Portland State University

PDXScholar

Civil and Environmental Engineering Faculty Publications and Presentations

Civil and Environmental Engineering

12-2001

Lower Willamette River Model: Model Calibration

Chris Berger Portland State University

Robert Leslie Annear Portland State University

Scott A. Wells Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_fac

Part of the Civil and Environmental Engineering Commons, and the Hydrology Commons Let us know how access to this document benefits you.

Citation Details

Berger, C., Annear, R. L., & Wells, S. A. (2001). Lower Willamette River Model: Model Calibration. Technical Report EWR-2-01, Department of Civil Engineering, Portland State University, Portland, Oregon.

This Technical Report is brought to you for free and open access. It has been accepted for inclusion in Civil and Environmental Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Lower Willamette River Model: Model Calibration

By

Chris Berger

Robert L. Annear Jr.

And

Scott A. Wells

Technical Report EWR-2-01

School of Engineering and Applied Science Department of Civil Engineering Portland State University Portland, Oregon 97201-0751

Prepared for Water Environment Services, Inc. on behalf of Richwine Environmental Inc.

December 2001

Table of Contents

Table of Contents	<i>i</i>
List of Figures	ii
List of Tables	vi
Acknowledgements	vii
Introduction	1
Hydrodynamic Calibration	
Willamette River Water Level Flow	
Columbia River Water Level Flow	11 11 24
Temperature	
Willamette River	
Columbia River	
Water Quality	
Willamette River Willamette River Boundary Condition modifications Dissolved Oxygen. Chlorophyll a pH Ortho-Phosphorus Total Phosphorus Ammonia-Nitrogen Nitrate & Nitrite-Nitrogen Total Kjeldahl Nitrogen Organic Carbon Columbia River Dissolved Oxygen Chlorophyll a	45 46 46 53 61 72 72 78 82 82 86 92 92 97 98
Previous modeling work Compared with CE-QUAL-W2	
DYNHYD model	
QUAL2EU model	
Time of Travel	
Sensitivity Analysis	
Algal Growth Rate	
Willamette River Boundary Condition	
Reaeration Equation	
Organic Decay Rate	

Grid density	
Maximum Time Step	
Summary	
References	
Appendix 1: W2 Control File	

List of Figures

Figure 1. Lower Willamette and Columbia River model region	.2
Figure 2. Water level data versus model predictions for Portland and below Willamette Falls during	
1993	.4
Figure 3. Water level data versus model predictions for Portland and below Willamette Falls during a	
20-day period in 1993	. 5
Figure 4. Water level data versus model predictions for Willamette Falls during 1997	.6
Figure 5. Water level data versus model predictions for Portland and below Willamette Falls during	
1998	.7
Figure 6. Water level data versus model predictions for Portland and below Willamette Falls during	
1999	. 8
Figure 7. Model flow predictions versus data for 1993 at Portland	.9
Figure 8. Model flow predictions versus data during a 20-day period during 1993 at Portland1	10
Figure 9. Model flow predictions versus data for 1994 at Portland1	10
Figure 10. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during	
19931	13
Figure 11. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during	a
20-day period in 1993 1	14
Figure 12. Water level data versus model predictions for Longview, WA during 1993 1	15
Figure 13. Water level data versus model predictions for Longview, WA during a 20-day period in	
19931	15
Figure 14. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during	
19941	16
Figure 15. Water level data versus model predictions for Longview, WA during 1994 1	17
Figure 16. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during	
1997	18
Figure 17. Water level data versus model predictions for Longview, WA and St. Helens, OR during	
1997	19
Figure 18. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during	
1998	20
Figure 19. Water level data versus model predictions for Longview, WA and St. Helens, OR during	• •
1998	21
Figure 20. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during	~~
1999	22
Figure 21. Water level data versus model predictions for Longview, WA and St. Helens, OR during	• •
1999	23
Figure 22. Model flow predictions versus data for 1998 at Beaver Army Terminal near Quincy, OR2	24
Figure 25. Model flow predictions versus data for a 20-day period during 1998 at Beaver Army	75
Terminal near Quincy, UK.	20
Figure 24. Model flow predictions versus data for 1999 at Beaver Army Terminal near Quincy, OR2	20

Figure 25. Plot of the temperature input file used for the 1993 Canby temperature boundary condition
compared with the Willamette Falls data27
Figure 27. Plot of the temperature input file used for the 1998 Canby temperature boundary condition
Figure 28 Plot of the temperature input file used for the 1999 Caphy temperature boundary condition
compared with the Willamette Falls data
Figure 29. Comparison between model temperature predictions and data for Willamette River Sites A
(RM 20) and B (RM 12.7) during 1993
Figure 30. Comparison between model temperature predictions and data for Willamette River Sites A (RM 20) and B (RM 12.7) during 1994
Figure 31. Comparison between model temperature predictions and data for Willamette River Sites A
(RM 20) and B (RM 12.7) during 1997
Figure 32. Comparison between model temperature predictions and data for Willamette River locations
Waverly Country Club (RM 17.9) and St Johns Railway Bridge (RM 6.8) during 199834
Figure 33. Comparison between model temperature predictions and data for the Willamette River at
Waverly Country Club (RM 17.9) and St Johns Railway Bridge (RM 6.8) during 199935
Figure 34. Comparison between model temperature predictions and data near Hayden Island (RM 102) and Columbia City (RM 82) during 1994
Figure 35. Comparison between model temperature predictions and data for Columbia River locations
Skamania, WA and Dodson, OR (RM 140.5) during 1998
Figure 36. Comparison between model temperature predictions and data for Columbia River locations
Skamania, WA and Dodson, OR (RM 140.4) during 1999
Figure 37. Comparison between model temperature predictions and data for the Columbia River at
Kalama, WA during 1998
Figure 38. Comparison between model dissolved oxygen predictions and data for Willamette River
Sites A (RM 20) and B (RM 12.7) during 1993
Figure 39. Comparison between model predicted dissolved oxygen concentrations and data for the
Willamette River at site A (RM 20) and site B (RM 12.7) during 1994
Figure 40. Comparison between model predicted dissolved oxygen concentrations and data for the
Willamette River at site A (RM 20) and site B (RM 12.7) during 1997
Figure 41. Comparison between model predicted dissolved oxygen concentrations and data for the
Willamette River at Waverly Country Club (RM 17.9) and at St. Johns Railway Bridge (RM 6.8)
during 1998
Figure 42. Comparison between model predicted dissolved oxygen concentrations and data for the
during 1000
Guillig 1999
Willomette River at the Hawthorne Bridge (PM 13.1) during 1003
Figure 43 Comparison between model predicted chlorophyll a concentrations and data for the
Willamette River at the SP&S Bridge (RM 6.9) during 1993
Figure 45 Comparison between model predicted chlorophyll a concentrations and data for the
Willamette River at the Columbia Slough (RM 1.1) during 1993 55
Figure 46. Comparison between model predicted chlorophyll a concentrations and data for the
Willamette River at the Hawthorne Bridge (RM 13.1) during 1994
Figure 46. Comparison between model predicted chlorophyll a concentrations and data for the
Willamette River at the Morrison Bridge (RM 12.7) during 1994
Figure 47. Comparison between model predicted chlorophyll a concentrations and data for the
Willamette River at the SP&S Bridge (RM 6.9) during 1994

Figure 49. Comparison between model predicted chlorophyll a concentrations and data for the	
Willamette River at the Columbia Slough (RM 1.1) during 1994.	57
Figure 50. Comparison between model predicted chlorophyll a concentrations and data for the	
Willamette River at the Hawthorne Bridge (RM 13.1) during 1997.	58
Figure 50. Comparison between model predicted chlorophyll a concentrations and data for the	
Willamette River at the Morrison Bridge (RM 12.7) during 1997.	58
Figure 51. Comparison between model predicted chlorophyll a concentrations and data for the	
Willamette River at the SP&S Bridge (RM 6.9) during 1997.	59
Figure 53. Comparison between model predicted chlorophyll a concentrations and data for the	
Willamette River at the Columbia Slough (RM 1.1) during 1997	60
Figure 54. Comparison between model predicted chlorophyll a concentrations and data for the	
Willamette River at the Hawthorne Bridge (RM 13.1) during 1998.	60
Figure 55. Comparison between model predicted chlorophyll a concentrations and data for the	
Willamette River at the SP&S Bridge (RM 6.9) during 1998.	61
Figure 55. Comparison between model predicted pH and data for the Willamette River at site A (RM	
20) and site B (RM 12.7) during 1993.	63
Figure 56. Comparison between model predicted pH and data for the Willamette River at site A (RM	
20) and site B (RM 12.7) during 1997.	64
Figure 57. Comparison between model predicted pH and data for the Willamette River at Waverly	
Country Club (RM 17.9) and at St. Johns Railway Bridge (RM 6.8) during 1998.	65
Figure 58. Comparison between model predicted pH and data for the Willamette River at Waverly	
Country Club (RM 17.9) and at St. Johns Railway Bridge (RM 6.8) during 1999.	66
Figure 59. Comparison between model predicted ortho-phosphorus concentrations and data for the	
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1993	68
Figure 60. Comparison between model predicted ortho-phosphorus concentrations and data for the	
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1994	69
Figure 61. Comparison between model predicted ortho-phosphorus concentrations and data for the	
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1997	70
Figure 62. Comparison between model predicted ortho-phosphorus concentrations and data for the	
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1998	71
Figure 63. Comparison between model predicted ortho-phosphorus concentrations and data for the	
Willamette River at Portland (RM 12.7) during 1999.	72
Figure 64. Comparison between model predicted total phosphorus concentrations and data for the	
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1993	74
Figure 65. Comparison between model predicted total phosphorus concentrations and data for the	
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1994	75
Figure 66. Comparison between model predicted total phosphorus concentrations and data for the	
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1997	76
Figure 67. Comparison between model predicted total phosphorus concentrations and data for the	
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1998	77
Figure 68. Comparison between model predicted total phosphorus concentrations and data for the	
Willamette River at Portland (RM 12.7) during 1999.	78
Figure 69. Comparison between model predicted ammonia-nitrogen concentrations and data for the	
Willamette River at Portland (RM 12.7) during 1993.	79
Figure 70. Comparison between model predicted ammonia-nitrogen concentrations and data for the	
Willamette River at Portland (RM 12.7) during 1994.	80
Figure 71. Comparison between model predicted ammonia-nitrogen concentrations and data for the	
Willamette River at Portland (RM 12.7) during 1997.	80

Figure 72. Comparison between model predicted ammonia-nitrogen concentrations and data for the
Willamette River at Portland (RM 12.7) during 1998
Figure 73. Comparison between model predicted ammonia-nitrogen concentrations and data for the
Willamette River at Portland (RM 12.7) during 1999
Figure 74. Comparison between model predicted nitrate+nitrite nitrogen concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1993
Figure 75. Comparison between model predicted nitrate+nitrite nitrogen concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1997
Figure 76. Comparison between model predicted nitrate+nitrite nitrogen concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1998
Figure 77. Comparison between model predicted nitrate+nitrite nitrogen concentrations and data for the
Willamette River at Portland (RM 12.7)
Figure 78. Comparison between model predicted total Kjeldahl nitrogen concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1993
Figure 79. Comparison between model predicted total Kjeldahl nitrogen concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1994
Figure 80. Comparison between model predicted total Kjeldahl nitrogen concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 199790
Figure 81. Comparison between model predicted total Kjeldahl nitrogen concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1998
Figure 82. A comparison between model predicted total organic carbon concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and a comparison between dissolved organic
carbon concentrations and data at Portland (RM 12.7) during 1993
Figure 83. A comparison between model predicted total organic carbon concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and a comparison between dissolved organic
carbon concentrations and data at Portland (RM 12.7) during 1994.
Figure 84. A comparison between model predicted total organic carbon concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and a comparison between dissolved organic
carbon concentrations and data at Portland (RM 12.7) during 1997.
Figure 85. A comparison between model predicted total organic carbon concentrations and data for the
Willamette River at Hawthorne Bridge (RM 13.1) and a comparison between dissolved organic
carbon concentrations and data at Portland (RM 12.7) during 1998.
Figure 86. A comparison between dissolved organic carbon concentrations and data at Portland (RM
12.7) during 1999
Figure 87. Comparison between model predicted dissolved oxygen concentrations and data for
Columbia River at Hayden Island (RM 102.4) and at Columbia City, OR (RM 82.0) during 1994.99
Figure 88. Comparison between model predicted chlorophyll a concentrations and data for Columbia
River at Hayden Island (RM 102.4) and at Columbia City, OR (RM 82.0) during 1994 100
Figure 89. DYNHYD Model and CE-QUAL-W2 Model results compared with data, June 1994 102
Figure 90. QUAL2EU and CE-QUAL-W2 model results compared with data for Dissolved Oxygen,
August 31, 1994
Figure 91. QUAL2EU and CE-QUAL-W2 model results compared with data for Chlorophyll a, August
31, 1994
Figure 92. Residence Time, Flow and Water Level Elevation at RM 20, 1993 105
Figure 93. Residence Time, Flow and Water Level Elevation at RM 20, 1994 106
Figure 94. Residence Time, Flow and Water Level Elevation at RM 20, 1997
Figure 95. Kesidence 11me, Flow and Water Level Elevation at RM 20, 1998 108
Figure 96. Residence Time, Flow and Water Level Elevation at RM 20, 1999 109
Figure 97. Residence 11me, Flow and Water Level Elevation at RM 12.7, 1993110

Figure 98. Residence Time, Flow and Water Level Elevation at RM 12.7, 1994	111
Figure 99. Residence Time, Flow and Water Level Elevation at RM 12.7, 1997	112
Figure 100. Residence Time, Flow and Water Level Elevation at RM 12.7, 1998	113
Figure 102. Residence Time, Flow and Water Level Elevation at RM 12.7, 1999	114
Figure 104. Sensitivity analysis, algal growth rate, dissolved oxygen at Waverly Country Club	116
Figure 106. Sensitivity analysis, algal growth rate, dissolved oxygen at Morrison St. Bridge	116
Figure 107. Sensitivity analysis, algal concentration in boundary condition, dissolved oxygen at	
Waverly Country Club	117
Figure 108. Sensitivity analysis, algal concentration in boundary condition, dissolved oxygen at	
Morrison St. Bridge	118
Figure 109. Sensitivity analysis, reaeration equation, dissolved oxygen at Waverly Country Club	119
Figure 110. Sensitivity analysis, reaeration equation, dissolved oxygen at Morrison St. Bridge	119
Figure 110. Sensitivity analysis, reaeration equation, dissolved oxygen at Morrison St. Bridge Figure 111. Sensitivity analysis, organic decay rate, dissolved oxygen at Waverly Country Club	119 120
Figure 110. Sensitivity analysis, reaeration equation, dissolved oxygen at Morrison St. Bridge Figure 111. Sensitivity analysis, organic decay rate, dissolved oxygen at Waverly Country Club Figure 112. Sensitivity analysis, organic decay rate, dissolved oxygen at Morrison St. Bridge	119 120 121
Figure 110. Sensitivity analysis, reaeration equation, dissolved oxygen at Morrison St. Bridge Figure 111. Sensitivity analysis, organic decay rate, dissolved oxygen at Waverly Country Club Figure 112. Sensitivity analysis, organic decay rate, dissolved oxygen at Morrison St. Bridge Figure 113. Sensitivity analysis, grid density, dissolved oxygen at Waverly Country Club	119 120 121 122
Figure 110. Sensitivity analysis, reaeration equation, dissolved oxygen at Morrison St. Bridge Figure 111. Sensitivity analysis, organic decay rate, dissolved oxygen at Waverly Country Club Figure 112. Sensitivity analysis, organic decay rate, dissolved oxygen at Morrison St. Bridge Figure 113. Sensitivity analysis, grid density, dissolved oxygen at Waverly Country Club Figure 114. Sensitivity analysis, grid density, dissolved oxygen at Morrison St. Bridge	119 120 121 122 122
 Figure 110. Sensitivity analysis, reaeration equation, dissolved oxygen at Morrison St. Bridge Figure 111. Sensitivity analysis, organic decay rate, dissolved oxygen at Waverly Country Club Figure 112. Sensitivity analysis, organic decay rate, dissolved oxygen at Morrison St. Bridge Figure 113. Sensitivity analysis, grid density, dissolved oxygen at Waverly Country Club Figure 114. Sensitivity analysis, grid density, dissolved oxygen at Morrison St. Bridge Figure 115. Sensitivity analysis, maximum time step, dissolved oxygen at Waverly Country Club 	 119 120 121 122 122 123

