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Abstract

The basic question of this paper is: If you consider two iterated function
systems close to one another in an appropriate topology, are the dimensions
of their respective invariant sets close to one another? It is well-known that
the Hausdorff dimension (and Lebesgue measure) of the invariant set do not
depend continuously on the iterated function system. Our main result is
that (with a restriction on the ‘non-conformality’ of the transformations) the
Hausdorff dimension is a lower semi-continuous function in the C1-topology
of the transformations of the iterated function system. The same question is
raised of the Lebesgue measure of the invariant set. Here we show that it is
an upper semi-continuous function of the transformations. We also include
some corollaries of these results, such as the equality of box- and Hausdorff
dimensions in these cases.

A preprint of an early version of this paper appeared in [29] in January,
1997. 1

11991 Mathematics Subject Classification. Primary 28A80; Secondary 28A78.



1 Introduction

In mathematics, as well as in the sciences, iterated function systems are
commonly encountered and the dimensions of the associated invariant sets
are considered to be important characteristics. The question we are ulti-
mately interested in is: Suppose one has two slightly differing variants of an
iterated function system (different digitizations, say, of the same underlying
physical process). Is it likely that we will find two very different dimensions?

The answer we establish below is that the Hausdorff dimension is a semi-
continuous function of the iterated function system, provided that the sys-
tems satisfy a weak conformality condition. This was known in some confor-
mal cases, see [1]. An important corollary is that the Hausdorff dimension
of the invariant set equals the so-called box dimension, which is much easier
to calculate. Again this was observed in special cases ([3], [1]). The question
that remains open is how scarce these discontinuities really are. In special
cases, there are some results ([24], [10], [23]). We will come back to this at
the end of the introduction.

Let H(Ī) be the space of compact subsets of the closed unit ball Ī in IRn

and equipped with the Hausdorff metric. An iterated function system is a
family of contracting mappings on IRn that map I into I. This induces a
map from H(Ī) to itself. In the standard examples, including those given at
the end of this introduction, these families of mappings are finite. For the
purposes of the theorems they only need to form a compact set in a suitable
topology. The appropriate topologies will be introduced later on.

Definition 1.1 Let F be a collection of contracting homeomorphisms on
IRn. The associated iterated function system is the map φF : H(Ī) → H(Ī),
determined by

φF (A) = ∪f∈Ff(A) .

The fact that such iterated function systems are contractions, provided
F is a finite set, was observed by [8]. Then, if A ∈ H(Ī), it follows that
{φn

F (A)}n converges uniformly to a uniquely defined compact set Λ(F) (the
fixed point). Furthermore, Λ(F) is invariant under φF and is given by the
intersection

Λ(F) =
⋂

n>0

φn
F (Ī) .

By definition, then, this fixed point is a compact set for which we have:

φF (Λ) = Λ .
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For completeness, we include the definitions of the Hausdorff dimension
and the limit capacity of a set. A thorough treatment of these topics is
found in [4].

Definition 1.2 Let Vδ be the collection of covers of a set C whose members
have diameter less than or equal to δ, and let

Hd
δ(C) = inf

V∈Vδ

∑

Vi∈V

|Vi|
d .

The Hausdorff dimension Hdim (C) of C is given by:

Hdim (C) = inf{d such that lim
δ→0

Hd
δ(C) = 0} .

Definition 1.3 Let C be a compact set in IRn. The limit capacity (also
known as the upper box counting dimension) dc(C) of C is given by:

dc(C) = lim sup
δ→0

ln νC(δ)

− ln δ
,

where νC(δ) is the minimum number of balls of radius δ needed to cover C.

In order to formulate the main results of the paper, we define spaces IG0

and IK1 of contractions on I and put topologies on them.
The space IG0 is intended for a study of the Lebesgue measure of Λ, and

is given a topology induced by the C0-metric on the space of continuous
mappings.

For the distortion estimates in section 4 and the dimension estimates in
section 5, it is vitally important to have control over the derivatives. Thus
to be able to work with the dimension, we introduce another space. IK1 is
a subspace consisting of contracting diffeomorphisms with uniformly Hölder
continuous derivatives.

In each case (IG0 and IK1), the metric induces a Hausdorff metric on the
space of compact sets of contracting functions. These metric spaces, whose
elements are compact subsets of IG0 and IK1, will be denoted H(IG0) and H(IK1)
respectively. The purpose of section 2 is to define all these notions carefully.
It is easy to check, once the precise definitions have been presented, that
if F is a point in one of these metric spaces, then φF and Λ(F) are well
defined, just as in the case when F is a finite set. We define two functions:

2



Definition 1.4 Let µ : H(IG0) → IR+ be the function that assigns the
Lebesgue measure of Λ(F) to F .

Definition 1.5 Let Hdim : H(IK1) → IR+ be the function that assigns the
Hausdorff dimension of Λ(F) to F .

In section 3 we prove the following result.

Theorem A The function µ is upper semi-continuous on H(IG0).

As it happens, the theory involving derivatives is quite subtle. Our
proofs require, in Section 5, the added assumption that the system is semi-
conformal.

Definition 1.6 A subset F ⊂ IK1
α,C is called semi-conformal if

lim
n→∞

max
fi∈F , x0∈Ī

1

n
ln ‖ (D(fn · · · f1)|x0

) ‖ · ‖ (D(fn · · · f1)|x0
)−1 ‖= 0 .

