake Michigan fish tissue
Tissue EPA 1613 None available
Tissue EPA 6020A NIST SRM 2976, mussel tissue
Tissue EPA 1632A CNRC CRM TORT-2, lobster hepatopancreas

tissue
Tissue EPA 7473 CNRC CRM DOLT 2, dogfish liver
Sediment EPA 1668, 1613, 1699 NIST SRM 1944, NY/NJ waterway sediment
Sediment EPA 1614 None available
Sediment EPA 6020A NIST SRM2702, inorganics in marine sediment
Sediment EPA 7473 NIST SRM 2709, San Joaquin soil

Table 4
Concentrations (μg/kg wet weight) of detected alkylphenols and pharmaceuticals in oys-
ter tissue by season and location. ND, not detected. Bold indicates anunqualified detection.

Parameter Season Location

Netarts Bay Coos Bay

4-Nonylphenol⁎ Spring 31.6 19.5, 20.0
4-n-Octylphenol⁎ Spring 1.38, 1.52, 1.93 1.94, 2.06, 2.35
Nonylphenolmonoethoxylate⁎ Spring ND 2.22, 2.50
Nonylphenoldiethoxylate⁎ Spring 0.533, 0.765,

0.879^
0.861, 0.921, 0.935^

Azythromycin Spring 3.24 0.898^, 2.12
Sulfamethoxazole Spring ND 2.76
Furosemide Spring ND 18.7^

Hydrochlorothiazide Spring 6.77^ ND
Ibuprofen Spring ND 10.5^

Naproxen Spring 1.92^ 1.91^

Cloxacillin Summer 5.13
(estimated)

ND

Diphenhydramine Summer ND 0.403^, 0.505, 0.512
Erythromycin-H2O Summer 0.960^ 0.939^

Sulfadiazine Summer 0.782, 0.785^ 0.703, 0.770^

Virginiamycin M1 Summer 3.94^ ND
Naproxen Summer ND 3.39
Triclocarban Fall Not analyzed 1.61^

Diphenhydramine Fall Not analyzed 0.26^

⁎ Sampled in Spring 2014 only.
^ Concentration less than two times the detection limit.
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Table 5
Concentrations (ng/kg) of detected legacy contaminants in oyster tissue collected from Netarts Bay and Coos Bay, OR, summer 2013.
na=not applicable; ND=not detected; NAF=not analyzed for. *Oregon Health Authority Standard Operating Guide, 2013.
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in Netarts Bay ranging from 0.027 (total mercury) to 16,600 (aluminum)
mg/kg dryweight and 12metalswere detected in Coos Bay, ranging from
0.024 (totalmercury) to 17,600 (aluminum)mg/kg dryweight. The diox-
inOCDDwasdetected at 282 and295ng/kg dryweight atNetarts Bay and
Coos Bay, respectively. The dioxin 1,2,3,4,5,6,7,8-HpCDD was detected at
25.4 and 28.1 ng/kg dry weight at Netarts Bay and Coos Bay, respectively.
Percent organic carbon was slightly higher in the sediment collected in
Netarts Bay (1.3%) in comparison with Coos Bay (1.1%).

Occurrence and concentrations of pesticides, PBDEs, and PCBs in
the sediment varied between sites. Nine pesticides were detected in
Coos Bay sediments, including four DDT breakdown products (34.9–
236 ng/kg dryweight) and chlordanes. In contrast, only three pesticides
were detected in Netarts Bay: two DDT breakdown products at lower
concentrations than in Coos Bay, and hexachlorobenzene, which was
detected at a concentration more than 50 times higher than in Coos
Bay (8270 vs. 150 ng/kg dry weight, respectively).

Similar to oyster tissues, more PCB congeners were detected in Coos
Bay (84) than in Netarts Bay (38), resulting in higher concentrations of
PCBs in Coos Bay (4100 ng/kg dry weight) as compared to Netarts Bay
(1590 ng/kg dry weight). In contrast, PBDEs were detected only in the
sediments fromNetarts Bay (2 detected congeners for a total concentra-
tion of 165.3 ng/kg dry weight).