List of Tables

Table 1. Willamette River hydrodynamic calibration sites	3
Table 2. Model - data errors in water level for the Willamette River for 1993, 1994 and 1997-1999	3
Table 3. Model - data errors in flow rate for the Willamette River for 1993, 1994 and 1997-1999 at	
RM12.8 (model segment 75)	9
Table 4. Columbia River hydrodynamic calibration sites	.11
Table 5. Model - data errors in water level for the Columbia River for 1993, 1994 and 1997-1999	.12
Table 6. Model - data errors in flow rate for the Columbia River for 1998 and 1999	.24
Table 7. Model parameters affecting temperature calibration.	.26
Table 8. Willamette River temperature calibration sites	. 29
Table 9. Model - data errors in temperature for the Willamette River between 1993 and 1999	. 30
Table 10. Columbia River temperature calibration sites	.36
Table 11. Model - data errors in temperature for the Columbia River between 1994 and 1999	.36
Table 12. W2 Model Water Quality Parameters.	.43
Table 13. Willamette River water quality calibration sites	.45
Table 14. Model - data errors in dissolved oxygen for the Willamette River between 1993 and 1999	.47
Table 15. Model - data errors in chlorophyll a for the Willamette River between 1993 and 1999.	. 53
Table 16. Model - data errors in pH for the Willamette River between 1993 and 1999	. 62
Table 17. Model - data errors in PO ₄ -P for the Willamette River between 1993 and 1999	. 67
Table 18. Model - data errors in Total P for the Willamette River between 1993 and 1998	.72
Table 19. Model - data errors in NH ₄ -N for the Willamette River between 1993 and 1999	.78
Table 20. Model - data errors in NO ₃ -N +NO ₂ -N for the Willamette River between 1993 and 1999	. 82
Table 21. Model - data errors in TKN for the Willamette River between 1993 and 1998.	. 86
Table 22. Model - data errors in TOC and DOC for the Willamette River between 1993 and 1999	. 92
Table 23. Columbia River water quality calibration sites	.97
Table 24. Sensitivity Analysis Simulations, July 1 to July 15, 1998	115
Table 25. Typical model errors in the Lower Willamette River.	125

Acknowledgements

The Willamette River Project Managers, Dale Richwine of Richwine Environmental, Inc. and Ted Kyle of Water Environment Services of Clackamas County, provided key support during the modeling study.

Chris Nygaard, an undergraduate student at Portland State University, was valuable in conducting data compilation and analyses to gain a better understanding of the Lower Willamette River and Columbia River system. Also, other staff at Water Environment, the City of Portland, and other organizations provided valuable field data for calibrating the model.

Introduction

The Willamette River consists of an 11,500 mi² watershed that drains through the Willamette valley. The Lower Willamette River between RM 0 (mouth of Columbia River) to RM 35 (Canby Ferry) was the region of interest in this modeling study (see Figure 1). The Willamette River passes through the Portland metropolitan area before its confluence with the Columbia River at Columbia RM 106. The Columbia River is tidally influenced from the Pacific Ocean to the tailrace of the Bonneville Dam at RM 145. As a result, the Lower Willamette River is also tidally influenced from RM 0 (confluence with the Columbia) to the Oregon City Falls at RM 26.8.

Water Environment Services of Clackamas County is in the process of planning upgrades on several of its wastewater treatment plants (WWTPs) which discharge into the Lower Willamette River. The goals of the modeling effort were to:

- Gather data to construct a computer simulation model of the Lower Willamette River system in order to evaluate the impact of the WWTP discharges on water quality,
- Ensure that the model accurately represents the system physics and chemistry (flow, temperature, dissolved oxygen and nutrient dynamics) by model calibration, and
- Use the model to evaluate how to meet various future discharge scenarios for Water Environment Services of Clackamas County.

Prior reports prepared for this modeling study include:

- Wells (2000) evaluated the use of CE-QUAL-W2 Version 3 for the Lower Willamette River. CE-QUAL-W2 Version 3 (Wells, 1997) is a two dimensional, laterally averaged, hydrodynamic and water quality model that was chosen for the model development.
- Rodriguez et al. (2001) summarized background data for the modeling effort such as
 - 1. Inflows, temperatures, and water quality
 - 2. Meteorological conditions in the watershed
 - 3. Bathymetry of the Willamette River and Columbia River and the model grid
 - 4. Willamette Falls hydraulic elements: spillways, withdrawal structures, weirs, fish ladder

This report evaluates the model calibration and discusses issues relative to that calibration effort. The calibration effort focused on model predictions of hydrodynamics (flow and water level), temperature, and eutrophication model parameters (such as nutrients, algae, dissolved oxygen, organic matter, coliform).

This information is divided into the following sections in this report:

- Hydrodynamic Calibration
- Temperature Calibration
- Water Quality Calibration
 - Summary and Conclusions

Figure 1. Lower Willamette and Columbia River model region

Hydrodynamic Calibration

The process of calibration of the hydrodynamics includes having accurate dynamics flow and head boundary conditions, good model bathymetry, and adjusting model friction using in this case the Manning's friction factor. For these model comparisons, once the model bathymetry and boundary conditions were established, the model friction factors were adjusted until there was reasonable model-data agreement in water level and flow rate. Manning's *n*, or friction coefficient, was the only model coefficient used for calibrating water level and flow rate predictions with data. For all simulation years Mannings *n* was calibrated to a value of 0.025 for the whole model domain.

The following sections show model predictions compared to data for water level and flow rate in the Willamette and Columbia River reaches.

Willamette River

The first step in the calibration process was to ensure that the model correctly predicted water levels and flow rates at measuring stations in the Willamette and Columbia River. The Willamette River has both water level and flow data, which can be used to compare with model results. The hydrodynamic calibration was conducted for the same model period established in Rodriguez <u>et al</u>. (2000) as the summers from May 1 to Oct 1 for 1993, 1994, 1997, 1998 and 1999. Table 1 shows the gage stations where water level and flow data were collected.

		River	Model
Site ID	Site Description	Mile	Segment
14211720	Willamette River at Portland, OR	12.8	75
14207770	Willamette River Below Willamette Falls	26.2	11

Water Level

Model predictions compared to field data for 1993, 1994, 1995, 1997, 1998, and 1999 for the 2 stations in Table 1 are shown in Figure 2, Figure 3, Figure 4, Figure 5, and Figure 6, respectively. Model-data errors are shown in Table 2.

Year	RM 12.8	8 Segmen	t #75	RM 26.2 Segment #11		
	n, # of data	AME,	RMS	n, # of data	AME,	RMS
	comparisons	m	error, m	comparisons	m	error, m
1993	1515	0.157	0.221	1515	0.405	0.500
1994	1515	0.263	0.337	1515	0.447	0.569
1997	NA	NA	NA	1515	0.332	0.436
1998	1515	0.103	0.170	1515	0.248	0.348
1999	1515	0.121	0.178	1515	0.269	0.336

Table 2. Model - data errors in water level for the Willamette River for 1993, 1994 and 1997-1999.

Figure 2. Water level data versus model predictions for Portland and below Willamette Falls during 1993.

Figure 3. Water level data versus model predictions for Portland and below Willamette Falls during a 20-day period in 1993.

Figure 4. Water level data versus model predictions for Willamette Falls during 1997.

Figure 5. Water level data versus model predictions for Portland and below Willamette Falls during 1998.

Figure 6. Water level data versus model predictions for Portland and below Willamette Falls during 1999.

Flow

Model predictions compared to field data for 1993 at RM 12.8 are shown in Figure 7, (a more detailed graph of these flow rates are shown in Figure 8). Model predictions compared to field data for 1994 at RM 12.8 are shown in Figure 9. Model-data errors are shown in Table 3.

Table 3. Model	data errors in flow rate for the Willamette River for 1993, 1994 and 1997-1999 at
	RM12.8 (model segment 75).

Year	RM 12.8 Segment #75			RM 26.2 Segment #11		
	n, # of data	AME,	RMS error,	n, # of data	AME,	RMS error,
	comparisons	m ³ /s	m ³ /s	comparisons	m ³ /s	m^3/s
1993	1515	135.60	197.68	1515	27.91	51.70
1994	1515	181.45	289.48	1515	13.09	18.09
1997	NA	NA	NA	1515	19.17	36.95
1998	NA	NA	NA	1515	29.73	53.47
1999	NA	NA	NA	1515	18.16	30.31

Figure 7. Model flow predictions versus data for 1993 at Portland.

Figure 8. Model flow predictions versus data during a 20-day period during 1993 at Portland.

Figure 9. Model flow predictions versus data for 1994 at Portland.

Columbia River

Water level and flow data on the Columbia River were acquired form the USGS and from the US Army Corps of Engineers to compare with model results. Comparisons were made in the summers of 1993 and 1994 and 1997 through 1999 when data were available. Table 4 shows a list of gage stations on the Columbia River that had water level data and in some cases flow data.

		River	Model
Site ID	Site Description	Mile	Segment
LOPW1	Columbia River at Longview, WA	66.6	324
SHNO3	Columbia River at St. Helens, OR	85.7	279
14144700	Columbia River at Vancouver, WA	106.5	232
14246900	Columbia River at Beaver Army Terminal, nr Quincy, OR	53.8	356
14128870	Columbia River below Bonneville Dam, OR	144.5	127

Table 4. Columbia River hydrodynamic calibration sites

Water Level

Model predictions compared to field data for 1993 at Columbia River Mile 144.5 (near Bonneville) and RM 106 (Vancouver) are shown in Figure 10. A more detailed 20-day comparison of model data versus predictions for this same period and locations is shown in Figure 11. Model predictions compared to field data for 1993 at Columbia River Mile 66.6 (Longview) are shown in Figure 12. A more detailed 20-day comparison of model data versus predictions for this same period and locations for this same period and locations is shown in Figure 13.

Model predictions compared to field data for 1994 at Columbia River Mile 144.5 (near Bonneville) and RM 106 (Vancouver) are shown in Figure 14. Model predictions compared to field data for 1994 at Columbia River Mile 66.6 (Longview) are shown in Figure 15.

Model predictions compared to field data for 1997 at Columbia River Mile 144.5 (near Bonneville) and RM 106 (Vancouver) are shown in Figure 16. Model predictions compared to field data for 1997 at Columbia River Mile 66.6 (Longview) and Columbia River Mile 86 (St. Helens) are shown in Figure 17.

Model predictions compared to field data for 1998 at Columbia River Mile 144.5 (near Bonneville) and RM 106 (Vancouver) are shown in Figure 18. Model predictions compared to field data for 1998 at Columbia River Mile 66.6 (Longview) and Columbia River Mile 86 (St. Helens) are shown in Figure 19.

Model predictions compared to field data for 1999 at Columbia River Mile 144.5 (near Bonneville) and RM 106 (Vancouver) are shown in Figure 20. Model predictions compared to field data for 1999 at Columbia River Mile 66.6 (Longview) and Columbia River Mile 86 (St. Helens) are shown in Figure 21.

Model-data errors are shown in Table 5.

Year	Location	Water level errors			
		n, # of data	AME,	RMS	
		comparisons	m	error, m	
1993	RM144.5	1515	0.143	0.196	
1994	Segment	1515	0.138	0.171	
1997	#127	1515	0.148	0.224	
1998		1515	0.130	0.214	
1999		1515	0.087	0.147	
1993	RM106.5	1515	0.138	0.211	
1994	Segment	1515	0.071	0.118	
1997	#232	1515	0.252	0.381	
1998		1515	0.101	0.167	
1999		1515	0.124	0.176	
1993	RM 85.7	1515	NA	NA	
1994	Segment	1515	NA	NA	
1997	#279	1515	0.310	0.400	
1998		1515	0.161	0.251	
1999		1515	0.145	0.215	
1993	RM 66.6	1515	0.125	0.184	
1994	Segment	1515	0.262	0.400	
1997	#324	1515	0.282	0.341	
1998		1515	0.163	0.205	
1999		1515	0.240	0.267	
1993	RM 53.8	1515	0.014	0.018	
1994	Segment	1515	0.013	0.015	
1997	#356	1515	0.018	0.036	
1998		1515	0.014	0.016	
1999		1515	0.014	0.016	

 Table 5. Model
 - data errors in water level for the Columbia River for 1993, 1994 and 1997-1999.

Figure 10. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during 1993.

Figure 11. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during a 20-day period in 1993.

Figure 12. Water level data versus model predictions for Longview, WA during 1993.

Figure 13. Water level data versus model predictions for Longview, WA during a 20-day period in 1993.

Figure 14. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during 1994.

Figure 15. Water level data versus model predictions for Longview, WA during 1994.

Figure 16. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during 1997.

Figure 17. Water level data versus model predictions for Longview, WA and St. Helens, OR during 1997.

Figure 18. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during 1998.

Figure 19. Water level data versus model predictions for Longview, WA and St. Helens, OR during 1998.

Figure 20. Water level data versus model predictions for Bonneville Dam and Vancouver, WA during 1999.

Figure 21. Water level data versus model predictions for Longview, WA and St. Helens, OR during 1999.

Flow

Model predictions of flow rate compared to field data for 1998 at Columbia River Mile 53.8 (Beaver Army Terminal) are shown in Figure 22. A more detailed 20-day comparison of model data versus predictions for this same period and locations is shown in Figure 23. Model predictions compared to field data for 1999 at Columbia River Mile 53.8 (Beaver Army Terminal) are shown in Figure 24.

Model-data errors for flow rate are shown in Table 6.

Year	Location	Flow rate errors			
		n, # of data comp-	AME, m^3/s	RMS error, m ³ /s	
		arisons			
1998	RM 53.8	1299	1212.1	1479.9	
	Segment				
1999	#356	1205	1088.2	1435.8	

 Table 6. Model
 - data errors in flow rate for the Columbia River for 1998 and 1999.

Figure 22. Model flow predictions versus data for 1998 at Beaver Army Terminal near Quincy, OR.

Figure 23. Model flow predictions versus data for a 20-day period during 1998 at Beaver Army Terminal near Quincy, OR.