The subset SS ⊂ H(IK1) is the collection of semi-conformal systems F . When
F is semi-conformal, we also say that the induced contraction φF is semi-
conformal.

Note that this is more general than conformal. For example, if the
derivatives of each of the functions in F are constant and equal, then it can
be seen without much difficulty that the assumption of semi-conformality is
equivalent to the assumption that the eigenvalues are equal in modulus.

The proof of the main theorem uses estimates of ratios of derivatives
of long compositions taken at different points. Distortion calculations of
this sort have been done before in the case of one-dimensional systems. In
section 4, we do these calculations for arbitrary dimension.

Definition 1.7 The subset IO ⊂ H(IK1) is the collection of systems F satis-
fying the strong separation condition. That is, F consists of finitely many
functions fi and there is an open set V containing Λ(F) such that fi(V ) ∩
fj(V ) is empty whenever i 6= j.

In section 5, we prove two results that imply the following:

Theorem B The function Hdim : H(IK1) → IR is continuous on SS ∩ IO
and lower semi-continuous on SS.

Corollary C On SS the Hausdorff dimension and the limit capacity are equal.
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The equality of the limit capacity is important because the limit capacity
lends itself to numerical calculations, and because it is the concept used in
embedding theorems (see [21]). It should be pointed out that in [3], Falconer
presents distortion estimates which could be used to show that conformal
systems satisfy Theorem 4 in that paper and therefore give rise to attractors
whose Hausdorff dimension and limit capacity are equal.

The principal result, however, is the semi-continuity for semi-conformal
systems. Earlier work on the semi-continuity of Hausdorff dimension was
done for systems in IR1, for example, in [18]. There it was shown for piece-
wise monotonic expanding maps of an interval into IR that the Hausdorff
dimension of the invariant set is lower semi-continuous in the C1-topology.

The examples below will show that continuity does not hold under our
hypotheses unless we include the strong separation condition. There are
results in the literature that prove continuity in special circumstances that
take the place of the strong separation condition. For example, in [14] and in
[16] one finds proofs of the continuity of the Hausdorff dimensions of a hyper-
bolic invariant set and its intersections with stable and unstable manifolds,
for diffeomorphisms on a compact 2-manifold without boundary. It is also
shown in these papers that under certain hypotheses, the Hausdorff dimen-
sion and the limit capacity are equal. In [25], Takens obtains related results
for hyperbolic diffeomorphisms in dimension 2. In some cases smoothness of
the dimension can also be proved. For example, in [19] it is shown that the
Hausdorff dimension of the Julia set of a rational function depends analyt-
ically on the function (if the function is expanding on its Julia set). Other
researchers have related the Hausdorff dimension to other quantities, such
as the Lyapunov exponents [30].

Here are some examples to illustrate the subtlety of the problem we are
studying. Note that they establish that the functions mentioned are not
continuous.

For t ∈ [0, 1/2], let Ft be given by {fi}
2
i=0 where































f0(x) =
x

3

f1(x) =
x + t

3

f2(x) =
x + 1

3

Note that each function maps the unit interval into itself, thus the system
is a contraction of H([0, 1]) into itself. The dimension and measure of the
invariant set now depend only on the parameter t.
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Theorem 1.8 Let Ft be the system just described. Then
i) If t = p/q is rational and pq ≡ 2(mod3) then µ(t) = 1/q.
ii) If t = p/q is rational and pq ≡/ 2(mod3) then Hdim (t) < 1.
iii) For all irrational t, µ(t) = 0.
iv) For almost all t, Hdim (t) = 1.

The condition that pq ≡ 2( mod 3) is equivalent to the condition that the
{0, p, q} is a complete set of representatives of the coset space ZZ/3ZZ. The
first result in Theorem 1.8 is a special case of a result proved in [7], with a
more geometrical proof in [26]. The second statement is implied by Theorem
4.1 of [11] and Theorem 2.3 of [27]. The third part of the theorem is due
to [12]. the last part follows from a general theorem by Marstrand ([13]).
These results are also described in [10].

It is clear that in the system of this theorem the Hausdorff dimension
is not continuous as a function of t. The question now arises how scarce
these discontinuities are. Furstenberg conjectured that for this example the
values of t mentioned in part ii) are the only discontinuities. That is: For all
Irrational t, Hdim(t) = 1. In [10] and independently in [24] it was proved
that for certain Liouville numbers the Hausdorff dimension is 1. In [23] it
was proved that if t is irrational, the Hausdorff dimension is always greater
then 0.767.

Another example is given by the following family of systems Gλ given by
{fi}

2
i=0 where











f0(x) = λx
f1(x) = λ(x + 1)
f2(x) = λ(x + 3)

Using techniques very different from ours, Pollicott and Simon [17], in answer
to a question posed by Keane, have recently shown that for almost all λ <
1/3 the Hausdorff dimension Hdim (Gλ) is equal to − ln 3/ lnλ, while there is
a dense subset of [1/4, 1/3] such that if λ belongs to this set then Hdim (Gλ)
is strictly less than − ln 3/ lnλ. (This is related to a problem considered by
Erdös: for which λ ∈ [1/3, 1] is the invariant density related to this system
singular with respect to Lebesgue measure (see [22]) and referenced therein).