3.3. Comparison of oyster tissue and sediment

The number of compounds detected and concentrationswere differ-
ent in oyster tissue as compared to nearby sediment in both bays. For
example, 12 PBDE congeners were detected at much higher concentra-
tions in oyster tissue as compared to two congeners detected at low
concentrations in sediment. Of the 12 pesticides detected in oyster tis-
sue, only seven of those also were detected in sediment, and two addi-
tional pesticides were detected only in sediment. More PCB congeners
were detected and at higher concentrations in oyster tissue than in sed-
iment (Fig. 4). For example, in Netarts Bay (Fig. 4a), 42 PCB congeners
were detected in oyster tissue versus 32 in sediment, of which only 24
were common to both matrix types. The eight congeners only detected
in sediment were high molecular-weight congeners (PCB-128 and
higher). Similarly, in Coos Bay (Fig. 4b), 84 congeners were detected
in oyster versus 69 in sediment. Six of the seven congeners only detect-
ed in sediment were high molecular-weight congeners (PCB-185 and
above). This suggests that the oyster tissue PCB congener pattern may
reflect some degree of degradation to lower molecular-weight conge-
ners during uptake and incorporation into the tissue, whereas the

sediment PCB congener pattern may more closely represent the conge-
ner pattern of the PCB sources.

Biota-sediment accumulation factors (BSAFs) compare the concen-
tration of a given contaminant measured in an organism to the concen-
tration of the contaminant measured in the sediment (Shirneshan and
Bakhtiari, 2012). Calculated BSAFs were N2 for DDTs, chlordanes,
PBDEs, and PCBs (Table 7), indicating that oysters are macro-
concentrators of these compounds (Franklin et al., 2010). BSAFs for di-
oxins/furans were b1 indicating deconcentration from sediment to
biota (Franklin et al., 2010) or a lack of comparability between sediment
and tissue concentrations measured in this study. BSAFs for mercury
(Hg) were also high. Hg tends to have high BSAFs for benthic infauna
that experience uptake of mercury via direct contact with sediments
and pore water, and for fish and other biota that occupy a high trophic
position and accumulate Hg through dietary intake (Taylor et al., 2012).

4. Discussion

Contaminant types and concentrations in Olympia oysters and sedi-
ments differed substantially betweenNetarts and Coos Bays, at the sam-
ple locations studied (Fig. 2, Tables 4, 5 and 6). Considering all
detections, PPCPswere detectedmore frequently in the samples collect-
ed from Coos Bay; surprisingly, compounds that were detected within
both estuaries (alkylphenols) occurred at similar concentrations
(Table 4). We observed relatively large differences in oyster tissue con-
centrations of Hg, total PBDEs, and total PCBs between the two estuaries
(Table 5). The spatial patterns between CECs and PBDEs differed, while
CECs followed a similar pattern to PCBs. Coos Bay had a higher frequen-
cy of detection andhigher concentrations of CECs, PCBs, andHgwhereas
Netarts Bay had more congeners and higher concentrations of PBDEs. It
is notable that the spatial pattern is different for CECs and PBDEs since
they are often assumed to derive from a similar wastewater source.
This finding indicates that the source of CECs and PCBs to these water-
sheds may be different than that of PBDEs since the latter compounds
can be dispersed through the air aswell as through an aqueousmedium
(USEPA, 2013). The higher concentrations and greater diversity of CEC
and PCB compounds in Coos Baymay be attributed to themore urban na-
ture and higher population density (over 25,000 residents) in the Coos
Bay area. The urban area comprises 2.6% of the Coos Bay watershed,
whereas urban areas make up less than 1% of the Netarts watershed
(0.4%). The source of PBDEs to Netarts Bay is unknown. Since we

Fig. 2. Overlap of contaminants in oyster tissue by type across Netarts Bay (NB) and Coos
Bay (CB) and across the three seasons sampled. The overlap (CB &NB) represents the
number of compounds found at both sites; outside the overlap is the number of
compounds found at one site only. The site(s) with the highest number of contaminants
in a category are in bold. Pharm = pharmaceuticals, Pest = pesticides, D/F = dioxins/
furans, PCB refers to biphenyl homolog groups.