Figure 24. Model flow predictions versus data for 1999 at Beaver Army Terminal near Quincy, OR.

Temperature

Model calibration for temperature also depended on good upstream boundary conditions and meteorological data. Model parameters affecting the temperature calibration are shown below in Table 7.

Parameter	Typical	Calibration	Description/Comments
	values*	Values	
Light extinction coefficient for water	0.25	0.20	EXH2O
Fraction of incident solar radiation	0.45	0.45	BETA
absorbed at the water surface			
Evaporation model coefficients	A=9.20	A=9.20	Default value from Cole
	B=0.46	B=0.46	and Wells (2000)
	C=2.00	C=2.00	
Wind sheltering coefficient	0.85	0.85	WSC
Coefficient of bottom heat exchange			СВНЕ
(Wm ² /sec)	7.0 x 10-8	7.0 x 10-8	
Sediment (ground) temperature (°C)	12.8	14.0	TSED

Table 7. Model parameters affecting temperature calibration.

Model results for the Willamette and Columbia data collection sites are shown in the following sections.

Willamette River

Crucial to adequately predicting temperatures in the Willamette was a good upstream boundary condition. The temperature boundary condition for the upstream end of the main stem Willamette River was estimated using data collected at Willamette Falls (RM 27). Temperature data collected at Canby were too sparse to adequately represent the boundary condition during the simulation years 1993, 1998, and 1999. Temperatures were estimated using the following 1-dimensional longitudinal model that neglects dispersion and utilizes the equilibrium temperature concept (Thomann and Mueller, 1987):

$$T_{Canby} = T_E + \left(T_{Falls} - T_E\right) \exp\left(\frac{kt}{H}\right)$$

where

 T_{Canby} - temperature prediction for Canby (Celsius)

 T_E - equilibrium temperature (Celsius)

 T_{Falls} - temperature data from the Falls

t - time of travel (s)

H - mean depth (m)

k - kinematic surface exchange coefficient (m/s)

The kinematic surface heat exchange coefficient k and the equilibrium temperature T_E were calculated using the heat algorithm from CE-QUAL-W2 (Cole and Wells, 2000). Meteorological data was collected at Portland International Airport for 1993 and at Aurora for 1998 and 1999. Based on CE-QUAL-W2 model predictions, travel time t was assumed to be 1 day and mean depth H was assumed to be 3 meters. Figure 25 shows the estimated temperatures used for the 1993 input file compared to the Willamette Falls data. The 1998 and 1999 input files and Falls data are shown in Figure 26 and Figure 27, respectively.

Figure 25. Plot of the temperature input file used for the 1993 Canby temperature boundary condition and the Willamette Falls data.

Figure 26. Plot of the temperature input file used for the 1998 Canby temperature boundary condition and the Willamette Falls data.

Figure 27. Plot of the temperature input file used for the 1999 Canby temperature boundary condition and the Willamette Falls data.

Table 8 lists the sites and frequency of temperature data collected on the Willamette River and used for comparison with model results.

		River	Model	
Site ID	Site Description	mile	Segment	Data Type
A	Willamette River at Tryon Creek Railroad Bridge	20.0	45	Grab samples
				Continuous and Grab
C, SJRB	Willamette at St. John's Railroad Bridge	6.3	92	samples
D	Willamette River at South Kelly Point Park	1.1	105	Grab samples
E	Willamette River at Swan Island	8.8	88	Grab samples
				Continuous and Grab
F, WCC	Willamette River at Waverly Country Club	17.9	60	samples
В,	Willamette River at Portland, Oreg. (Morrison St			
ORSTORET	Bridge)	12.7	75	Grab samples
ORSTORET	Willamette River at Hawthorne Bridge	13.1	73	Grab samples

 Table 8. Willamette River temperature calibration sites

Model predictions of surface temperatures compared to grab sample field data at Willamette River site A (RM 20.0) and site B (RM 12.7) for 1993, 1994, and 1997 are shown in Figure 28, Figure 29, and Figure 30, respectively.

Model predictions of surface temperatures compared to continuous field data at Willamette River near Waverly Country Club (RM 17.9) and St. John's Railway Bridge (RM 6.8) for 1998 and 1999 are shown in Figure 31 and Figure 32, respectively.

Model prediction errors are shown in Table 9.

Year	Location	Temperature errors				
		n, # of data	AME,	RMS error,		
		comparisons	°C	°C		
1993	RM 20.0	9	0.466	0.568		
1994	Segment	18	0.380	0.474		
1997	#45	19	0.861	1.018		
1998		19	0.523	0.657		
1999		22	0.782	1.025		
1993	RM17.9	NA	NA	NA		
1994	Segment	NA	NA	NA		
1997	#60	276	0.576	0.650		
1998		6624	0.495	0.622		
1999		5990	0.712	0.936		
1993	RM 13.1	5	0.941	1.054		
1994	Segment	7	1.400	2.427		
1997	#73	5	0.856	0.985		
1998		6	2.126	3.472		
1999		NA	NA	NA		
1993	RM 12.7	14	0.537	0.695		
1994	Segment	23	0.447	0.535		
1997	#75	19	0.821	0.957		
1998		19	0.606	0.718		
1999		22	0.754	0.933		
1993	RM 8.8	NA	NA	NA		
1994	Segment	18	0.932	1.891		
1997	#88	19	0.864	0.996		
1998		19	0.491	0.589		
1999		22	0.625	0.784		
1993	RM 6.8	9	0.560	0.731		
1994	Segment	18	0.616	0.776		
1997	#92	276	0.602 0.720			
1998]	6588	0.347	0.445		
1999		5962	0.636	0.832		
1993	RM 1.1	9	0.396	0.499		
1994	Segment	NA	NA	NA		
1997	#105	19	0.711	0.851		
1998]	19	0.417	0.515		
1999	1	17	1.304	3.261		

Table 0 Model	data arrars in	tomnoratura f	for the	Willomotto	Divor	hotwoon	1003 and	1000
Table 9. Widdel	- uata errors m	temperature i	or the	vy mamette	NIVEL	Detween	1995 anu	1777.

Figure 28. Comparison between model temperature predictions and data for Willamette River Sites A (RM 20) and B (RM 12.7) during 1993.

Figure 29. Comparison between model temperature predictions and data for Willamette River Sites A (RM 20) and B (RM 12.7) during 1994.

Figure 30. Comparison between model temperature predictions and data for Willamette River Sites A (RM 20) and B (RM 12.7) during 1997.

Figure 31. Comparison between model temperature predictions and data for Willamette River locations Waverly Country Club (RM 17.9) and St Johns Railway Bridge (RM 6.8) during 1998.

Figure 32. Comparison between model temperature predictions and data for the Willamette River at Waverly Country Club (RM 17.9) and St Johns Railway Bridge (RM 6.8) during 1999.

Columbia River

Table 4 identifies the temperature sampling sites on the Columbia River, which were compared with modeling results.

		River	Model	
Site ID	Site Description	mile	Segment	Data Type
14128910	Columbia River at Warrendale, WA	141.0	141	Grab samples
ORSTORET	Columbia River near Columbia City, OR	82.0	288	Grab samples
ORSTORET	Columbia River RM 102 DS of Hayden Island	102.1	242	Grab samples
ORSTORET	Multnomah Channel near mouth at St. Helens, OR	0.9	123	Grab samples
453439122223900	Columbia River right bank at Washougal, WA	121.6	197	Continuous
455903122500000	Columbia River right bank near Kalama, WA	76.8	301	Continuous
453651122022200	Columbia River right bank near Skamania, WA	140.4	143	Continuous
453630122021400	Columbia River left bank near Dodson, OR	140.4	143	Continuous

Model predictions of surface temperatures compared to grab sample field data at Columbia River near Hayden Island (RM 102) and at Columbia City (RM 82) for 1994 are shown in Figure 33.

Model predictions of surface temperatures compared to continuous field data at Columbia River on the left and right banks of the river at Skamania, WA and Dodson, OR (RM 140.5) for 1998 and 1999 are shown in Figure 34 and Figure 35, respectively. These data also show that there is no significant lateral variability in temperatures in the Columbia River at this River mile.

Model predictions of surface temperatures compared to continuous field data at Columbia River at Kalama, WA (RM 76.8) for 1998 are shown in Figure 36.

Model prediction errors are shown in Table 14.

Year	Location	Temperature errors				
		n, # of data	AME,	RMS error,		
		comparisons	°C	°C		
1994	RM 0.9	6	0.298	0.369		
	Segment					
	#123					
1994	RM 141	5	0.041	0.060		
1997	Segment	4	0.100	0.106		
	#141					
1997	RM 140.4	2292	0.097	0.263		
1998	Segment	3239	0.036	0.054		
1999	#143	3450	0.046	0.088		
	Skamania					
1997	RM 140.4	2358	0.269	0.372		
1998	Segment	3623	0.059	0.084		
1999	#143	3611	0.095	0.154		
	Dodson					
1997	RM 121.6	2324	0.447	1.346		
1998	Segment	3280	0.164	0.239		

Table 11. Model - data errors in temperature for the Columbia River between 1994 and 1999.

1999	#197	3434	0.179	0.310
1994	RM 102.1 Segment #242	7	0.578	0.677
1994	RM 82.0 Segment #288	5	0.629	0.654
1997	RM 76.8	2359	0.334	0.593
1998	Segment #301	3304	0.186	0.298

Figure 33. Comparison between model temperature predictions and data near Hayden Island (RM 102) and Columbia City (RM 82) during 1994.

Figure 34. Comparison between model temperature predictions and data for Columbia River locations Skamania, WA and Dodson, OR (RM 140.5) during 1998.

Figure 35. Comparison between model temperature predictions and data for Columbia River locations Skamania, WA and Dodson, OR (RM 140.4) during 1999.

Figure 36. Comparison between model temperature predictions and data for the Columbia River at Kalama, WA during 1998.

Water Quality

Water quality data was obtained from the City of Portland, Bureau of Environmental Services, The US Geological Survey and the Oregon Department of Environmental Quality STORET program to compare with model results.

Water quality model parameters used during the calibration are shown in Table 12. Boundary conditions, algae growth rates, rearation equation, and sediment oxygen demand were particularly important for model calibration. Zeroth order sediment oxygen demand was set to 1.4 g/m² in segments above Willamette Falls and 1.8 g/m² for segments below. These values were based on measurements made in 1994 by the U. S. Geological Survey (Caldwell and Doyle, 1995). The rearation equation applied in the model was the Thomann and Fitzpatrick (1982) estuary equation where the rearation K_a (d⁻¹) was calculated using

$$K_a = \frac{0.728W^{0.5} - 0.317W + 0.0372W^2}{H} + 3.93\frac{\sqrt{U}}{H^{1.5}}$$

and U (m/s) was the water velocity, W (m/s) was the wind velocity, and H (m) was the depth. An equation appropriate to estuaries equation was chosen because the Lower Willamette River is tidally influenced. An algae maximum growth rate of 2.4 d⁻¹ was used for model simulation years 1993, 1994 and 1997 and a maximum growth rate of 2.3 d⁻¹ was used for 1998 and 1999. Adjustments to boundaries conditions were also important for model calibration and these modifications are discussed below.

Variable	Description	Unito		Calibration
	Description	Units	Typical values	Values
Hydrodynami	cs and Longitudinal Transport		1	
AX	Longitudinal eddy viscosity (for momentum dispersion)	m²/sec	1	1
DX	Longitudinal eddy diffusivity (for dispersion of heat and constituents)	m²/sec	1	1
CHEZY	Chezy coefficient	m ^{1/2} /sec	70	NA (MANN)
Temperature				
СВНЕ	Coefficient of bottom heat exchange	Wm ² /sec	7.0 x 10-8	7.0 x 10-8
TSED	Sediment (ground) temperature	°C	12.8	14.0
WSC	Wind sheltering coefficient		0.85	0.85
ВЕТА	Fraction of incident solar radiation absorbed at the water surface		0.45	0.45
Water Quality				
EXH20	Extinction for water	/m	0.25	0.20
EXSS	Extinction due to inorganic suspended solids	m³/m/g	0.01	0.01
EXOM	Extinction due to organic suspended solids	m³/m/g	0.17	0.01
SSS	Suspended solids settling rate	m/day	2	1.5
AG1	Algal growth rate for algal type 1	/day	1.1	2.3-2.4
AM1	Algal mortality rate for algal type 1	/day	0.01	0.05
AE1	Algal excretion rate for algal type 1	/day	0.01	0.02
AR1	Algal dark respiration rate for algal type 1	/day	0.02	0.40

 Table 12. W2 Model Water Quality Parameters.

Variable	Description	Units	Typical values*	Calibration Values
AS1	Algal settling rate for algal type 1	/day	0.14	0.10
	Saturation intensity at maximum	y		
ASAT1	photosynthetic rate for algal type 1	W/m ²	150	75
APOM1	Fraction of algal biomass lost by mortality to detritus for algal type 1		0.8	
AT11	Lower temperature for algal growth for algal type 1	°C	10	5
AT21	Lower temperature for maximum algal growth for algal type 1	°C	30	10
AT31	Upper temperature for maximum algal growth for algal type 1	°C	35	24
AT41	Upper temperature for algal growth for algal type 1	°C	40	30
AK11	Fraction of algal growth rate at ALGT1 for algal type 1		0.1	0.1
AK21	Fraction of maximum algal growth rate at ALGT2 for algal type 1		0.99	0.99
AK31	Fraction of maximum algal growth rate at ALGT3 for algal type 1		0.99	0.99
AK41	Fraction of algal growth rate at ALGT4 for algal type 1		0.1	0.01
BIOP-A1	Stoichiometric equivalent between organic matter and phosphorus for algal type 1		0.011	0.005
BION-A1	Stoichiometric equivalent between organic matter and nitrogen for algal type 1		0.08	0.08
BIOC-A1	Stoichiometric equivalent between organic matter and carbon for algal type 1		0.45	0.45
LDOMDK	Labile DOM decay rate	/day	0.12	0.12
LRDDK	Labile to refractory decay rate	/day	0.001	0.001
RDOMDK	Maximum refractory decay rate	/day	0.001	0.001
LPOMDK	Labile Detritus decay rate	/day	0.06	0.08
POMS	Detritus settling rate	m/day	0.35	0.10
RPOMDK	Refractory Detritus decay rate	/day		0.001
OMT1	Lower temperature for organic matter decay	°C	4	4
OMT2	Lower temperature for maximum organic matter decay	°C	20	30
OMK1	Fraction of organic matter decay rate at OMT1		0.1	0.1
OMK2	Fraction of organic matter decay rate at OMT2		0.99	0.99
SDK	Sediment decay rate	/day	0.06	0.10
PARTP	Phosphorous partitioning coefficient for suspended solids		1.2	0.0
AHSP	Algal half-saturation constant for phosphorous	g/m	0.009	0.01
NH4DK	Ammonia decay rate (nitrification rate)	/day	0.12	0.40
AHSN	Algal half-saturation constant for ammonia	g/m ³	0.014	0.01
NH4T1	Lower temperature for ammonia decay	°C	5	5
NH4T2	Lower temperature for maximum ammonia decay	°C	20	20
NH4K1	Fraction of nitrification rate at NH4T1		0.1	0.1

Variable	Description	Units	Typical values*	Calibration Values
NH4K2	Fraction of nitrification rate at NH4T2		0.99	0.99
NO3DK	Nitrate decay rate (denitrification rate)	/day	0.102	0.05
NO3T1	Lower temperature for nitrate decay	°C	5	5
NO3T2	Lower temperature for maximum nitrate decay	°C	20	25
NO3K1	Fraction of denitrification rate at NO3T1		0.1	0.1
NO3K2	Fraction of denitrification rate at NO3T2		0.99	0.99
O2NH4	Oxygen stoichiometric equivalent for ammonia decay		4.57	4.57
O2OM	Oxygen stoichiometric equivalent for organic matter decay		1.4	1.4
O2AR	Oxygen stoichiometric equivalent for dark respiration		1.4	1.1
O2AG	Oxygen stoichiometric equivalent for algal growth		1.4	1.4
BIOP	Stoichiometric equivalent between organic matter and phosphorus		0.011	0.005
BION	Stoichiometric equivalent between organic matter and nitrogen		0.08	0.08
BIOC	Stoichiometric equivalent between organic matter and carbon		0.45	0.45
O2LIM	Dissolved oxygen concentration at which anaerobic processes begin	g/m ³	0.05	0.01
* Cole and We	ells (2000)			

Willamette River

Table 13 shows a list of water quality monitoring sites in the Willamette River, many of which were used for comparison with model results (the shaded ones).