Acknowledgments: We are grateful to Marcelo Viana for useful conver-
sations on an early version of Theorem 5.6. A preprint version of this paper
appeared in [29] in January, 1997.

5



2 Definitions

Let Ī be the closed unit ball in IRn. The space H(Ī) is the collection of
compact subsets of Ī. For any compact A, denote its ǫ-neighborhood in Ī
by Nǫ(A). We topologize H(Ī) by endowing it with the Hausdorff metric
Hd :

IfA1, A2 ∈ H(Ī) , then Hd (A1, A2) = max{ǫ1, ǫ2}

where ǫi = inf{ǫ|Nǫ(Ai) ⊃ Aj |j 6= i} .

With this topology H(Ī) becomes a complete, compact metric space (see [8]).
More generally, if X is any metric space we can use the same construction
define a Hausdorff metric on the space H(X) of all compact subsets of X.

We now present precise definitions of the spaces IG0 and IK1 of contrac-
tions.

Definition 2.1 The space IG0 is the set of all uniform contractions f : I → I
(for each f ∈ IG0 there is a number 0 < L < 1 such that for any x, y ∈ I
we have d(f(x), f(y)) ≤ L · d(x, y)). IG0 is a metric space with the following
metric:

d0(f, g) = sup{|f(x) − g(x)| : x ∈ I} .

We also let IG0
L denote the subset of IG0 consisting of all contractions with

Lipschitz coefficient L.

Lemma 2.2 If F is a compact subset of IG0
L, that is, if F ∈ H(IG0

L), then
φF is a contraction on H(Ī). In particular, φF is continuous.

Proof: The proof is easy, and is left to the reader.

When in Section 3 we prove the semi-continuity of the measure of Λ(F)
as a function of F , the topology we will be using is that induced by the
Hausdorff metric on H(IG0) and on its subspace H(IG0

L):

Hd 0(F ,G) =

inf{ǫ : ∀ f ∈ F ∃ g ∈ G such that d0(f, g) < ǫ and

∀ g ∈ G ∃ f ∈ F such that ∋ d0(f, g) < ǫ} .

To work with the Hausdorff dimension we need to establish control of the
derivatives of the elements of F . This is done in the following definitions:

6



Definition 2.3 The space IK1 is the set of uniformly contracting diffeomor-
phisms f from Ī to I, with the C1-metric:

d1(f, g) = sup
x∈I

(

|f(x) − g(x)|+ ‖ Df|x − Dg|x ‖
)

Note that by definition IK1 is a subset of IG0. Once again, the estimates
in Section 5 require also the uniform Hölder continuity of the derivative.

Definition 2.4 Let α and C be positive constants. The space IK1
α,C is the

subset of IK1 consisting of all f satisfying

‖ Df|x − Df|y ‖≤ C · |x − y|α .

IK1
α,C is a metric subspace of IK1.

Note that this time, if F is a compact subset of IK1, then there is nec-
essarily a uniform contraction factor 0 < L < 1 for F , and this holds true
even for a sufficiently small neighborhood of F in IK1.

Definition 2.5 A differentiable iterated function system is a map

φF : H(Ī) → H(Ī)

induced by a compact subset F of IK1; that is, by F ∈ H(IK1).

When in Section 5 we prove the semi-continuity of the Hausdorff dimen-
sion of Λ(F) as a function of F , the topology we will be using is that induced
by the Hausdorff metric on H(IK1) and on its subspace H(IK1

α,C). That is,

Hd 1(F ,G) =

inf{ǫ : ∀ f ∈ F ∃ g ∈ G such that d1(f, g) < ǫ and

∀ g ∈ G ∃ f ∈ F such that d1(f, g) < ǫ} .

7



3 The Measure Estimate

We will show that if F ∈ H(IG0
L) then F is a point of upper semi-continuity

of the function µ. The modulus of semi-continuity is estimated in terms of
the limit capacity of the boundary of the invariant set. As far as we are
aware these results have not been published by other authors.

As is well-known, the fixed point set is a continuous function of F . More
precisely:

Proposition 3.1 Hd (Λ(F), Λ(G)) ≤
Hd 0(F ,G)

1 − L
.

Proof: Observe that by the triangle inequality

Hd (Λ(F), Λ(G)) = Hd (φFΛ(F), φGΛ(G))

≤ Hd (φFΛ(F), φFΛ(G)) + Hd (φFΛ(G), φGΛ(G))

≤ L · Hd (Λ(F), Λ(G)) + Hd 0(F ,G) .

Theorem A The function µ : H(IG0
L) → IR is upper semi-continuous.

Proof: The function µ is the composition of Λ (which is continuous by
Proposition 3.1), and the Lebesgue measure function on H(Ī), which we
will also denote by µ since no confusion is possible. It suffices to prove that
the latter is semi-continuous.

Suppose Λ0 ∈ H(Ī) and suppose ǫ > 0 is given.
Clearly, the neighborhoods N1/n(Λ0) form a collection of monotone de-

creasing sets with
lim

n→∞
N1/n(Λ0) = Λ0 .