Fig. 3. Principal components analysis (PCA) of pharmaceutical and personal care product
concentrations in oyster tissue during spring and summer from Coos Bay (grey) and
Netarts Bay (black). Arrows represent specific compounds, whereas circles represent
site and season sampling scores.
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only sampled one location in each estuary, there may be within-
estuary variability in contaminant type and concentration not
accounted for here.

In addition to the differences between locations, the types and con-
centrations of contaminants detected in oyster tissues differed among
the seasonal sampling periods (Fig. 3). The pharmaceuticals detected
during summer 2013 (diphenhydramine and naproxen) differed from
those detected during spring 2014 (azithromycin and sulfamethoxa-
zole) (Table 4) and no PPCPswere detected during fall 2013. There is lit-
tle data in the literature on concentrations of pharmaceuticals in oysters.
Seasonal differences in contaminant types and concentrationsmaybedue
to the combination of variability in use of certain chemicals, different re-
lease rates driven by rainfall and processing time in waste treatment sys-
tems, and the efficiency with which oysters can both accumulate and

depurate organic contaminants within a one to two month period
(Sericano et al., 1996). For example, frequently used non-prescription
pharmaceuticals such as the anti-inflammatory naproxen and the anti-
histamine diphenhydramine likely have a pseudo steady-state input
into the environment in wastewater effluent from: (1) large, municipal
treatment plants; and (2) small private septic systems (e.g., Meador et
al., 2016). Both of these compounds were detected in the tissue of Olym-
pia oysters, albeit at low concentrations (naproxen b 2 μg/kg dry weight;
diphenhydramine b 0.6 μg/kg dry weight), in multiple seasons. In con-
trast, prescription pharmaceuticals such as the antibiotics azithromycin
and sulfamethoxazole typically are prescribed for a short period of time
(10–30 days), therefore their input into the environment is expected to
be more sporadic. Seven different prescription pharmaceuticals were
each measured once (2 detected and 5 estimated) at different times of
the year. Seasonal variables (influenza season, storm events, summer vis-
itation at the coast, etc.) may affect the presence and concentrations of
these chemicals. In addition, seasonal precipitation may deposit
atmospherically-derived chemicals and transport land-derived chemicals
into adjacent water bodies, particularly during combined sewer overflow
events. However, prolonged precipitation may increase freshwater flows
and dilute chemical concentrations in the groundwater, rivers, streams,
and estuaries.

Once in the environment, contaminants and other chemicals are
subject to transformation by different processes, such as photolysis, vol-
atilization and microbial degradation. In addition, hydrophobic com-
pounds such as PCBs and PBDEs may sorb to sediment which may
make them less bioavailable to certain pelagic organisms or more bio-
available to benthic organisms that live or feed near bottom sediment.
Native wild-stock Olympia oysters may be exposed to both dissolved
and suspended sediment-bound contaminants during filter feeding.
Transplanted American oysters (Crassostrea virginica) have been
shown to bioaccumulate low molecular weight PCBs at concentra-
tions nearly equal to those of indigenous oysters over a period of
30–48 days. For high molecular weight PCBs, transplanted oysters
fail to reach equivalent concentrations after 50 days (Sericano
et al., 1996). When oysters are temporarily exposed to PCBs
(e.g., congeners 77, 126), the half-lives of these congeners are
reached after 28 and 51 days respectively, due to depuration. Chron-
ically contaminated oysters took 42 and 60 days, respectively, to
depurate half of the original concentrations of these two PCBs.
Depuration to half the original concentration of tetrachlorinated
biphenols, 2,3,7,8-TCDD and 2,3,7,8-TCDF was around 36 days. Oys-
ters take longer to depurate more toxic PCB congeners (Gardinali
et al., 2004). These uptake and depuration rates may explain why
variability in PPCP types was observed across seasons in the Olympia
oysters sampled from Coos and Netarts Bays.