		River	Model	
Site ID	Site Description	mile	Segment	Data Type
				Continuous and
C, SJRB	Willamette at St. John's Railroad Bridge	6.8	92	grab samples
ORSTORET	Willamette R upstream of St Johns Bridge	6.3	94	Grab samples
ORSTORET	Willamette River @ Meldrum Bar Boat Ramp	24.2	18	Grab samples
ORSTORET	Willamette River 100 Yds D/S Oswego Cr. Mouth	21.0	41	Grab samples
ORSTORET	Willamette River 100 Yds U/S Oswego Cr. Mouth	21.3	40	Grab samples
ORSTORET	Willamette River at Hawthorne Bridge	13.1	73	Grab samples
WRR	Willamette River at mouth of Columbia Slough	1.1	105	Grab samples
В,	Willamette River at Portland, Oreg. (Morrison St			
ORSTORET	Bridge)	12.7	75	Grab samples
D	Willamette River at South Kelly Point Park	1.1	105	Grab samples
ORSTORET	Willamette River at SP&S Bridge (Portland)	6.9	92	Grab samples
E	Willamette River at Swan Island	8.8	88	Grab samples
А	Willamette River at Tryon Creek Railroad Bridge	20	45	Grab samples
				Continuous and
F, WCC	Willamette River at Waverly Country Club	17.9	60	grab samples

Willamette River Boundary Condition modifications

Because the frequency of dissolved oxygen data measured at Canby (RM 35) was inadequate to describe the upstream boundary condition, downstream data were used to back calculate upstream conditions. A Streeter-Phelps dissolved oxygen model was used to estimate dissolved oxygen concentration at Canby given grab sample data measured at Waverly Country Club (RM 17.9) and Tryon Street Bridge (RM 20). The form of the Streeter-Phelps equation applied was:

$$c = c_{s} - \left\{ \frac{(K_{a})_{T}}{(K_{a})_{T} - (K_{r})_{T}} \left[\exp\left(-(K_{r})_{T} \frac{x}{U}\right) - \exp\left(-(K_{a})_{T} \frac{x}{U}\right) \right] \right\} L_{0} - (c_{s} - c_{0}) \exp\left(-(K_{a})_{T} \frac{x}{U}\right)$$

where:

c is the DO concentration at distance x (mg/l)

 c_s is the saturation concentration of DO (mg/l)

 c_0 is the DO concentration at the upstream boundary (mg/l)

 K_d : effective deoxygenation rate of the CBOD (d⁻¹)

 K_a : the rearation coefficient (d⁻¹)

 K_r : the overall loss rate (d⁻¹) of CBOD from the water column due to both settling and oxidation of soluble BOD

The Streeter-Phelps equation was rearranged to solve for c_o yielding the following equation:

$$c_{0} = \frac{1}{\exp\left(-K_{a}\frac{x}{U}\right)} \left(c - c_{s} + \left\{\frac{-K_{r}}{K_{a} - K_{r}}\left[\exp\left(-K_{r}\frac{x}{U}\right) - \exp\left(-K_{a}\frac{x}{U}\right)\right]\right\} L_{0} + c_{s}\exp\left(-K_{a}\frac{x}{U}\right)\right)$$

The effective deoxygenation rate for CBOD K_d (T⁻¹) was calculated from $K_d = 10.3Q^{-0.49}$ (Write and McDonnell, 1979) and temperature corrected using $(K_d)_T = (K_d)_{20} 1.047^{T-20}$

Rearation K_a was calculated using O'Connor and Dobbins (1958) formulation $K_a = \frac{D_{O_2} U^{\frac{1}{2}}}{H^{\frac{3}{2}}}$ where

 D_{o_2} is the molecular diffusion coefficient for water. K_a was temperature corrected with

$$(K_a)_T = (K_a)_{20} 1.024^{T-20}$$

Because this part of the model was not located near any large point sources for BOD, it was assumed that little CBOD settled from the water column and that K_r was considered to be equal to K_d .

The amount of pH data at Canby was also insufficient to describe the upstream boundary condition. PH data measured at sampling Site A (RM 20) along with alkalinity data were used to estimate inorganic carbon concentrations at Canby by applying equations based on the carbonate-bicarbonate equilibrium reaction (Stumm and Morgan, 1981).

Dissolved Oxygen

Model predictions of dissolved oxygen compared to filed data at Willamette River site A (RM 20) and site B (RM 12.7) for 1993, 1994, and 1997 are shown in Figure 37, Figure 38 and Figure 39, respectively.

Continuous and grab sample dissolved oxygen data are compared with model predictions at Waverly Country Club (RM 17.9) and St. John's Railway Bridge (RM 6.8) for 1998 and 1999 in Figure 40 and

Figure 41, respectively. There were obvious calibration problems with the continuous oxygen sensor during at the Waverly site in 1999.

Model prediction errors are shown in Table 14.

Year	Location	Dissolved Oxygen errors		
		n, # of data	AME,	RMS error,
		comparisons	mg/L	mg/L
1993	RM 20.0	8	0.230	0.285
1994	Segment	18	0.846	1.917
1997	#45	19	0.214	0.250
1998	1	19	0.396	0.589
1999		22	0.369	0.419
1993	RM17.9	NA	NA	NA
1994	Segment	NA	NA	NA
1997	#60	276	0.132	0.164
1998		5403	0.446	0.557
1999		4113	0.365	0.460
1993	RM 13.1	7	0.750	0.950
1994	Segment	8	0.602	0.682
1997	#73	5	0.447	0.552
1998		6	0.876	1.403
1999		NA	NA	NA
1993	RM 12.7	13	0.281	0.340
1994	Segment	22	0.633	0.914
1997	#75	24	0.342	0.454
1998		25	0.339	0.493
1999		26	0.388	0.435
1993	RM 8.8	NA	NA	NA
1994	Segment	17	1.696	3.595
1997	#88	19	0.334	0.398
1998		19	0.374	0.468
1999		NA	NA	NA
1993	RM 6.8	8	0.395	0.463
1994	Segment	17	1.233	1.811
1997	#92	276	0.281	0.327
1998		6597	0.439	0.550
1999		5390	0.496	0.682
1993	RM 1.1	8	0.489	0.549
1994	Segment	16	2.221	3.925
1997	#105	19	0.635	0.746
1998		19	0.867	1.172
1999		NA	NA	NA

Table 14. Model- data errors in dissolved oxygen for the Willamette River between 1993 and
1999.

Figure 37. Comparison between model dissolved oxygen predictions and data for Willamette River Sites A (RM 20) and B (RM 12.7) during 1993.

Figure 38. Comparison between model predicted dissolved oxygen concentrations and data for the Willamette River at site A (RM 20) and site B (RM 12.7) during 1994.

Figure 39. Comparison between model predicted dissolved oxygen concentrations and data for the Willamette River at site A (RM 20) and site B (RM 12.7) during 1997.

Figure 40. Comparison between model predicted dissolved oxygen concentrations and data for the Willamette River at Waverly Country Club (RM 17.9) and at St. Johns Railway Bridge (RM 6.8) during 1998.

Figure 41. Comparison between model predicted dissolved oxygen concentrations and data for the Willamette River at Waverly Country Club (RM 17.9) and at St. Johns Railway Bridge (RM 6.8) during 1999.

Chlorophyll a

Comparisons of model predictions and field data of chlorophyll a in 1993 from the Hawthorne Bridge (RM 13.1) to the mouth of the Columbia Slough (RM 1.1) are shown in Figure 42 through Figure 44. Model predictions and field data comparisons of chlorophyll a in 1994 from the Hawthorne Bridge (RM 13.1) to the mouth of the Columbia Slough (RM 1.1) are shown in Figure 45 through Figure 48. Lower flow rates and longer detention times occurring in 1994 resulted in higher predicted algae growth near the downstream end of the Lower Willamette. During calibration the maximum algae growth rates were kept relatively consistent between years with values of 2.3 or 2.4 d⁻¹. To illustrate model sensitivity to algae growth rate for 1994, the chlorophyll a predictions at the mouth of the Columbia using a maximum algal growth rate half the calibrated value $(1.2 d^{-1})$ is shown in Figure 49. The average trends are well predicted, being based on upstream boundary conditions. A comparison of model predictions and field data of chlorophyll a in 1997 at the Hawthorne Bridge (RM 13.1) to the mouth of the Columbia Slough (RM 1.1) is shown in Figure 50 through Figure 53. Comparisons of model predictions and field data of chlorophyll a in 1998 at the Hawthorne Bridge (RM 13.1) and at the SP&S Bridge (RM 6.9) are shown in Figure 54 and Figure 55, respectively. No chlorophyll a data were available in the lower Willamette from 1999.

Model prediction errors are shown in Table 15. Statistics were not done for 1994 because of concern that chlorophyll a data collected at the mouth of the Columbia Slough were representative of Columbia Slough water quality rather than that for the Willamette River.

Year	Location	Chlorophyll a model-data error		
		n, # of data	AME,	RMS error,
		comparisons	ug/L	ug/L
1993	RM 13.1	5	2.2	2.6
1997	Segment	5	14.9	15.5
1998	#73	5	4.9	5.2
1993	RM 12.7	NA	NA	NA
1997	Segment	2	25.5	25.5
1998	#75	NA	NA	NA
1993	RM 6.8	1	5.1	5.1
1997	Segment	2	17.5	17.8
1998	#92	2	2.8	3.7
1993	RM 1.1	6	5.9	7.7
1997	Segment	6	13.3	18.4
1998	#105	NA	NA	NA

Table 15. Model - data errors in chlorophyll a for the Willamette River between 1993 and 1999.

Figure 42. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Hawthorne Bridge (RM 13.1) during 1993.

Figure 43. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the SP&S Bridge (RM 6.9) during 1993.

Figure 44. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Columbia Slough (RM 1.1) during 1993.

Figure 45. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Hawthorne Bridge (RM 13.1) during 1994.

Figure 46. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Morrison Bridge (RM 12.7) during 1994.

Figure 47. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the SP&S Bridge (RM 6.9) during 1994.

Figure 48. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Columbia Slough (RM 1.1) during 1994.

Figure 49. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Columbia Slough (RM 1.1) during 1994 using a algal maximum growth rate of 1.2 d⁻¹.

Figure 50. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Hawthorne Bridge (RM 13.1) during 1997.

Figure 51. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Morrison Bridge (RM 12.7) during 1997.

Figure 52. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the SP&S Bridge (RM 6.9) during 1997.

Figure 53. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Columbia Slough (RM 1.1) during 1997.

Figure 54. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the Hawthorne Bridge (RM 13.1) during 1998.

Figure 55. Comparison between model predicted chlorophyll a concentrations and data for the Willamette River at the SP&S Bridge (RM 6.9) during 1998.

<u>pH</u>

Adjustment of pH required accurately knowing the upstream concentration of TIC (total inorganic carbon) and alkalinity. In many cases, if alkalinity and pH were known, TIC was computed using principles of equilibrium chemistry from Stumm and Morgan (1981).

Comparisons of model predictions and grab sample field data of pH in 1993 and 1997 at the Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) are shown in Figure 56 and Figure 57, respectively. Comparisons of model predictions and continuous and grab sample field data of pH in 1998 and 1999 at the Waverly Country Club (RM 3.1) and at St. John's Railroad Bridge (RM 6.8) are shown in Figure 58 and Figure 59, respectively. The model tracked well the variation in grab sample data. Comparing grab sample and continuous pH data, some of the continuous data may not have been in proper calibration.

Model prediction errors are shown in Table 16.

Year	Location	pH errors		
		n, # of data	AME	RMS
		comparisons		
1993	RM 20.0	9	0.054	0.061
1994	Segment	18	0.555	0.706
1997	#45	19	0.050	0.056
1998		19	0.051	0.058
1999		22	0.105	0.118
1993	RM17.9	NA	NA	NA
1994	Segment	NA	NA	NA
1997	#60	276	0.066	0.079
1998		6576	0.189	0.296
1999		6021	0.160	0.200
1993	RM 13.1	7	0.207	0.228
1994	Segment	8	0.147	0.183
1997	#73	5	0.258	0.276
1998		6	0.237	0.453
1999		NA	NA	NA
1993	RM 12.7	14	0.145	0.172
1994	Segment	23	0.222	0.304
1997	#75	24	0.111	0.134
1998		25	0.085	0.107
1999		27	0.087	0.129
1993	RM 8.8	NA	NA	NA
1994	Segment	18	0.189	0.243
1997	#88	19	0.171	0.212
1998		19	0.113	0.133
1999		NA	NA	NA
1993	RM 6.8	9	0.190	0.201
1994	Segment	18	0.280	0.427
1997	#92	276	0.283	0.315
1998		6557	0.238	0.298
1999		5910	0.172	0.234
1993	RM 1.1	9	0.301	0.345
1994	Segment	17	0.386	0.460
1997	#105	19	0.187	0.241
1998		19	0.241	0.315
1999		NA	NA	NA

 Table 16. Model
 - data errors in pH for the Willamette River between 1993 and 1999.

Figure 56. Comparison between model predicted pH and data for the Willamette River at site A (RM 20) and site B (RM 12.7) during 1993.

Figure 57. Comparison between model predicted pH and data for the Willamette River at site A (RM 20) and site B (RM 12.7) during 1997.

Figure 58. Comparison between model predicted pH and data for the Willamette River at Waverly Country Club (RM 17.9) and at St. Johns Railway Bridge (RM 6.8) during 1998.

Figure 59. Comparison between model predicted pH and data for the Willamette River at Waverly Country Club (RM 17.9) and at St. Johns Railway Bridge (RM 6.8) during 1999.

Ortho-Phosphorus

Comparisons of model predictions and grab sample field data of PO_4 -P in 1993, 1994, 1997, and 1998 at the Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) are shown in Figure 60, Figure 61, Figure 62, and Figure 63, respectively. Comparisons of model predictions and grab sample field data of PO_4 -P in 1999 at Hawthorne Bridge (RM 13.1) are shown in Figure 64.

Model prediction errors are shown in Table 17.