Since µ is a continuous measure this implies that

lim
n→∞

µ(N 1
n
) = µ( lim

n→∞
(N 1

n
)) = µ(Λ0) .

Therefore, if n is large enough Hd (Λ, Λ0) < 1
n implies µ(Λ) < µ(Λ0) + ε.

Notice, that the semi-continuity is not uniform (it can’t be according to
the examples in the introduction). But we can, in fact, estimate its modulus.

In the following, ∂Λ denotes the boundary of the set Λ.
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Proposition 3.2 Suppose Λ0 ∈ H(Ī), and d > d0 = dc(∂Λ0). Then for
any ǫ > 0 and sufficiently small ∆ > 0 the following is true: If Λ ∈ N∆(Λ0),
then

µ(Λ) ≤ µ(Λ0) + ǫ∆n−d .

Proof: Observe that ∂Λ0 can be covered by p(∆)∆−d0 balls of radius ∆,
where by definition

lim sup
∆→0

ln p(∆)

− ln∆
= 0 .

If we increase the radius of each of these balls to 3∆, keeping their centers
fixed, then the larger balls, together with Λ0 will cover N∆(Λ0). Thus, if
Kn is the volume of the unit ball in IRn,

µ(Λ) ≤ µ(Λ0) + µ(N∆(∂Λ0))

≤ µ(Λ0) + (3∆)nKn · p(∆)∆−d0 .

= µ(Λ0) + (3∆)nKn · (p(∆)∆δ) · ∆−d0−δ .

The term (p(∆)∆δ) tends to zero. Hence, for δ = d − d0 and ∆ sufficiently
small we have that the product 3n · Kn · (p(∆)∆δ) is less than ǫ.

Corollary 3.3 Fix F0 ∈ IG0
L. Then for d > dc(∂Λ(F0)), and for any ǫ > 0

and sufficiently small ∆ > 0 the following is true:

F0 ∈ IG0
L and d(F ,F0) ≤ ∆ ⇒ µ(Λ(F)) ≤ µ(Λ(F0)) + ǫ∆n−d .

This relation is very useful in the context of Theorem 1.8: Fix t0 to be an
irrational number, and approximate it by rational numbers of the form p/q
with the property that pq ≡ 2(mod3) (it is easy to see that these rationals
are dense). One sees that

µ(
p

q
) ≤ µ(t0) + ǫ

∣

∣

∣

∣

t0 −
p

q

∣

∣

∣

∣

1−d

.

Since in this case the boundary of Λ(F0)) equals the entire set Λ(F0)) (be-
cause its measure is zero), and by Corollary C, we may take Hdim (t0)
instead of dc(∂Λ(F0)). Again using Theorem 1.8, we see that µ(p/q) = 1/q
and that µ(t0) = 0. Thus for any ǫ > 0 and p/q sufficiently close to t0

d > Hdim (t0) ⇒
1

q
≤ ǫ

∣

∣

∣

∣

t0 −
p

q

∣

∣

∣

∣

1−d

.

This is used in [24] to obtain estimates for the dimension for some irrational
t0. (Kenyon [10] obtained these estimates via a different method.)
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4 The Distortion Estimate

In one dimension, there is an elegant theory to obtain distortion estimates.
This theory is described in various research papers and expository works
(for example [6], [15] and [28]). The first step in this line of thought is the
following. Consider the forward orbit of an interval I0 under a function f
and write Ii = f(Ii−1). Let |ln |Df ||α denote the α-Hölder norm of the
logarithm of the derivative Df of f (restricted to the forward orbit of I0).
The distortion is the ratio of derivatives of high iterates of f on a small
interval I0. It is given by the following expression (see the references listed
above).

sup
x0,y0∈I0

| ln

∣

∣

∣

∣

Dfn(x0)

Dfn(y0)

∣

∣

∣

∣

| ≤ |ln |Df ||α ·
∑

i

|Ii|
α . (4.1)

In this section we mimic the derivation of the above estimate for dimen-
sions greater than one. Also we will not be iterating a single function, but
rather a sequence of functions picked from a compact set fixed beforehand.
The latter generalization complicates the notation, but not the mathematics.

There is a classical distortion theory for conformal maps. Distortion
for non-conformal maps has also been investigated by various authors in
several papers ([9], [5]). In these papers a condition is established that
guarantees that the image of a sufficiently small ball B under a composition
g of contractions satisfies: there are constants c1 and c2 such that

c1Dg (B) ⊂ g(B) ⊂ c2Dg (B) .

In our context we need something stronger: we need to establish that the
image of a ball is not too far away from a ball (see theorem 4.10).

Let us start by outlining the general idea of the estimates. Suppose
F is a compact set of diffeomorphisms in IK1

α,C . Consider B0 = I and a
sequence of contractions fi ∈ F . Define fi(Bi−1) = Bi. We will express the
distortion, or nonlinearity, in terms of a sum of powers of the diameters of
the regions Bi, just as in the one-dimensional case, except that now there
will be a penalty for non-conformality. More precisely, choose two points x0

and y0 in B0 and denote the images of xi−1 and yi−1 under fi by xi and
yi. The usual operator norm is written as ‖ · ‖. To construct the higher
dimensional analogue of the left hand side of (4.1) we define

Cn = Cn(fn, · · · f1; x0, y0) =
(

D(fn · · · f1)|x0

)−1
·
(

D(fn · · · f1)|y0

)

. (4.2)

The idea is to obtain estimates for the logarithm of supx0,y0∈Ī,fj∈F
‖ Cn ‖.
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Definition 4.1 For F ∈ IK1, we define the distortion as

D(n) = max
i≤n

sup
x,y∈Ī,fj∈F

| ln ‖Ci(fi, · · · f1; x, y)‖| .