In a companion study, soft shell clams (Mya arenaria) were also col-
lected by ODFW and analyzed by ODEQ concurrently with our analysis
of Olympia oysters (ODEQ, personal communication). Soft shell clams
typically have a lower lipid content (about half) in comparison with
the oysters. Soft shell clams collected from Isthmus Slough (a tidal
inlet tributary into Coos Bay) contained contaminants similar to those
found in the Olympia oysters collected nearby, but the clams had half
the concentrations of PCBs and chlordane byproducts of the oysters,
likely due to the 50% lower lipid content in clams. Soft shell clams col-
lected from Isthmus Slough exhibited a greater diversity of PBDEs but
at similar concentrations as those found in the oyster tissue, despite
the lower lipid content in the clams. Soft shell clamswere also collected
from Tillamook Bay, a few miles north of Netarts Bay (no clams were
collected from Netarts Bay). The soft shell clams from Tillamook Bay
had a lipid content about half that of the Netarts Bay oysters, so oys-
ters are expected to have about twice the contaminant concentration
as the clams, assuming a consistent regional source. Yet at Netarts
Bay, PBDE levels were 8–10 times higher in the oysters than in the
soft shell clams from Tillamook Bay, indicating a localized or water-
shed source of PBDEs into Netarts Bay. PCB congeners were much

Table 6
Concentrations of detected heavy metals and legacy contaminants in sediments collected
from Netarts Bay and Coos Bay, OR in summer 2013. ND=not detected; NAF=not ana-
lyzed for.

Parameter Location Units (dry weight)

Netarts Bay Coos Bay

Total organic carbon 1.3 1.1 Percent
Percent solids 59.8 72.6 Percent

Metals
Aluminum, total 16,600 17,600 mg/kg
Arsenic, total 7.14 5.81 mg/kg
Barium, total 28.1 27.2 mg/kg
Chromium, total 29.9 32 mg/kg
Cobalt, total 6.3 8.53 mg/kg
Copper, total 10.4 17.3 mg/kg
Lead, total 5.17 13.2 mg/kg
Manganese, total 145 224 mg/kg
Mercury, total 27,000 24,000 ng/kg
Nickel, total 16.5 36.2 mg/kg
Tri-n-butyltin ND 2.6 μg/kg
Zinc, total 50.6 63.8 mg/kg

Pesticides
2,4′-DDD ND 65.6 ng/kg
4,4′-DDD 34.0 236 ng/kg
4,4′-DDE 70.8 91.4 ng/kg
4,4′-DDT ND 34.9 ng/kg
Alpha-BHC ND 25.4 ng/kg
Alpha-chlordane ND 35.3 ng/kg
Beta-BHC ND 15.5 ng/kg
Gamma-chlordane +
trans-nonachlor

ND 57.8 ng/kg

Hexachlorobenzene 8,270 150 ng/kg

Dioxins/furans
1,2,3,4,6,7,8-HpCDD 25.4 28.1 ng/kg
1,2,3,4,6,7,8-HpCDD as TEQ 0.254 0.281 ng/kg
OCDD 282 295 ng/kg
OCDD as TEQ 0.0845 0.0885 ng/kg
Total 2378 substituted dioxins 307 323 ng/kg
Total 2378 substituted furans 3.91 ND ng/kg
Total 2378 substituted TEQ 0.377 0.369 ng/kg

PBDEs
PBDE-99 138 ND ng/kg
PBDE-153 27.3 ND ng/kg
Total PBDEs (sum of 37 congeners) 165.3 ND ng/kg

PCBs
Total monochloro biphenyls NAF NAF ng/kg
Total dichloro biphenyls NAF NAF ng/kg
Total trichloro biphenyls 10 164 ng/kg
Total tetrachloro biphenyls 227 533 ng/kg
Total pentachloro biphenyls 719 1010 ng/kg
Total hexachloro biphenyls 528 1330 ng/kg
Total heptachloro biphenyls 37 597 ng/kg
Total octachloro biphenyls ND 403 ng/kg
Total nonachloro biphenyls 30 30 ng/kg
Total decachloro biphenyls 39 32 ng/kg
Total PCBs (sum of 194 congeners) 1590 4100 ng/kg
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more diverse in the oysters from Netarts Bay than in the soft shell
clams from Tillamook Bay, although tissue levels were comparable
after accounting for differences in lipid content (ODEQ, unpublished
data).