Year	Location	PO ₄ -P model-data error			
		n, # of data	AME,	RMS,	
		comparisons	ug/L	ug/L	
1993	RM 13.1	7	9.6	10.6	
1994	Segment	8	6.1	9.1	
1997	#73	5	6.9	8.1	
1998		6	4.5	5.6	
1993	RM 12.7	14	12.2	12.7	
1994	Segment	5	8.9	11.7	
1997	#75	5	6.8	8.2	
1998]	6	4.8	5.2	
1999		5	6.9	7.2	

Table 17. Model - data errors in PO₄-P for the Willamette River between 1993 and 1999.

Figure 60. Comparison between model predicted ortho-phosphorus concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1993.

Figure 61. Comparison between model predicted ortho-phosphorus concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1994.

Figure 62. Comparison between model predicted ortho-phosphorus concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1997.

Figure 63. Comparison between model predicted ortho-phosphorus concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1998.

Figure 64. Comparison between model predicted ortho-phosphorus concentrations and data for the Willamette River at Portland (RM 12.7) during 1999.

Total Phosphorus

CE-QUAL-W2 does not use Total Phosphorus as a state variable, but computes it by summing up all the P in the following state variables: algae, PO_4 -P, dissolved organic matter, and particulate organic matter. The calculation of TP depends primarily (as it does with the other water quality variables used in this model) on the upstream boundary conditions. Whenever field data were taken infrequently, the model interpolates between such low frequency data. In many cases, the error in the model prediction in the model domain are a result of the boundary conditions since model parameters are largely insensitive to variability in Total P.

Comparisons of model predictions and grab sample field data of Total P in 1993, 1994, 1997 and 1998 at the Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) are shown in Figure 65, Figure 66, Figure 67, and Figure 68, respectively. Figure 69 shows the 1999 model-data comparison for Total P at Portland (RM 12.7) only.

Model prediction errors are shown in Table 18.

 Table 18. Model
 - data errors in Total P for the Willamette River between 1993 and 1998.

Year	Location	Total P model-data error			
		n, # of data	AME,	RMS,	
		comparisons	ug/L	ug/L	

1993	RM 20.0	4	10.9	12.5
	Segment			
	#45			
1993	RM 13.1	7	19.0	22.9
1994	Segment	8	15.5	17.5
1997	#73	5	18.1	20.3
1998		6	25.1	26.0
1993	RM 12.7	5	14.0	17.2
1994	Segment	5	16.4	17.0
1997	#75	5	16.4	20.3
1998		6	15.2	21.8
1999		5	7.8	11.9
1993	RM 6.8	6	17.7	25.2
	Segment			
	#92			
1993	RM 1.1	4	25.5	37.2
	Segment			
	#105			

Figure 65. Comparison between model predicted total phosphorus concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1993.

Figure 66. Comparison between model predicted total phosphorus concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1994.

Figure 67. Comparison between model predicted total phosphorus concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1997.

Figure 68. Comparison between model predicted total phosphorus concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1998.

Figure 69. Comparison between model predicted total phosphorus concentrations and data for the Willamette River at Portland (RM 12.7) during 1999.

Ammonia-Nitrogen

Comparisons of model predictions and grab sample field data of NH₄-N in 1993, 1994, 1997, 1998 and 1999 at Portland (RM 12.7) are shown in Figure 70, Figure 71, Figure 72, Figure 73, and Figure 74, respectively.

Model prediction errors are shown in Table 19.

Year	Location	NH4-N model-data error				
		n, # of data	AME,	RMS,		
		comparisons	ug/L	ug/L		
1993	RM 20.0	9	32.5	37.9		
	Segment					
	#45					
1993	RM 13.1	7	25.0	32.0		
1994	Segment	8	14.7	19.2		
1997	#73	5	21.6	27.4		
1998	-	6	22.8	29.0		
1993	RM 12.7	5	16.4	21.5		
1994	Segment	5	21.4	26.6		
1997	#75	5	39.3	40.3		
1998		6	17.3	23.0		

 Table 19. Model
 - data errors in NH₄-N for the Willamette River between 1993 and 1999.

1999		5	10.1	11.8
1993	RM 6.8	9	8.0	11.1
	Segment #92			
1993	RM 1.1 Segment #105	9	7.1	9.1

Figure 70. Comparison between model predicted ammonia-nitrogen concentrations and data for the Willamette River at Portland (RM 12.7) during 1993.

Figure 72. Comparison between model predicted ammonia-nitrogen concentrations and data for the Willamette River at Portland (RM 12.7) during 1997.

Figure 73. Comparison between model predicted ammonia-nitrogen concentrations and data for the Willamette River at Portland (RM 12.7) during 1998.

Figure 74. Comparison between model predicted ammonia-nitrogen concentrations and data for the Willamette River at Portland (RM 12.7) during 1999.

Nitrate & Nitrite-Nitrogen

Comparisons of model predictions and grab sample field data of NO₃+NO₂-N in 1993, 1997, and 1998 and 1999 at Hawthorne Bridge (RM 13.1) at Portland (RM 12.7) are shown in Figure 75, Figure 76, and Figure 77, respectively.

Comparisons of model predictions and grab sample field data of NO_3+NO_2-N in 1999 at Portland (RM 12.7) are shown in Figure 78.

Model prediction errors are shown in Table 20.

Year	Location	NO ₃ -N +NO ₂ -N model-data error			
		n, # of data	AME,	RMS,	
		comparisons	ug/L	ug/L	
1993	RM 20.0	9	239.3	316.0	
	Segment				
	#45				
1993	RM 13.1	7	68.1	84.6	
1994	Segment	8	85.6	115.2	
1997	#73	5	153.8	161.5	
1998		6	100.3	123.5	
1993	RM 12.7	5	125.0	150.9	
1994	Segment	6	87.8	102.9	
1997	#75	5	187.5	197.3	
1998		5	234.0	248.5	
1999		5	68.1	79.3	
1993	RM 6.8	9	197.7	233.1	
	Segment				
	#92				
1993	RM 1.1	9	187.7	225.0	
	Segment				
	#105				

Table 20. Model - data errors in NO₃-N +NO₂-N for the Willamette River between 1993 and 1999.

Figure 75. Comparison between model predicted nitrate+nitrite nitrogen concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1993.

Figure 76. Comparison between model predicted nitrate+nitrite nitrogen concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1997.

Figure 77. Comparison between model predicted nitrate+nitrite nitrogen concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1998.

Figure 78. Comparison between model predicted nitrate+nitrite nitrogen concentrations and data for the Willamette River at Portland (RM 12.7).

Total Kjeldahl Nitrogen

TKN is not a state variable of CE-QUAL-W2 but is computed by summing up N in the following state variables: NH₄-N, algae, dissolved and particulate organic matter.

Comparisons of model predictions and grab sample field data of TKN in 1993, 1994, 1997 and 1998 at Hawthorne Bridge (RM 13.1) at Portland (RM 12.7) are shown in Figure 79, Figure 80, Figure 81, and Figure 82, respectively.

Model prediction errors are shown in Table 21.

Year	Location	TKN model-data error				
		n, # of data AME		RMS,		
		comparisons	mg/L	mg/L		
1993	RM 13.1	7	0.10	0.12		
1994	Segment	8	0.07	0.09		
1997	#73	5	0.12	0.13		
1998		6	0.06	0.07		
1993	RM 12.7	5	0.09	0.09		
1994	Segment	6	0.12	0.13		

Table 21. Model - data errors in TKN for the Willamette River between 1993 and 1998.

1997	#75	5	0.03	0.03
1998		5	0.07	0.10
1999		5	0.09	0.11

Figure 79. Comparison between model predicted total Kjeldahl nitrogen concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1993.

Figure 80. Comparison between model predicted total Kjeldahl nitrogen concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1994.

Figure 81. Comparison between model predicted total Kjeldahl nitrogen concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1997.

Figure 82. Comparison between model predicted total Kjeldahl nitrogen concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and at Portland (RM 12.7) during 1998.

Organic Carbon

Total Organic Carbon (TOC) is not a state variable of CE-QUAL-W2 but is computed by summing up C in the following state variables: algae, dissolved and particulate organic matter. Dissolved Organic Carbon (DOC) is also not a state variable of CE-QUAL-W2 but is computed by summing up C in dissolved organic matter (both labile and refractory).

Comparisons of model predictions and grab sample field data of TOC at the Hawthorne Bridge (RM 13.1) and grab sample DOC at Portland (RM 12.7) in 1993, 1994, 1997 and 1998 are shown in Figure 83, Figure 84, Figure 85, and Figure 86, respectively.

Comparisons of model predictions and grab sample field data of DOC at Portland (RM 12.7) in 1999 are shown in Figure 87.

Model prediction errors are shown in Table 22.

Year	Location	Total Organic Carbon model-data error			
		n, # of data	AME,	RMS, mg/L	
		comparisons	mg/L		
1993	RM 13.1	7	0.62	0.78	
1994	Segment	8	0.47	0.62	
1997	#73	5	0.29	0.44	
1998		6	0.67	0.91	
1993	RM 12.7	5	0.65	0.69	
1994	Segment	4	0.48	0.61	
1997	#75	5	0.69	0.75	
1998		6	0.55	0.57	
1999	1	5	0.29	0.34	

Table 22. Model ·	- data errors in	TOC and DOC	for the Willamette	River between	1993 and 1999.
-------------------	------------------	-------------	--------------------	----------------------	----------------

Year	Location	Dissolved Organic Carbon model-data error					
		n, # of data	AME,	RMS, mg/L			
		comparisons	mg/L				
1993	RM 12.7	5	0.45	0.48			
1994	Segment	4	0.30	0.48			
1997	#75	5	0.45	0.48			
1998		6	0.39	0.41			
1999		5	0.27	0.27			

Figure 83. A comparison between model predicted total organic carbon concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and a comparison between dissolved organic carbon concentrations and data at Portland (RM 12.7) during 1993.

Figure 84. A comparison between model predicted total organic carbon concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and a comparison between dissolved organic carbon concentrations and data at Portland (RM 12.7) during 1994.

Figure 85. A comparison between model predicted total organic carbon concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and a comparison between dissolved organic carbon concentrations and data at Portland (RM 12.7) during 1997.

Figure 86. A comparison between model predicted total organic carbon concentrations and data for the Willamette River at Hawthorne Bridge (RM 13.1) and a comparison between dissolved organic carbon concentrations and data at Portland (RM 12.7) during 1998.

Figure 87. A comparison between dissolved organic carbon concentrations and data at Portland (RM 12.7) during 1999.

Columbia River

Sites along the Columbia River where water quality data exist is shown in Table 23. Several of these sites where used to compare model predictions to field data for dissolved oxygen and chlorophyll a. Since the main interest in this modeling study were water quality conditions in the Willamette River, these comparisons were made just to check the overall model predictive ability in the Columbia. The Columbia was modeled primarily to provide the proper flow and tidal height conditions for the Willamette River.

Table 23. Columbia River water quality calibration sites

		River	Model	
Site ID	Site Description	mile	Segment	Data Type
ORSTORET	Columbia River near Columbia City, OR	82.0	288	Grab samples
ORSTORET	Columbia River, RM 102 DS of Hayden Island, OR	102.4	242	Grab samples

Dissolved Oxygen

Comparisons of model predictions and field data of dissolved oxygen at Hayden Island (Columbia River Mile 102.4) and at Columbia City, OR (RM 82.0) for 1994 are shown in Figure 88.

Chlorophyll a

Comparisons of model predictions and field data of chlorophyll a at Hayden Island (Columbia River Mile 102.4) and at Columbia City, OR (RM 82.0) for 1994 are shown in Figure 89.

Figure 88. Comparison between model predicted dissolved oxygen concentrations and data for Columbia River at Hayden Island (RM 102.4) and at Columbia City, OR (RM 82.0) during 1994.

Previous modeling work Compared with CE-QUAL-W2

Because earlier modeling studies using the 1-D hydrodynamic model DYNHYD and the 1-D steadystate model QUAL2EU were preformed during the same calibration period as the CE-QUAL-W2 modeling studies, it was deemed instructive to compare model predictions by CE-QUAL-W2 with those of the earlier studies. Comparisons of model predictions to field data are shown below for flow rates and dissolved oxygen and chlorophyll a concentrations.

DYNHYD model

An investigation of the Lower Willamette and the tidal influence on the combined sewer overflow (CSO) area was conducted by Limno-Tech, Inc. using DYNHYD for the City of Portland, Bureau of Environmental Services (Limno-Tech, Inc., 1997). DYNHYD (Ambrose et al. 1988) is a one-dimensional, unsteady hydraulic model with no water quality modeling capabilities. This study also investigated the magnitude of flows through Multnomah Channel. Unfortunately, in order to calibrate the flow model, the location of the Oregon City Falls was moved 75 miles upstream and the location of the Bonneville Dam was also moved 39 miles upstream. Moving the head of tide for both the Willamette and Columbia Rivers, even though they improved model-data agreement, was not appropriate and reflected more serious errors in the model set-up, probably in the DYNHYD model bathymetry.

DYNHYD results were compared with flow data in the Willamette River at the Morrison St Bridge (Figure 3, pg 16, Limno-Tech, Inc., 1997) in June 1994. Flow data was recorded at the USGS gage station #14211720 at the Morrison St Bridge for June 1994 except for a few data gaps. Flow rate errors (model – field data) were compared between the DYNHYD model flow results from the Tetra Tech Report Figure 3 and CE-QUAL-W2 model results in Figure 90. The average error in flow for the DYNHYD model was 15.3 m³/s and for CE-QUAL-W2 was $-7.0 \text{ m}^3/s$.

QUAL2EU model

A water quality model of the Willamette River mainstem (RM 0 to 187) was developed by Tetra Tech, Inc. (Tetra Tech, Inc., 1995) using QUAL2EU for the Oregon Department of Environmental Quality (ODEQ). QUAL2EU (Brown and Barnwell, 1987) is a one-dimensional, steady state, hydraulic and water quality model.

The QUA2E steady-state model results were compared to field data from August 1994. It was not clear though from the Tetra-Tech Report how the field data were averaged or used to compare to steady-state model predictions. The work compared dissolved oxygen and chlorophyll a model longitudinal profile results with data collected by ODEQ and USGS. Model results from QUAL2EU were obtained from Figure 2-2, pg. 2-11 (Tetra Tech, Inc., 1995). In examining the ODEQ data presented in the plot, it was determined that the dissolved oxygen data were collected by ODEQ on August 31, 1994. The chlorophyll a data were collected by ODEQ on August 29, and August 31. The data collected by USGS and presented in Figure 2-2 were collected upstream of the model boundary condition on the Willamette River at RM 35.0. Figure 91 compares the QUAL2EU and CE-QUAL-W2 model results with ODEQ data for

chlorophyll a on August 31, 1994. The CE-QUAL-W2 model results represent an average for results from 10 am to noon on August 31, 1994. The QUAL2EU plot line represents steady state model results.

Figure 90. DYNHYD Model and CE-QUAL-W2 Model results compared with data, June 1994

Figure 91. QUAL2EU and CE-QUAL-W2 model results compared with data for Dissolved Oxygen, August 31, 1994

Figure 92. QUAL2EU and CE-QUAL-W2 model results compared with data for Chlorophyll a, August 31, 1994

Time of Travel

The CE-QUAL-W2 model also predicts "water age." The water age is a way of accounting for how long a water parcel has been in the model domain. Any water entering the model domain from tributaries or from the model boundaries (Canby Ferry on the Willamette River and Beaver Army Terminal and Bonneville Dam on the Columbia River) is assigned a water age of zero on entering the model domain.