The system is said to have bounded distortion if D(n) is uniformly bounded.

In Corollary 4.4 below we will show that for compact subsets of K1
α,C ,

bounded distortion is a consequence of semi-conformality. To simplify the
discussion of the relationship between semi-conformality and bounded dis-
tortion, as well as the estimates that follow in this section and the next, we
introduce the following notation:

Definition 4.2 Suppose F ⊂ IK1. Then we define

Q(n) ≡ max
i≤n

sup
fi∈F ,x0∈Ī

ln ‖ (D(fi · · · f1)|x0
) ‖ · ‖ (D(fi · · · f1)|x0

)−1 ‖ .

Note that by Definition 1.6, F is called semi-conformal if Q(n)/n tends
to zero.

Here is the main estimate of this section. For X ⊂ IRn, |X| denotes its
diameter. Also, Sn−1 denotes the standard unit sphere in IRn.

Theorem 4.3 Let F ∈ H(IK1
α,C) and let Cn and Bj be as defined earlier.

Then there is a constant κ such that for all vectors v ∈ Sn−1

| ln |Cnv|| ≤ κ ·
n−1
∑

j=0

eQ(j) · |Bj |
α .

Proof: For n ≥ 1 let

δn = (Dfn|xn−1
)−1(Dfn|yn−1

) − Id . (4.3)

Note that because F and Ī are compact, there is a uniform upper estimate
for ‖(Df|x)−1‖ on F × Ī. By the assumption of uniform Hölder continuity
it then follows that

‖ δi ‖≤ κ · |Bi−1|
α .

Now

Cn+1 =
(

D(fn · · · f1)|x0

)−1
· ( Id + δn+1) ·

(

D(fn · · · f1)|y0

)

=
(

D(fn · · · f1)|x0

)−1
· ( Id + δn+1) ·

(

D(fn · · · f1)|x0

)

Cn

11



=
(

Id + (D(fn · · · f1)|x0
)−1 · δn+1 · D(fn · · · f1)|x0

)

Cn

=
(

Id + (D(fn · · · f1)|x0
)−1 · δn+1 · D(fn · · · f1)|x0

)

·
(

Id + (D(fn−1 · · · f1)|x0
)−1 · δn · D(fn−1 · · · f1)|x0

)

· · · ( Id + δ1) .

Therefore, using Schwarz’ inequality (twice) and the triangle inequality, we
obtain that

‖ Cn+1 ‖≤
n

∏

j=0

(

1+ ‖ (D(fj · · · f1)|x0
)−1 ‖ · ‖ δj+1 ‖ · ‖ D(fj · · · f1)|x0

‖
)

.

(4.4)
Note that the matrices Cn are invertible and that

(Cn(fn, · · · f1; x0, y0))
−1 = Cn(fn, · · · f1; y0, x0) .

Thus ‖ C−1
n+1 ‖ also satisfies equation (4.4). Since

‖ C−1
n ‖−1≤ |Cnv| ≤‖ Cn ‖ ,

we now obtain the estimate for | ln |Cnv|| upon taking logarithms.

Corollary 4.4 If F ∈ H(K1
α,C) and F is semi-conformal, then F has

bounded distortion.

Proof: From Definition 2.4 it follows that there is a uniform contraction
rate L < 1. Choose k > 0 such that e−k = L. By Theorem 4.3,

D(n) ≤ κ · 2α ·
n−1
∑

j=0

e
j(

Q(j)
j

−kα)

≤ A +
∞
∑

j=N

e−jτ

= A +
e−Nτ

1 − e−τ
,

for suitable positive constants κ, A, τ and N .

In the remainder of this section, we discuss the relation between deriva-
tives and sizes of domains. In particular, we will apply our distortion result
to obtain an estimate, in terms of D(n) and Q(n), of the diameters of images
of balls under F . We begin with two simple consequences of the definitions
of D(n) and Q(n):
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Proposition 4.5 Let F ∈ H(IK1). Then for all x0 and y0 in Ī and each
unit-vector v there is a unit-vector w(v) such that

∣

∣

∣

∣

∣

ln
|D(fn · · · f1)|x0

(w(v))|

|D(fn · · · f1)|y0
(v)|

∣

∣

∣

∣

∣

≤ D(n) .

Proof: Note that

D(fn · · · f1)|x0
(Cnv) = D(fn · · · f1)|y0

(v)

We choose w(v) = Cnv
|Cnv| . Then

|D(fn · · · f1)|x0
(w(v))|

|D(fn · · · f1)|y0
(v)|

=
1

|Cnv|
.

Now take logarithms and apply Definition 4.1.

The following proposition improves on Proposition 4.5 in that it shows
that, up to distortion and deviation from conformality, the asymptotic rate
of contraction is independent of the direction in the tangent space as well
as initial point.