We are unaware of any data on contaminant classes or concentrations
in Ostrea lurida in Oregon or elsewhere. However, similar contaminant
classes and concentrations have beenmeasured in several species of oys-
ters (Crassostrea spp.) at locations around theworld. TheUSNational Oce-
anic and Atmospheric Administration (NOAA) Mussel Watch Program
measured several contaminants in Crassostrea oysters over 20 years at a
number of sites in the SoutheasternAtlantic andGulf ofMexico coastlines.
Total DDTs ranged from 1000 to 202,000 ng/kg dry weight (1700–
2500 ng/kg dry weight in our study), PCBs from 4000–
157,000 ng/kg dry weight (7640–59,400 ng/kg dry weight in our
study), and Hg from 0 to 330,000 ng/kg dry weight (222,000–
833,000 ng/kg dry weight in our study) across all oyster sites

(Kimbrough et al., 2008). These levels indicate that Ostrea lurida tissue
Hg concentrations in Oregon are high, PCBs are moderate, but DDTs are
low in comparison with Crassostrea oysters from the US Atlantic coast
and the Gulf of Mexico. Guéguen et al. (2011) report 3000–
20,000 ng/kg of Hg in oysters sampled from the marketplace in France,
lower than in the oysters sampled for this study. Oysters from Arcachon
Bay, France had 30,000 ng/kg freshweight Hg, also lower than those sam-
pled in Oregon; 5.2 × 103 ng/kg fresh weight of PCBs (sum of 6 conge-
ners), intermediate between the two sites sampled in Oregon;
2.3×103 ng/kg freshweight of DDT/DDE/DDD (sum), comparable to con-
centrations in Oregon's oysters; and 0.23 × 103 ng/kg fresh weight of lin-
dane (α, ϒ\\HCH) (Devier et al., 2005), higher than the concentrations
detected inOlympia oysters fromCoos andNetarts Bays. It isworthnoting
that although Coos Bay is considered urban for the Oregon Coast, with a
population density well below 50,000, it would not be classified as an
urban estuary in other US states.

Fig. 4. Polychlorinated biphenyl (PCB) congener pattern in oyster tissue and sediment from (A) Netarts Bay and (B) Coos Bay. The Coos Bay x-axis was truncated for viewing: congener
132 + 153 = 9530 ng/kg dry weight; congener 138 + 163 = 4000 ng/kg dry weight; congener 149 = 4600 ng/kg dry weight.
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Concentrations of legacy contaminants measured in the oyster tis-
sues fromCoos Bay andNetarts Baywerewell belowOregonHealth Au-
thority screening values designed to protect human health (Table 5;
Oregon Health Authority, OHA Environmental Public Health Section,
EPH, 2013). However, there are no federal or state guidelines for CECs
such as PPCPs or for cumulative consumption screening values across
contaminant types. This is, in part, because different classes of contam-
inants act on different biological processes, and because little research
has examined additive or synergistic effects of lower concentrations of
multiple contaminant classes on biological endpoints for marine organ-
isms or humans. Although the detections reported from the present
study arewell below established screening values, the number of differ-
ent compounds detected raises the question of whether low concentra-
tions of diverse compounds with different modes of action may be of
concern for vulnerable populations.

Variability in contaminant types and concentrations across seasons
and between species andmedia (organisms versus sediment) indicates
the limitation of using indicator species, of sampling one medium as a
proxy for another, and/or of sampling only annually to determine
contaminant loads at a given site or for specific species. These findings
highlight the need for bettermetrics to determine contaminant concen-
trations across time and space. The compoundmixtures detectedwithin
twoOregon estuaries elucidate the need to developmodels that identify
potential thresholds of compound mixtures to safeguard ecological
communities and human health. Given the serious decline in popula-
tions of native Olympia oysters along the Pacific coast, future research
could examinewhether environmental contaminants should be consid-
ered as an additional stressor contributing to their decline.

Our new data provide a baseline for contaminant concentrations in
sediments and Olympia oyster tissue within two Oregon estuaries. As
coastal populations grow and the use of prescription and non-
prescription pharmaceuticals continues to rise (Gu et al., 2010), it is in-
creasingly important to develop effective monitoring strategies and
tools to detect changes and understand the effects of multiple contam-
inants on marine organisms and the humans who consume them.
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