Figure 93, Figure 94, Figure 95, Figure 96, and Figure 97 show model predictions from April to October for 1993, 1994, 1997, 1998, and 1999, respectively, for water age (or residence time), water level and flow rate at RM 20 on the Willamette River. Figure 98, Figure 99, Figure 100, Figure 101, and Figure 102 show model predictions from April to October for 1993, 1994, 1997, 1998, and 1999, respectively, for water age (or residence time), water level and flow rate at RM 12.7 (Morrison Street Bridge) on the Willamette River. These figures show that in general, the travel time from the upstream model boundary condition on the Willamette River (RM 35.5 Canby Ferry) to RM 20 (near the Tryon Creek Railroad Bridge) is less than 0.5 day during high flow conditions and less than 2 days during low summer flow conditions. From Canby Ferry (RM 35) to RM 12.7 (Morrison Street Bridge), travel times are on the order of less than a day during high flow periods and less than 4.5 days during summer low-flow conditions.

Figure 94. Residence Time, Flow and Water Level Elevation at RM 20, 1994

Figure 95. Residence Time, Flow and Water Level Elevation at RM 20, 1997

Figure 96. Residence Time, Flow and Water Level Elevation at RM 20, 1998

Figure 97. Residence Time, Flow and Water Level Elevation at RM 20, 1999

Figure 98. Residence Time, Flow and Water Level Elevation at RM 12.7, 1993

Figure 100. Residence Time, Flow and Water Level Elevation at RM 12.7, 1997

Figure 102. Residence Time, Flow and Water Level Elevation at RM 12.7, 1999

Sensitivity Analysis

In order to assess the model's sensitivity to different kinetic parameter values, model grid, and time step, model simulations were made to assess whether model results were a function of the model grid or time step and to assess whether model coefficients themselves drastically affected model predictions. Table 24 shows a list of model parameters used in the sensitivity analysis. In this set of model simulations, the calibrated model was run from July 1 to July 15, 1998 in order to assess differences in model results.

Sensitivity Group	Simulation	Description				
	BaseCase	AG = 2.30				
Algol Crowth Poto	1	AG = 1.15				
Algai Glowin Kale	2	AG = 3.45				
	3	AG = 4.60				
	BaseCase	Algal Concentration =data				
Willamette River	4	0.5 x data				
Boundary Condition	5	2.0 x data				
	6	4.0 x data				
	BaseCase	Estuary, Eqn 1				
	7	River, Eqn 1				
Reaeration Equation	8	River, Eqn 2				
	9	River, Eqn 7				
	10	Lake, Eqn 6				
	BaseCase	LDOMDK = 0.12, $LPOMDK = 0.08$				
Organic Decay Rate	11	LDOMDK = 0.06, $LPOMDK = 0.04$				
Organic Decay Nate	12	LDOMDK = 0.18, $LPOMDK = 0.12$				
	13	LDOMDK = 0.24, $LPOMDK = 0.16$				
		Lower Willamette Grid, 97				
Grid density	BaseCase	segments				
Grid derisity	14	Double grid, 194 segments				
	15	Half grid, 49 segments				
	BaseCase	DLTMAX=360 seconds				
Maximum Time Step	16	50%, DLTMAX=180 seconds				
	17	10%, DLTMAX=36 seconds				

 Table 24. Sensitivity Analysis Simulations, July 1 to July 15, 1998

Algal Growth Rate

The impact on dissolved oxygen predictions using the algae growth rate were evaluated by decreasing the base value by 50% and 100%. Model dissolved oxygen predictions with these algal growth rates are shown in Figure 103 and Figure 104 at RM 17.9 and RM 12.7 in the Willamette River, respectively. These figures show the sensitivity is dependent on the travel time from the upstream boundary condition at Canby Ferry. And since travel times during the summer can be up to 4.5 days from Canby Ferry to RM 12.7, adjustment of the algal growth rate can significantly affect model results. But in general, most algal population dynamics are well described by growth rates between 1 and 2 day⁻¹. In comparing the model base value to a reduction of 50%, dissolved oxygen differences were very small - much less than 0.5 mg/l dissolved oxygen. Differences between 50% less than and 50% greater than the base value resulted in dissolved oxygen variations at most of 0.5 mg/l at RM 12.7.

Figure 103. Sensitivity analysis, algal growth rate, dissolved oxygen at Waverly Country Club

Figure 104. Sensitivity analysis, algal growth rate, dissolved oxygen at Morrison St. Bridge

Willamette River Boundary Condition

Another sensitivity check was to vary the inflow algae biomass concentration by 50%, 200% and 400% of field data used during model calibration. The model predictions of dissolved oxygen with these variations in the inflow algae biomass are shown in Figure 105 and Figure 106 for Willamette RM 17.9 and 12.7, respectively. Dissolved oxygen differences were at most less than 0.5 mg/l at RM 12.7 for the entire range of values used in the upstream boundary condition at Canby Ferry.

Figure 105. Sensitivity analysis, algal concentration in boundary condition, dissolved oxygen at Waverly Country Club

Figure 106. Sensitivity analysis, algal concentration in boundary condition, dissolved oxygen at Morrison St. Bridge

Reaeration Equation

CE-QUAL-W2 has several different formulations for reaeration that the model user can choose (Cole and Wells, 2000). An estuary model formulation (Equation 1 for Estuaries – see Cole and Wells, 2000) was used for the lower Willamette River that includes reaeration effects from wind and tidal currents. This reaeration model was compared to other reaeration models: O'Connor and Dobbins (River Eqn 1), Churchill, Elmore and Buckingham (River Eqn 2), and a typical Lake model (Lake Equation 6 – used in CE-QUAL-W2 Version 2 for reservoirs). The River Equation 1 and 2 are typical values used in river reaeration studies. The Lake model was used to show that surface layer turbulence that results in reaeration is also reasonably well described only by wind mixing in contrast to only boundary shear (River Eqn 1 and 2). Figure 107 and Figure 108 show the predicted dissolved oxygen at RM 17.9 and RM 12.7. Differences in reaeration formulae resulted in differences in dissolved oxygen predictions of at most 0.1 mg/l.

Figure 108. Sensitivity analysis, reaeration equation, dissolved oxygen at Morrison St. Bridge

Organic Decay Rate

The organic decay rate controls the kinetics of organic matter degradation. Sensitivity of this decay rate to model predictions of dissolved oxygen were made by changing the dissolved organic matter decay rate (DOM) and the particulate organic matter decay rate (POM) by 50%, 150%, and 200% from its base or calibrated value. Figure 109 and Figure 110 show model predictions of dissolved oxygen at Willamette River Mile 17.9 and 12.7, respectively, for the range of values of DOM and POM kinetic parameters. Note that even though these parameter values affected dissolved oxygen by at most 0.5 mg/l at RM 12.7, the sensitivity runs were conducted varying both POM and DOM rates at the same time.

Figure 109. Sensitivity analysis, organic decay rate, dissolved oxygen at Waverly Country Club

Figure 110. Sensitivity analysis, organic decay rate, dissolved oxygen at Morrison St. Bridge

Grid density

In many studies it is important to establish that the model result is not dependent on the model grid. In the two simulations below, the model grid was coarsened and halved. This means that the number of model segments was reduced by a factor of 2 and doubled from the base of the Willamette River Falls to the junction with the Columbia River. Model predictions with these 2 grids are shown in Figure 111 and Figure 112 at RM 17.9 and RM 12.7, respectively showing the model results are largely grid insensitive.

Figure 112. Sensitivity analysis, grid density, dissolved oxygen at Morrison St. Bridge

Maximum Time Step

Because CE-QUAL-W2 uses an implicit numerical solution to the water surface equation, there is a potential for numerical errors to creep into the model results for the water surface and thereby affect model hydrodynamics and ultimately water quality. CE-QUAL-W2 has a maximum model time step that is set by the model user. In these series of runs, the maximum model time step was reduced to determine if model predictions of dissolved oxygen were affected. Figure 113 and Figure 114 show model results of dissolved oxygen at a maximum time steps of 360 s (base case), 180 s, and 36 s at Willamette River RM 17.9 and RM 12.7, respectively. Hence, model results were largely insensitive to smaller maximum time steps.

Figure 113. Sensitivity analysis, maximum time step, dissolved oxygen at Waverly Country Club

Figure 114. Sensitivity analysis, maximum time step, dissolved oxygen at Morrison St. Bridge

Summary

A CE-QUAL-W2 Version 3 model (Cole and Wells, 2000) was set-up to model the Lower Willamette River in order to assess the impact of the wastewater treatment plant discharges on water quality. The model was set-up for the summer periods (May 1-October 1) of 1993, 1994, 1997, 1998, and 1999. The model boundaries on the Columbia River extended from the Beaver Army Terminal (a downstream head boundary condition) to Bonneville Dam. On the Willamette River they included the confluence with the Columbia River to Canby Ferry at RM 35. The model set-up was discussed in Rodriguez <u>et al.</u> (2001). The model was compared to hydrodynamic field data (water level and flow rate data), temperature data, and water quality data (dissolved oxygen, chlorophyll a, pH, PO₄-P, NH₄-N, NO₃-N, TKN, TOC) at various stations in the Willamette and Columbia Rivers.

Model calibration showed that in general the model reproduced the hydrodynamics and water quality well during the May-October period despite the fact that many dynamic storm water dischargers were not used in the model. A summary of model errors in the Lower Willamette is shown in Table 25.

Parameter	Typical Average Mean	Typical range in
	Error in the Lower	variable
	Willamette River	
Water level, m	0.1-0.25 m	±1.1 m
Flow rate, m ³ /s	$20 - 130 \text{ m}^3/\text{s}$	$1200 \text{ m}^{3}/\text{s}$
Temperature, ^o C	0.3-0.9°C	10-24°C
Dissolved oxygen, mg/l	0.3-1.0 mg/l	7-10 mg/l
Chlorophyll a, ug/l	2-15 ug/l	5-40 ug/l
pH	0.1-0.3	7-8
PO ₄ -P, ug/l	5-8 ug/l	20-65 ug/l
Total P, ug/l	10-20 ug/l	40-100 ug/l
Ammonia-N, ug/l	10-25 ug/l	40-100 ug/l
Nitrate-N, ug/l	80-100 ug/l	200-600 ug/l
TKN, mg/l	0.03-0.1 mg/l	0.2-0.4 mg/l
TOC, mg/l	0.3-0.5 mg/l	1-2 mg/l

 Table 25. Typical model errors in the Lower Willamette River.

The temperature and water quality model predictions are very dependent on upstream boundary conditions as evidenced by short travel times from the Canby Ferry to the Morrison Street bridge (from 1-4 days). Also, the ability to reduce model water level and flow rate errors is very dependent on having accurate and precise bathymetry data in the model system.

The following conclusions can be made evaluating regarding the modeling effort:

• Interpolating upstream boundary condition data between field sampling every 2 or 3 weeks made it difficult to predict conditions in the Lower Willamette when the data within the model domain was taken at a higher data frequency. It is recommended that future studies consider the use of continuous water quality monitoring devices (such as temperature, dissolved oxygen, and pH) so continuous boundary condition data can be obtained for the Willamette River

• In the W2 model, one algal type with the same kinetic parameters were used for all the years of record. There is probably a basis for using multiple algal types in the model or different algal growth rate kinetics year-by-year but limited data exist making such an effort merely an effort to match chlorophyll a data, which in itself can vary depending not only on algal species but time of year and the laboratory that did the analysis.

In general, hydrodynamic and water quality features of the system are well reproduced in the model. The use of the model to postulate impacts of increased BOD mass loadings from point sources would be a reasonable use of the calibrated model. Most improvements in model calibration would probably be based on improving boundary conditions for the model, especially the boundary condition for water quality parameters at the Canby Ferry at RM 35.

References

Adams, E. E., Harleman, D. R. F., Jirka, G., Ryan, P. J., and Stolzenbach, K. D. (1981) "Heat Disposal in the Water Environment," R.M. Parson Laboratory, MIT, Cambridge, MA.

Ambrose, R. B., Wool, T., Connolly, J. P., and Schanz, R. W. (1988) "WASP4, A Hydrodynamic and Water Quality Model: Model Theory, User's Manual, and Programmer's Guide," Envir. Res. Lab., EPA 600/3-87/039, Athens, GA.

Bloom, J. (1997) "Hydrodynamics of the Lower Willamette River," Prepared for the Oregon Department of Environmental Quality, Portland, OR

Bloom, J. (2000) "Modeling options to address Willamette River temperature, aquatic growth, dissolved oxygen, and pH concerns," Prepared for the Oregon Department of Environmental Quality, Portland, OR

Brown, L. C., and Barnwell, T. O. (1987) "The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS: Documentation and Users Manual," EPA Environmental Research laboratory, EPA 600/3-87/007, Athens, GA.

Caldwell, J. M. and Doyle, M. C. (1995) "Sediment Oxygen Demand in the Lower Willamette River, Oregon, 1994," U. S. Geological Survey, Water-Resources Investigations Report 95-4196, Portland, Oregon.

Cole, T. M, and Buchak, E. (1995) "CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0," US Army Corps of Engineers, Instruction Report EL-95-1, Waterways Experiments Station, Vicksburg, MS.

Cole, T. M., and Wells, S. A. (2000). "CE-QUAL-W2: A two-dimensional, laterally averaged, Hydrodynamic and Water Quality Model, Version 3.0," Instruction Report EL-2000-, US Army Engineering and Research Development Center, Vicksburg, MS.

Edinger, J. E., Brady, D. K., and Geyer, J. C. (1974) "Heat Exchange and Transport in the Environment," Report No.14, Electric Power Res. Inst. Pub. No. EA-74-049-00-3, Palo Alto, CA, Nov. 1974, 125 pp.

HEC (1997) "UNET One-Dimensional Unsteady-Flow Through a Full Network of Open Channels, User's Manual," US Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA.

Knutson, M. (2000) "Lower Columbia River UNET model," Prepared for the U.S Army Corps of Engineers, Portland, OR

Laenen, A., and Risley, J. C. (1997) "Precipitation-Runoff and Streamflow-Routing Models for the Willamette River Basin, Oregon," Prepared for the U.S. Geological Survey Water Resources Investigations, Portland, OR

Limno-Tech, Inc. (1997) "Willamette River CSO Predesign project: Willamette River Hydraulics Characterization," Prepared for the City of Portland Bureau of Environmental Services, Portland, OR O'Connor, D. J. and Dobbins, W. E. (1958) "Mechanism of Reaeration in Natural Streams," *ASCE Trans.*, 86(SA3):33-55.

Richmond, M. C., et al. (2000) "Dissolved Gas Abatement Study (DGAS)," prepared for the U.S Army Corps of Engineers, Battelle Pacific Northwest Division, Richland, Washington

Rodriguez, H.G., Annear, R. L., Wells, S. A., and Berger, C. (2000) "Lower Willamette River Model: Boundary Conditions and Model Setup," Technical Report EWR-03-00, Department of Civil Engineering, Portland State University, Portland, OR.

Stumm, W., and Morgan, J. J. (1981) "Aquatic Chemistry," Wiley Interscience, New York, NY.