Proposition 4.6 Let F ∈ H(IK1). Then for all points x0, y0 ∈ I and for all
unit vectors u at x0 and v at y0,

∣

∣

∣

∣

∣

ln
|D(fn · · · f1)|x0

(u)|

|D(fn · · · f1)|y0
(v)|

∣

∣

∣

∣

∣

≤ D(n) + Q(n) .

Proof: We write this as
∣

∣

∣

∣

∣

ln
|D(fn · · · f1)|x0

(w(v))|

|D(fn · · · f1)|y0
(v)|

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ln
|D(fn · · · f1)|x0

(u)|

|D(fn · · · f1)|x0
(w(v))|

∣

∣

∣

∣

∣

.

To the first term we apply the previous result. The second is calculated with
the help of

‖ (D(fn · · · f1)|x0
)−1 ‖−1 |u| ≤ |(D(fn · · · f1)|x0

)(u)| ≤‖ D(fn · · · f1)|x0
‖ |u| ,

and the definition of Q(n).

We now begin our discussion of the effect of F on the diameters of balls.

13



Lemma 4.7 Let A and B be connected compact sets in IRn and suppose in
addition that A is convex. Suppose that g : A → B is a diffeomorphism.
Then there are a point a+ ∈ A and a vector va+ ∈ Ta+A (the tangent space
of A at a+) such that

|Dg|a+
(va+)|

|va+ |
≥

|B|

|A|
.

Proof: Let w and z in B be such that |w−z| = |B| and let x = g−1(w) and
y = g−1(z). Connect x and y by a straight segment γ ⊂ A (by the convexity
of A) and parameterize this curve by arc length (|Dγ| = 1). Then

|B| =

∣

∣

∣

∣

∣

∫ |x−y|

0
Dg(γ(t)) · Dγ(t) dt

∣

∣

∣

∣

∣

≤ |A| · max
x∈A

‖ Dg|x ‖ .

Now choose a+ to be the point where the maximum is assumed.

Lemma 4.8 Let A be a closed ball and B be a set in IRn. Suppose that
g : A → B is a diffeomorphism. Then there is a point a− ∈ A and a
va

−

∈ Ta
−

A such that
|Dg|a

−

(va
−

)|

|va
−

|
≤

|B|

|A|
.

Proof: From elementary calculus, we know that

∫

A

|detDg|x|

vol(A)
dnx =

vol(B)

vol(A)
.

The right hand side of this equation is the average of the positive function
|detDg|x|. Thus there is a a− ∈ A such that

|detDg|a
−

| ≤
vol(B)

vol(A)
.

Denote the eigenvalues of Dg|a
−

by {λi}n
i=1 (counting multiplicity). Observe

that vol(B) is no greater than the volume of a ball with diameter |B|. Thus

n
∏

i=1

|λi| ≤
|B|n

|A|n
.

By taking logarithms and dividing by n, it becomes obvious that the average
of {ln |λi|}

n
i=1 is no greater than ln |B|

|A| . Thus there must be an eigenspace
Va

−

of Dg|a
−

satisfying the lemma.
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These two lemmas imply the higher dimensional version of the mean
value theorem that we will use in the next section.

Corollary 4.9 Let A be a closed ball and B a set in IRn. Suppose that
g : A → B is a diffeomorphism. Then there is a point a ∈ A and a v ∈ TaA
such that

|Dg|a(v)|

|v|
=

|B|

|A|
.

Proof: Note that the transformation

T : TA → IR+

defined by

T (x, v) =
|Dg|x(v)|

|v|

is continuous and TA is path-connected. The result is thus a consequence
of the previous lemmas.

We now use these results to derive a general statement about scaling in
contracting maps.

Theorem 4.10 Let F ∈ H(IK1) and suppose that fa and fb are composi-
tions of at most n functions of F . Then for any ball B, x ∈ B, and v ∈ TxB
we have:

i)

∣

∣

∣

∣

ln

(

|fafb(B)|

|fa(B)|
·

|B|

|fb(B)|

)
∣

∣

∣

∣

≤ 2Q(n) + 2D(n) .

ii)

∣

∣

∣

∣

∣

ln
|Dfa|x(v)|

|v|

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

ln
|fa(B)|

|B|

∣

∣

∣

∣

+ Q(n) + D(n) .

Proof: We first prove i). The expression in the theorem can be written as:

∣

∣

∣

∣

ln

(

|fafb(B)|

|B|
·

|B|

|fa(B)|
·

|B|

|fb(B)|

)∣

∣

∣

∣

With the help of Corollary 4.9, we get

|fafb(B)|

|B|
=

|(Dfa · Dfb)|x(vx)|

|vx|
=

|Dfa|y(vy)|

|vy|

|Dfb|x(vx)|

|vx|
,

15



where vy is a unit vector in the direction of Dfb|x(vx). The other derivatives
can also be calculated with the help of the same corollary, to give

(

|fafb(B)|

|fa(B)|
·

|B|

|fb(B)|

)

=
|Dfa|x1

(v1)|

|Dfa|x2
(v2)|

·
|Dfb|y1

(w1)|

|Dfb|y2
(w2)|

.