Tetra Tech, Inc. (1995) "Willamette River Basin Water Quality Study – Final Report: Summary and Synthesis of Study Findings," prepared for the Oregon Department of Environmental Quality, Portland, OR

Tetra tech, Inc. (1995) "Willamette River Basin Water Quality Study – Phase II: Steady-State Model Refinement Component," prepared for the Oregon Department of Environmental Quality, Portland, OR

Thomann, R. V. and J. F. Fitzpatrick (1982) "Calibration and Verification of a Mathematical Model of the Eutrophication of the Potomac Estuary," report by HydroQual, Inc. Mahwah, NJ, to DES, District of Columbia.

Thomann, R. V. and J. A. Mueller (1987) "Principles of Surface Water Quality Modeling and Control", Harper Collins Publishers, New York, NY.

Wells, S. A. (1997) "Theoretical Basis for the CE-QUAL-W2 River Basin Model," Technical Report EWR-6-97, Department of Civil Engineering, Portland State University, Portland, Oregon, 62 pages.

Wells, S. A. (1998) "Code Development and Testing of the CE-QUAL-W2 River Basin Model," Technical Report EWR-4-98, Department of Civil Engineering, Portland State University, Portland, Oregon, 85 pages.

Wells, S. A. (2000) Modeling the Lower Willamette: Model Selection, Technical Report, Department of Civil Engineering, Portland State University, Portland, OR.

Wells, S. A. and Berger, C. (1998) "The Lower Snake River Model," prepared for HDR Engineering, Boise, ID.

Wentz, D. et al. (1998) "Water Quality in the Willamette Basin, Oregon, 1991-95," Portland, OR

Write, R. M. and McDonnell, A. J. (1979) "In-Stream Deoxygenation Rate Prediction," ASCE Journal of Environmental Engineering Division, 105(EE2):323-335.

Appendix 1: W2 Control File

				River B	asin Mod	lel Versi	on 3		
INPUT PAR	AM IMP 84	KMP 85	NRP 2	NBP 4					
TITLE C .				TIT	'LE				
jrl B J D D T	ull Run R=1 Rese efault h efault l emperatu	Reservoi rvoir 1 ydraulic ight abs re and w	r 1 and coeffic orption/ ater qua	2 System eients extincti lity sim	Model	ficients			
s jr2 B J D T S	cott Wel ull Run R=1 Rese efault h efault l emperatu cott Wel	ls - PSU Reservoi rvoir 1 ydraulic ight abs re and w ls - PSU	368-92 r 1 and coeffic orption/ ater qua 368-92	2 System 2 System extincti lity sim	Model on coef: ulation	ficients			
TIME CON	TMSTRT 368.5	TMEND 1379.9	YEAR 1996						
DLT CON	NDT 1	DLTMIN 01.0							
DLT DATE	DLTD 368.0	DLTD 593.0	DLTD 595.0	DLTD 1090.0	DLTD	DLTD	DLTD	DLTD	DLTD
DLT MAX	DLTMAX 100.00	DLTMAX 10.0	DLTMAX 400.00	DLTMAX 10.0	DLTMAX	DLTMAX	DLTMAX	DLTMAX	DLTMAX
DLT FRN	DLTF 0.90	DLTF 0.90	DLTF 0.90	DLTF 0.90	DLTF	DLTF	DLTF	DLTF	DLTF
DLT LIMIT	VISC ON	CELC ON							
BRANCH G	US	DS	UHS	DHS	NL	slope			
Br 1 Br 2	2	30 37	0	0 27	1	0.00000			
Br 3	40	74	-30	27	1	0.00000			
Br 4	77	83	0	64	1	0.00000			
LOCATION	LAT	LONG	EBOT	BS	BE	JBDN			
jr1 jr2	45.44 45.44	122.18 122.18	266.50 228.00	1 3	2 4	1 3			
INIT CND	T2I	ICEI	WTYPEC						
jr 1 jr 2	4.0 4.0	0.0	FRESH FRESH						
			100	507110		22.0			
CALCULAT	ON	ON	MBC ON	PQINC OFF	ON	OFF			
INTERPOL	QINIC ON	TRIC ON	DTRIC ON	HDIC ON	QOUTIC OFF	WDIC ON	METIC ON		
DEAD SEA	WINDC ON	QINC ON	QOUTC ON	HEATC ON					
HEAT EXCH	SLHTC TERM								
RAD&EVAP	SROC	AFW	BFW	CFW	WINDH	RH_EVAP			
JR1	OFF	10.51	1.31	1.00	2.0	OFF			
UKZ	OF F	10.51	1.31	1.00	∠.0	OF F			
ICE COVER JR1 JR2	ICEC OFF OFF	SLICEC DETAIL DETAIL	ALBEDO 0.25 0.25	HWICE 10.0 10.0	BICE 0.6	GICE 0.07 0.07	ICEMIN 0.05 0.05	ICET2 3.0 3.0	

TRANSPORT UI	SLTRC LTIMATE	THETA 0.50							
WSC NUMB jr 1 jr 2	NWSC 19 21								
WSC DATE jrl	WSCD 368.0 930.0	WSCD 440.0 950.0	WSCD 455.0 1000.0	WSCD 500.0 1010.0	WSCD 570.0 1050.0	WSCD 600.0 1180.0	WSCD 620.0 1190.0	WSCD 767.0 1260.0	WSCD 830.0 1315.0
jr2	368.0 710.0 1175.0	390.0 800.0 1270.0	415.0 840.0 1300.0	460.0 895.0	515.0 940.0	560.0 965.0	630.0 990.0	670.0 1050.0	700.0 1145.0
WSC COEF jr1	WSC 0.80 0.60 0.65	WSC 0.55 0.70	WSC 0.75 0.80	WSC 0.80 1.00	WSC 0.85 0.75	WSC 0.90 0.65	WSC 0.65 0.30	WSC 0.55 0.40	WSC 0.30 0.90
jr2	0.70 1.00 0.20	1.00 0.50 0.40	0.60 0.20 0.20	0.25 0.40	0.40 0.50	0.60 0.20	0.20 0.20	0.70 1.00	0.60 0.50
HYD COEF JR1 JR2	AX 1.0 1.0	DX 1.0 1.0	CBHE 1.0E-8 1.0E-8	TSED 10.0 10.0	FI 0.01 0.01	TSEDFAC 0.00 0.00			
AZ jr1 jr2	AZFORM W2 W2	AZMAX 0.00010 0.00010	AZCALC EXP EXP						
FRICTION	TYPE MANN								
N STRUC BR1 BR2 BR3 BR4	NSTR 3 0 2 0								
STR TOP Br 1 Br 2	ESTRT 10	ESTRT 10	ESTRT 10	ESTRT	ESTRT	ESTRT	ESTRT	ESTRT	ESTRT
br 3 br4	10	10							
STR BOT Br 1 Br 2	ESTRB 84	ESTRB 84	ESTRB 84	ESTRB	ESTRB	ESTRB	ESTRB	ESTRB	ESTRB
br3 br4	84	84							
SINK TYPE Br 1 Br 2	SINKC POINT	SINKC POINT	SINKC POINT	SINKC POINT	SINKC POINT	SINKC POINT	SINKC POINT	SINKC	SINKC
br3 br4	POINT	POINT							
E STRUC Br 1 Br 2	ESTR 312.4	ESTR 303.28	ESTR 292.61	ESTR	ESTR	ESTR	ESTR	ESTR	WSTR
br3 br4	231.6	230.28							
W STRUC Br 1 Br 2	WSTR 10.0	WSTR 10.0	WSTR 10.0	WSTR	WSTR	WSTR	WSTR	WSTR	WSTR
br3 br4	10.0	10.0							
PIPES	NPIPE 0								
PIPE pipe 1	IUSEG 30	IDSEG 33	INV-U 20.0	INV-D 22.00	DIA 1.0	LENGTH 50.0	FRIC_N 0.045	MIN_FR 0.10	

PIPE-U pipe 1	TRIBPL DISTR	TRIBTOP	TRIBBOT	KWTOP 2	KWBOT 24				
PIPE-D pipe 1	TRIBPL DISTR	TRIBTOP	TRIBBOT	KWTOP	KWBOT				
NWEIR	NWEIR 1								
SPWEIR spill1	IUSEG 74	IDSEG 0	ZSPW 262.13	A1 252.910	B1 1.5	A2 0	B2 0.0		
SP-U spill1	TRIBPL DENSITY	TRIBTOP	TRIBBOT	К₩ТОР 15	KWBOT 60				
SP-D spill1	TRIBPL DENSITY	TRIBTOP	TRIBBOT	К₩ТОР 5	KWBOT 65				
SP-GAS spill1	ON/OFF OFF	EQN# 1	AGAS 0.120	BGAS 105.61	CGAS				
NGATE	NGATE 12								
GATE	IUGSEG	IDGSEG	ZGT	AlG	BlG	G1G	A2G	B2G	G2G
gatel	30	40	315.78	22.430	1.500	0.000	00.00	0.00	0.00
gate2	30	40	315.78	22.430	1.500	0.000	00.00	0.00	0.00
gate3	30	40	315.78	22.430	1.500	0.000	00.00	0.00	0.00
gale4	30	40	272.80	0.06627	0.50	0.9315	0.00	0.00	271.28
gates	30	40	272.00	0.06627	0.50	0.9315	0.00	0.00	271.20
gate7	30	40	283.47	0.06627	0.50	0.9315	0.00	0.00	271.28
gate8	30	40	283.47	0.06627	0.50	0.9315	0.00	0.00	271.28
gate9	30	40	283.47	0.06627	0.50	0.9315	0.00	0.00	271.28
gate10	30	40	294.14	0.06627	0.50	0.9315	0.00	0.00	271.28
gatell	30	40 40	294.14	0.06627	0.50	0.9315	0.00	0.00	271.28
guttiz	50	10	291.11	0.00027	0.50	0.9515	0.00	0.00	2/1.20
GATE WEI	IR GA1	GB1	GA2	GB2					
gatel	22.430	1.5	0.00	0.0					
gate2	22.430	1.5	0.00	0.0					
gale3	22.430	1.5	0.00	0.0					
gate1 gate5	0.0	0.0	0.	0.					
gate6	0.0	0.0	0.	0.					
gate7	0.0	0.0	0.	0.					
gate8	0.0	0.0	0.	0.					
gate9	0.0	0.0	0.	0.					
gate10	0.0	0.0	0.	0.					
gatell	0.0	0.0	0.	0.					
guttiz	0.0	0.0	0.	0.					
GT-U	TRIBPL	TRIBTOP	TRIBBOT	KWTOP	KWBOT				
gate1	DISTR			10	84				
gate2	DISTR			10	84				
gate3	DISTR			10	84				
gale4 gate5	DISTR			10	84				
gate6	DISTR			10	84				
gate7	DISTR			10	84				
gate8	DISTR			10	84				
gate9	DISTR			10	84				
gate10	DISTR			10	84				
gatell gatel2	DISTR			10 10	84 84				
540012	21010			±0	01				
GT-D	TRIBPL	TRIBTOP	TRIBBOT	KWTOP	KWBOT				
gatel	DISTR			2	20				
gate2	DISTR			2	20				
gate3	DISTR			2	20				
yale4	DISTR			∠ ວ	20 20				
gales gate6	DIGLD			∠ 2	20 2∩				
galeo gate7	DIGIR			∠ 2	∠∪ 2∩				
gueer	PIDIK			4	20				

gate8 gate9 gate10 gate11 gate12	DISTR DISTR DISTR DISTR DISTR			2 2 2 2 2	20 20 20 20 20				
GT-GAS gate1 gate2 gate3 gate4 gate5 gate6 gate7 gate8 gate9 gate10 gate11 gate12	ON/OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF	EQN#	AGAS	BGAS	CGAS				
WIL CON1	0 TUGSEG	TDGSEG	ZDIIMD	START	END	WLON	WIOFF	FLOW	
wlc1	30	40	312.	2000.0	2001.0	315.78	315.17	30.	
WL CON2 wlc1	TRIBPL DISTR	TRIBTOP	TRIBBOT	KWTOP 10	KWBOT 84				
INT WEIR	NWR 0								
WEIR SEG	IWR	IWR	IWR	IWR	IWR	IWR	IWR	IWR	IWR
WEIR TOP	EWRT	EWRT	EWRT	EWRT	EWRT	EWRT	EWRT	EWRT	EWRT
WEIR BOT	EWRB	EWRB	EWRB	EWRB	EWRB	EWRB	EWRB	EWRB	EWRB
N WDRWAL	NWD 0								
W SEGMNT	IWD 74	IWD	IWD	IWD	IWD	IWD	IWD	IWD	IWD
W EL	EWD 231.0	EWD	EWD	EWD	EWD	EWD	EWD	EWD	EWD
W TOP	KWDT 15	EWDT	EWDT	EWDT	EWDT	EWDT	EWDT	EWDT	EWDT
W BOT	KWDB 84	EWDB	EWDB	EWDB	EWDB	EWDB	EWDB	EWDB	EWDB
PUMPBACK	JBG	KTG	KBG	JBP	KTP	KBP			
N TRIBS	NTR 6								
TRIB PLACE	E PTRC DISTR	PTRC DISTR	PTRC DISTR	PTRC DISTR	PTRC DISTR	PTRC DISTR	PTRC	PTRC	PTRC
TRIB SEG	ITR 10	ITR 11	ITR 22	ITR 21	ITR 43	ITR 54	ITR	ITR	ITR
TRIB TOP	ETRT	ETRT	ETRT	ETRT	ETRT	ETRT	ETRT	ETRT	ETRT
TRIB BOT	ETRB	ETRB	ETRB	ETRB	ETRB	ETRB	ETRB	ETRB	ETRB
DST TRIB	DTRC								

BR1 BR2 BR3 BR4	ON OFF ON OFF								
PRINTER	LJC IV								
HYD PRINT	HPRC ON OFF	HPRC ON OFF	HPRC ON OFF	HPRC ON OFF	HPRC OFF OFF	HPRC ON OFF	HPRC OFF	HPRC OFF	HPRC OFF
SNP PRINT jr 1 jr 2	SNPC ON ON	NSNP 1 1	NISNP 30 39						
SNP DATE jr 1 jr 2	SNPD 368.0 368.0	SNPD	SNPD	SNPD	SNPD	SNPD	SNPD	SNPD	SNPD
SNP FREQ jr 1 jr 2	SNPF 7.5000 7.5000	SNPF	SNPF	SNPF	SNPF	SNPF	SNPF	SNPF	SNPF
SNP SEG jr 1	ISNP 2 11 20	ISNP 3 12 21	ISNP 4 13 24	ISNP 5 14 25	ISNP 6 15 26	ISNP 7 16 27	ISNP 8 17 28	ISNP 9 18 29	ISN 10 19 30
jr 2	35 40 49 58 67 81	36 41 50 59 68 82	37 42 51 60 69 83	43 52 61 70	44 53 62 71	45 54 63 72	46 55 64 73	47 56 65 74	48 57 66 80
SCR PRINT jr 1 jr 2	SCRC ON OFF	NSCR 1 1							
SCR DATE jr 1 jr 2	SCRD 368.5 368.5	SCRD	SCRD	SCRD	SCRD	SCRD	SCRD	SCRD	SCRD
SCR FREQ jr 1 jr 2	SCRF 0.4000 0.4000	SCRF	SCRF	SCRF	SCRF	SCRF	SCRF	SCRF	SCRF
PRF PLOT jr 1 jr 2	PRFC ON ON	NPRF 1 1	NIPRF 3 4						
PRF DATE jr 1 jr 2	PRFD 368.5 368.5	PRFD	PRFD	PRFD	PRFD	PRFD	PRFD	PRFD	PRFD
PRF FREQ jr 1 jr 2	PRFF 1.0 1.0	PRFF	PRFF	PRFF	PRFF	PRFF	PRFF	PRFF	PRFF
PRF SEG jr 1 jr 2	IPRF 6 50	IPRF 21 55	IPRF 30 73	IPRF 82	IPRF	IPRF	IPRF	IPRF	IPRF
SPR PLOT jr 1 jr 2	SPRC OFF OFF	NSPR 0 0	NISPR 0 0						
SPR DATE jr 1 jr 2	SPRD	SPRD	SPRD	SPRD	SPRD	SPRD	SPRD	SPRD	SPRD
SPR FREQ jr 1 jr 2	SPRF	SPRF	SPRF	SPRF	SPRF	SPRF	SPRF	SPRF	SPRF