The result now follows from Proposition 4.6.
Now we prove ii).

ln
|Dfa|x(v)|

|v|
= ln

|Dfa|q(v0)|

|v0|
+ ln

|Dfa|x(v)|

|Dfa|q(v0)|
,

where q and v0 are chosen such that Corollary 4.9 applies and the second
term of the left hand side is evaluated with the help of Proposition 4.6.
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5 The Dimension Estimate

We prove that if F ∈ H(IK1
α,C) is a semi-conformal differentiable iterated

function system, then it is a point of lower semi-continuity of the func-
tion that evaluates the Hausdorff dimension. We note here that if F is a
one-dimensional system with finitely many branches and satisfying a strong
condition on the distance of the individual branches, then the Hausdorff di-
mension varies continuously (see [25] or [20] for more information). Without
that condition, it is clear that the dimension is not continuous as observed
in the introduction. Nonetheless, the proof of the semi-continuity given here
has some resemblance to Takens’ proof.

For a given system F ∈ H(IK1), we choose positive constants K = K(F)
and k = k(F) such that for all f ∈ F and x ∈ I ,

(‖ (Df|x)−1 ‖)−1 > e−K ;

‖ Df|x ‖ < e−k .
(5.1)

Note that by continuity (5.1) automatically holds for all F ′ in a IK1 - neigh-
borhood of F (see Definition 2.3).

A dynamic cover U of Λ(F) is a finite cover by open sets each of which
can be written as f1 · · · fn(I), fi ∈ F .

Lemma 5.1 Suppose F ∈ IK1. Then for each n > 0, there is a dynamic
cover Un of Λ(F) such that for all U ∈ Un:

2e−2Q(n)−2D(n)−nk−K ≤ |U | < 2e−nk .

Furthermore, all elements of Un are of the form fm · · · f1(I) with m ≤ n.

Proof: Consider a sequence α = {fi}
∞
i=1 of elements of F . For each n > 0

let gα,n = f1 ◦ f2 ◦ · · · ◦ fin , where n is the smallest positive integer for which

|gα,n(I)| = |f1 ◦ f2 ◦ · · · ◦ fin(I)| < 2e−nk .

We claim that then also

2e−2Q(n)−2D(n)−nk−K ≤ |gα,n(I)| . (5.2)

Certainly this is true when n = 1, for i1 = 1, and

2e−K ≤ |f1(I)| < 2e−k

17



by (5.1) and Corollary 4.9. We continue by induction. Suppose (5.2) holds
for n = m. Note that it follows from (5.1) that either im+1 = im (in which
case (5.2) follows immediately for n = m+1) or im+1 = im +1. In the latter
case we have

2e−(m+1)k ≤ |gα,m(I)| < 2e−mk . (5.3)

Also, as a consequence of (5.1) and Theorem (4.10) we then have

|gα,m+1(I)| = |gα,m ◦ fim+1(I)| = Cm
|fim+1(I)|

|I|
|gα,m(I)| ,

where
Cm ≥ e−2Q(m)−2D(m)

and

e−K ≤
|fim+1(I)|

|I|
< e−k .

Combining this with (5.3) we get

e−2Q(m)−2D(m)−(m+1)k−K ≤ |gα,m+1(I)| ,

which implies (5.2) and so completes the induction.
Now we let Un = {gα,n(I) : α a sequence in F}. Un is a covering of

Λ(F) because for each x ∈ Λ(F) there is an infinite sequence α = {fi}
∞
i=1

such that
x =

⋂

n>0

f1 ◦ · · · ◦ fn(I) .

Since fn(I) ⊂ I it follows that we also have

x =
⋂

n>0

f1 ◦ · · · ◦ fn(I) .

In particular, x ∈ gα,n(I) ∈ Un. The result follows from the compactness of
Λ(F).

For each n, let Fn denote the compositions of elements of F that define
the dynamic cover Un. That is,

f = f1 ◦ · · · ◦ fm ∈ Fn ⇔ f(I) ∈ Un .

With each dynamic cover Un = Fn(I) of Λ(F), we associate a compact sub-
set Λn of Λ in the following way: Let Vn be a maximal collection of disjoint
members of Un. Thus by construction each V ∈ Vn is of the form f(I)

18



where f belongs to a subset Gn of Fn. Clearly, Gn is a differentiable iterated
function system consisting of a finite number, say Nn, of diffeomorphisms,
and its invariant set Λn = Λ(Gn) is a subset of Λ. The main reason for intro-
ducing the systems Gn is, of course, that they satisfy the strong separation
condition (Definition 1.7). Therefore, the Hausdorff dimensions of their in-
variant sets are easy to calculate. These dimensions serve as approximations
to the dimension of Λ (see Proposition 5.4).

Lemma 5.2 Suppose F ∈ SS and let Gn be the differentiable iterated function
system constructed as above, and suppose it consists of Nn diffeomorphisms.
Then

Hdim (Λn) ≤ Hdim (Λ) ≤ lim sup
n→∞

lnNn

nk
.

Proof: The first of the inequalities is obvious because of the inclusion Λn ⊆
Λ. For the second inequality let dn = ln Nn

nk and let d = lim supn→∞ dn. If
d = ∞, the second inequality is obvious, so we assume d < ∞.

For each V in Vn, choose xV ∈ V and let Ṽ be the ball with center xV

but with radius 4e−nk. Note that the collection Ṽn of these sets covers Λ.
Then for any ǫ > 0, Nn = enkdn and

Hǫ+dn

8e−nk(Λ) ≤
∑

Ṽ ∈Ṽn
|Ṽ |ǫ+dn = Nn

(

8e−nk
)ǫ+dn

= 8ǫ+dn e−nkǫ.

Therefore Hǫ+dn

8e−nk(Λ) tends to zero as n goes to infinity. Because

H2ǫ+d
8e−nk(Λ) ≤ Hǫ+dn

8e−nk(Λ)

for large n, this establishes the upper bound for the Hausdorff dimension.

The actual calculation of the Hausdorff dimension uses the following
result.

Proposition 5.3 Let the system H ∈ IK1 be a set of N contractions satis-
fying the strong separation condition. Suppose further that

0 < eλ
− ≤

|Dh|x(v)|

|v|
≤ eλ+ < 1 ,

for all h ∈ H, x ∈ Ī and v ∈ TxĪ. Then we have

− lnN

λ−
≤ Hdim (Λ(H)) ≤

− lnN

λ+
.
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This is found as Theorem 8.8 in [2].

Proposition 5.4 Consider the invariant sets Λn of the systems Gn derived
from the system F ∈ SS and consisting of Nn contractions satisfying the
strong separation condition. Let k be the constant defined in equation (5.1).
Then we have:

lim
n→∞

| Hdim (Λn) −
lnNn

nk
| = 0 .

Proof: The proof consists of estimating the numbers λ− and λ+ of the
previous proposition for the systems Gn. Let g : I → V ∈ Vn be a member
of the finite family Gn. By construction, the map g is a composition of
m ≤ n diffeomorphisms f ∈ F . So for any x ∈ Ī and v in the tangent space
TxĪ, Lemma 5.1 and Theorem 4.10 part ii) give us that

−nk − K − 3D(n) − 3Q(n) ≤ ln
|Dg|x(v)|

|v|
≤ −nk + D(n) + Q(n) .

Thus, by Proposition 5.3,

lnNn

nk + K + 3D(n) + 3Q(n)
≤ Hdim (Λ(Gn)) ≤

lnNn

nk − D(n) − Q(n)
. (5.4)

Using semi-conformality, as n → ∞, this establishes the result.

Recall the definition of the limit capacity, given in Section 1. The limit
capacity is always at least as big as the Hausdorff dimension, because for
the former we insist that the covering sets all have the same diameter. The
following is an immediate consequence of Proposition 5.4 and Lemma 5.2:

Corollary C Suppose that F ∈ SS. Then the limit capacity of Λ(F) is equal
to its Hausdorff dimension.

Everything is now in place to prove the continuity part of Theorem B.
The methods are exactly the same as those used in the previous proposition.

Theorem 5.5 Every point of IO ∩ SS is a point of continuity of the function
Hdim on IO.

Proof: For F ∈ IO ∩ SS and F ′ ∈ IO we let Fn and F ′
n be the collection of

iterates associated with the dynamic covers of Λ(F) and Λ(F ′) respectively.
If F and F ′ are sufficiently close in the metric Hd 1, then they will satisfy
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(5.1) for the same constants k and K. Because F ,F ′ ∈ IO we have Λ(Fn) =
Λ(F) and Λ(F ′

n) = Λ(F ′). We let Nn = #(Fn), and we define D(n) and
Q(n) for F as in Definitions 4.1 and 4.2. For F ′ we denote the corresponding
quantities by D′(n) and Q′(n). Then by (5.4) in the proof of Proposition
5.4,

lnNn

nk + K + 3D(n) + 3Q(n)
≤ Hdim (Λ(F)) ≤

lnNn

nk − D(n) − Q(n)

for each n. A similar inequality holds for Hdim (Λ(F ′)).
Fix n. Then for F ′ in a sufficiently small neighborhood N of F in IO

it follows that #(F ′
n) = Nn, and that D′(n) and Q′(n) are arbitrarily close

to D(n) and Q(n) respectively. Thus, by choosing n large initially, and N
small, we can make | Hdim (Λ(F) − Hdim (Λ(F ′))| as small as desired.

Here is the remaining half of Theorem B.

Theorem 5.6 Every point of SS is a point of lower semi-continuity of the
function Hdim on IK1.

Proof: Recall that Λn = Λn(F) is the invariant set of the system Gn =
Gn(F) satisfying the strong separation condition. For a given F ∈ SS choose
n so that

| Hdim (Λ(F)) − Hdim (Λn(F))| < ǫ/2 .

This is possible by Proposition 5.4. If we choose F ′ ∈ IK1 sufficiently close to
F , then for each composition f1 ◦ · · · ◦ fn ∈ Gn we can choose a composition
f ′
1 ◦ · · · ◦ f ′

n, with f ′
i ∈ F ′ close to fi. Let G′

n denote the collection of these
compositions.

Then G′
n also satisfies the strong separation condition. We assume, using

Theorem 5.5, that

| Hdim (Λn(F ′)) − Hdim (Λn(F))| < ǫ/2 .

Then, using Lemma 5.2,

Hdim (Λ(F ′)) ≥ Hdim (Λn(F ′))

≥ Hdim (Λn(F)) − ǫ/2

≥ Hdim (Λ(F)) − ǫ .
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