SPR SEG jr 1 jr 2	ISPR	ISPR	ISPR	ISPR	ISPR	ISPR	ISPR	ISPR	ISPR
TSR PLOT jr 1 jr 2	TSRC ON ON	NTSR 1 1							
TSR DATE jr 1 jr 2	TSRD 368.5 368.5	TSRD	TSRD	TSRD	TSRD	TSRD	TSRD	TSRD	TSRD
TSR FREQ jr 1 jr 2	TSRF 0.10 0.10	TSRF	TSRF	TSRF	TSRF	TSRF	TSRF	TSRF	TSRF
KTTSR	KTTSC OFF	KTTSD 1	KTTSI 6						
KTTSR DAT	E KTD 60.0	KTD	KTD	KTD	KTD	KTD	KTD	KTD	KTD
KTTSR FRE	Q KTF 0.01	KTF	KTF	KTF	KTF	KTF	KTF	KTF	KTSF
KTTSR SEG	KTSI 14	KTSI 19	KTSI 48	KTSI 60	KTSI 76	KTSI 85	KTSI	KTSI	KTSI
WITH OUT	WDOUT ON	NWDOUT 2	NWFREQ 0.50						
WITH SEG	IWDOUT 74	IWDOUT 30	IWDOUT	IWDOUT	IWDOUT	IWDOUT	IWDOUT	IWDOUT	IWDOUT
VPL PLOT jr 1 jr 2	VPLC OFF OFF	NVPL 1 1							
VPL DATE jr 1 jr 2	VPLD 63.5	VPLD 64.	VPLD	VPLD	VPLD	VPLD	VPLD	VPLD	VPLD
VPL FREQ jr 1 jr 2	VPLF 0.1	VPLF 1.	VPLF	VPLF	VPLF	VPLF	VPLF	VPLF	VPLF
CPL PLOT jr 1 jr 2	CPLC ON ON	NCPL 1 1							
CPL DATE jr 1 jr 2	CPLD 368.5 368.5	CPLD	CPLD	CPLD	CPLD	CPLD	CPLD	CPLD	CPLD
CPL FREQ jr 1 jr 2	CPLF 1.000 1.000	CPLF	CPLF	CPLF	CPLF	CPLF	CPLF	CPLF	CPLF
FLUXES jr 1 jr 2	FLXC OFF OFF	NFLX 0 0							
FLX DATE jr 1 jr 2	FLXD	FLXD	FLXD	FLXD	FLXD	FLXD	FLXD	FLXD	FLXD
FLX FREQ jr 1 jr 2	FLXF	FLXF	FLXF	FLXF	FLXF	FLXF	FLXF	FLXF	FLXF
RESTART	RSOC OFF	NRSO 1	RSIC OFF						
RSO DATE	RSOD 120.0	RSOD	RSOD	RSOD	RSOD	RSOD	RSOD	RSOD	RSOD

RSO FREQ	RSOF 300.0	RSOF	RSOF	RSOF	RSOF	RSOF	RSOF	RSOF	RSOF
CST COMP	CCC ON	PHC OFF	KF 9						
CST ACTIV	E CAC	CAC	CAC	CAC	CAC	CAC	CAC	CAC	CAC
	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF		
CST DERIV	E CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	OF'F'	OF'F'	OF.F.	OF.F.	OF.F.	OF'F'	OFF	OF'F'	OF'F'
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
CST FLUX	CFC	CFC	CFC	CFC	CFC	CFC	CFC	CFC	CFC
	OF'F'	OF'F'	OF.F.	OF.F.	OF.F.	OF'F'	OFF	OF'F'	OF'F'
	OF'F'	OF.F.	OF'F'	OF'F'	OF'F'	OF'F'	OF'F'	OF.F.	OF'F'
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	011	OFF	011	OFF
CST ICON	C2I	C2I	C2I	C2I	C2I	C2I	C2I	C2I	C2I
jr1	0.0	0.0	0.0	0.0	0.0	0.001	0.002	0.14	0.1
	0.1	0.0	0.7	2.022	0.10	0.10	0.0	0.25	1.0
	0.05	1.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
-i0	0.05	1.0	0.0	0.0	0.0	0.0	0.0	0 1 4	0 1
jr2	0.0	0.0	0.0	0.0	0.0	0.001	0.002	0.14	1.0
	0.1	0.0	0.7	2.022	0.10	0.10	0.0	0.25	1.0
	0.05	1.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
CST PRINT	CPRC	CPRC	CPRC	CPRC	CPRC	CPRC	CPRC	CPRC	CPRC
	OFF	ON	OF'F'	OFF	OFF	OF'F'	OF'F'	OFF	OFF
	OF'F'	OF'F'	OF.F.	OFF.	OF.E.	OF'F'	OFF	OFF.	OF'F'
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
CIN CON	CINAC	CINAC	CINAC	CINAC	CINAC	CINAC	CINAC	CINAC	CINAC
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF		
CTR CON	CTRAC	CTRAC	CTRAC	CTRAC	CTRAC	CTRAC	CTRAC	CTRAC	CTRAC
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
CDT CON	CDTAC	CDTAC	CDTAC	CDTAC	CDTAC	CDTAC	CDTAC	CDTAC	CDTAC
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
CPR CON	CPRAC	CPRAC	CPRAC	CPRAC	CPRAC	CPRAC	CPRAC	CPRAC	CPRAC
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
	OFF OFF	OFF OFF	OFF OFF	OFF OFF	OFF OFF	OFF OFF	OFF OFF	OFF	OFF
EX COEF	EXH2O	EXSS	EXOM	BETA					
JR1	0.45	0.01	0.01	0.45					
JR2	0.45	0.01	0.01	0.45					
ALG EX	EXA1 0.2	EXA2 0.2	EXA3 0.2	EXA4	EXA5	EXA6			
COLIFORM	COLQ10	COLDK							
JR1 JR2	1.04 1.04	1.4 1.4							
--------------	------------------	-----------------	-------	--------	--------------	-------	-------	-------	------
	0 10ممد								
JR1	1.04	0.25	0.50						
JR2	1.04	0.25	0.50						
S SOLIDS	SS1	SS2	SS3	SS4	SS5	SS6	SS7	SS8	SS9
	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ALGAL RATE	AG	AR	AE	АМ	AS	AHSP	AHSN	AHSSI	ASAT
Alg1	1.5	0.02	0.02	0.05	0.04	0.003	0.014	0.003	75.0
Alg2	2.5	0.02	0.02	0.05	0.10	0.003	0.014	0.000	75.0
Alg3	0.5	0.02	0.02	0.01	0.02	0.003	0.010	0.000	75.0
Alg4	0.8	0.02	0.02	0.01	0.05	0.003	0.012	0.000	75.0
Alg5 Alg6	3.5	0.02	0.02	0.01	0.15	0.009	0.013	0.000	75.0
5									
ALGAL TEMP	AT1	AT2	AT3	AT4	AK1	AK2	AK3	AK4	
Algi	5.0	18.0	20.0	24.0	0.1	0.99	0.99	0.01	
Alg2 Alg3	10.0	35.0	40.0	50.0	0.1	0.99	0.99	0.01	
Alg4	10.0	35.0	40.0	50.0	0.1	0.99	0.99	0.01	
Alg5	10.0	20.0	25.0	30.0	0.1	0.99	0.99	0.01	
Alg6	15.0	20.0	22.0	25.0	0.1	0.99	0.99	0.01	
ALG STOICH	I ALGP	ALGN	ALGC	ALGSI	ACHLA				
Algl	0.005	0.08	0.45	0.18	65.0				
Alg2	0.005	0.08	0.45	0.00	65.0				
Alg3	0.005	0.08	0.45	0.00	65.0 65.0				
Alg4 Alg5	0.005	0.08	0.45	0.00	65.0				
Alg6	0.005	0.08	0.45	0.00	65.0				
501									
DOM ir1	LDOMDK	RDOMDK 0 001	0 001						
jr2	0.12	0.001	0.001						
POM	LPOMDK	RPOMDK	LRPDK	POMS	APOM				
jri ir2	0.08	0.001	0.001	0.5	0.8				
5	0.00	0.001	0.001	0.0	0.0				
OM STOICH	ORGP	ORGN	ORGC	ORGSI					
jrl ir2	0.005	0.08	0.45	0.18					
2 10	0.005	0.00	0.45	0.10					
OM RATE	OMT1	OMT2	OMK1	OMK2					
jr1	4.0	30.0	0.1	0.99					
Jr2	4.0	30.0	0.1	0.99					
CBOD	KBOD	TBOD	RBOD						
jr1	0.25	1.0147	1.85						
jr2	0.25	1.0147	1.85						
PHOSPHOR	PO4R	PARTP							
jrl	0.015	0.3							
jr2	0.015	0.3							
AMMONIUM	NH4R	NH4DK 0 1 2							
jr2	0.08	0.12							
5									
NH4 RATE	NH4T1	NH4T2	NH4K1	NH4K2					
jrl ir2	5.0	25.0	0.1	0.99					
ے بر	5.0	20.0	0.1	0.99					
NITRATE	NO3DK								
jr1	0.05								
jr2	0.05								
NO3 RATE	NO3T1	NO3T2	NO3K1	NO3K2					
jr1	5.0	25.0	0.1	0.99					
jr2	5.0	25.0	0.1	0.99					
STLTCA	9 T 2 J	PSTS	PSIDK	PARTST					
	2011	1010							

jr1 jr2		0.1 0.1	0.0	0.3 0.3	0.2 0.2					
IRON jr1 jr2		FER 0.1 0.1	FES 0.0 0.0							
SED CO2 jr1 jr2		CO2R 0.1 0.1								
STOICHMI jr1 jr2	. (D2NH4 4.57 4.57	020M 1.4 1.4	02AR 1.1 1.1	02AG 1.4 1.4					
O2 LIMIT	. (0.00								
SEDIMENT JR1 JR2		SEDC OFF OFF	PRNSC ON ON	SEDCI 0.0 0.0	SEDK 0.10 0.10	FSOD 1.0 1.0				
SOD RATE jr1 jr2	E 5	SODT1 4.0 4.0	SODT2 30.0 30.0	SODK1 0.1 0.1	SODK2 0.99 0.99					
SHIFT DECAYSDCjr1OFFjr2OFF										
S DEMANI)	SOD 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	SOD 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3							
REAERATI jr1 jr2	ON	type LAKE LAKE	EQN# 6 6	COEF1	COEF2	COEF3	COEF4			
RSI FILErsi.npt										
QWD FILEQWDFNQWDFN										
BTH FILEBTHFNBTHFN.jr 1 bth_res1.npt jr 2 bth_res2b.npt										
MET FILE jr 1 pdxmet.npt jr 2 pdxmet2.npt										
VPR FILE jr 1 vpr.npt jr 2 vpr2.npt										
LPR FILE jr 1 lpr1.npt jr 2 lpr2.npt										
QIN FILEQINFNQINFN. Br 1 BULLRQ.npt Br 2 BEARQ.NPT br 3 not_used br 4 southq.npt										
TIN FILE	G				TIN	JFN				

Br 1 Br 2 br 3 br 4	BULLRT.npt BEART.NPT not_used southt.npt						
CIN FIL Br 1 Br 2 br 3 br 4	ECINFNCINFN. cin_br1.npt cin_br2.npt not_used cin_br4.npt						
QOT FIL Br 1 Br 2 br 3 br 4	EQOTFN phlq.npt not_used ph2q3.npt not_used						
QGT FILEQGATEQGATEqgatel2.npt							
QTR FIL: Tr 1 Tr 2 Tr 3 Tr 4 tr 5 tr 6	EQTRFNQTRFN. fircrkq.npt northq.npt deerq.npt cougarq.npt fivemq.npt campq.npt						
TTR FIL Tr 1 Tr 2 Tr 3 Tr 4 tr 5 tr 6	ETTRFN fircrkt.npt northt.npt deert.npt cougart.npt fivemt.npt campt.npt						
CTR FIL: Tr 1 Tr 2 Tr 3 Tr 4 tr 5 tr 6	ECTRFNCTRFN. ctr_tr2.npt ctr_tr3.npt ctr_tr4.npt ctr_tr5.npt ctr_tr6.npt						
QDT FIL Br 1 Br 2 br 3 br 4	EQDTFNQDTFN qwbR1_11.npt qwbR2_34.npt						
TDT FIL Br 1 Br 2 br 3 br 4	ETDTFNTDTFN rldistT.npt r2distT.npt						
CDT FIL Br 1 Br 2 br 3 br 4	ECDTFNCDTFNcwbal.npt cwbal2.npt						
PRE FIL Br 1 Br 2 Br 3 Br 4	EPREFN pre_br1.npt - not used						
TPR FIL Br 1 Br 2 Br 3 Br 4	ETPRFN tpr_brl.npt - not used						
CPR FIL	ECPRFN						

cpr_brl.npt - not used Br 1 Br 2 Br 3 Br 4 EUH FILE.....EUHFN.... Br 1 Br 2 Br 3 Br 4 TUH FILE......TUHFN..... Br 1 Br 2 Br 3 Br 4 CUH FILE.....CUHFN..... Br 1 Br 2 Br 3 Br 4 EDH FILE......EDHFN..... Br 1 edh_br1.npt br 2 edh_br1.npt br 3 br 4 TDH FILE..... tdh_br1.npt Br 1 tdh_br1.npt Br 2 br 3 br 4 Br 1 cdh_br1.npt Br 2 cdh_br1.npt br 3 br 4 SNP FILE......SNPFN..... snp1.opt jr 1 jr 2 snp2.opt TSR FILE..... jr 1 tsr1.opt jr 2 tsr2.opt PRF FILE......PRFFN..... jr 1 prf1.opt jr 2 prf2.opt TKT FILE.....TSRKTFN..... tsrkt.opt VPL FILE......VPLFN..... jr 1 vpl1.opt jr 2 vpl2.opt CPL FILE......CPLFN..... jr 1 cpl1.opt jr 2 cpl2.opt jr 1 spr1.opt jr 2 spr2.opt FLX FILE..... kfl1.opt jr 1 jr 2 kfl2.opt WSF FILE......WSFFN..... jr 1 wsfl.opt jr 2 wsf2.opt