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Extraction of small boat harmonic signatures from passive sonar

George L. Ogdena) and Lisa M. Zurk
Northwest Electromagnetics and Acoustics Research Laboratory, Portland State University, P.O. Box 751,
Portland, Oregon 97207

Mark E. Jones and Mary E. Peterson
Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352

(Received 8 October 2010; revised 26 March 2011; accepted 28 March 2011)

This paper investigates the extraction of acoustic signatures from small boats using a passive sonar

system. Noise radiated from a small boats consists of broadband noise and harmonically related

tones that correspond to engine and propeller specifications. A signal processing method to auto-

matically extract the harmonic structure of noise radiated from small boats is developed. The Har-

monic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of

the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automati-

cally extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat.

Results are presented that show the HEAT algorithms ability to extract these signatures.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3583500]

PACS number(s): 43.60.Hj, 43.60.Lq, 43.30.Wi [EJS] Pages: 3768–3776

I. INTRODUCTION

The automated detection and classification of maritime

traffic is a challenging problem and is of great importance to

many organizations. For marine protected areas (MPAs), an

automated boat detection system could alert authorities of

vessel traffic. However, in some MPAs commercial snorkel-

ing and diving boats are authorized while fishing vessels are

not. For this reason, a classification system is needed to dis-

criminate these different types of boats. The need for similar

systems arises in the monitoring of harbor traffic for national

security. There are many different methods for boat detec-

tion, examples including radar,1 electro-optic (EO) and infra-

red (IR) cameras,2 and both active and passive sonar. Active

sonar and radar provide little additional information beyond

detection. Radar and optical methods are limited by line of

sight for detection, and optical systems can be obscured by

rain, fog, or may require daylight. Active sonar can be used

for detection of quiet targets, but the high level of reverbera-

tion in shallow water environments often causes many false

detections, which limits its utility.

As an alternative, passive sonar has been proven to be

an efficient tool for the detection and identification of self-

emitting targets.3,4 Passive sonar has been used to detect

SCUBA divers by observing peaks in the frequency energy

distribution due to the divers breaths.5 The breathing rate

and the spectrum intensity give information of the range of

the diver. The same research group used passive sonar to

observe the radiated spectrum of small boats and other har-

bor traffic and investigated the effects of boat noise on the

detection range of divers.6 While passive sonar was used

here to examine the sound emitted from boats, this work is

mainly focused on the detection of divers using passive so-

nar. There has yet to be any significant work on classification

of small boats in the literature.

This paper is focused on the extraction of acoustic sig-

natures from small boats using a passive sonar system. Pas-

sive spectra of boats include broadband noise as well as

tonals due to the harmonics of the engine speed and shaft/

propeller rotation.7 The algorithm developed here extracts

the harmonic features to facilitate the exploration of the rela-

tionship between these features and the identification of spe-

cific boats. These features consist of harmonic amplitudes,

SNRs, and the fundamental frequencies of the boat noise.

Fundamental frequency estimation is a topic that spans

many disciplines including speech recognition,8 biomedical

signal processing,10 and musical pitch estimation.11 In Refs.

12–14, least squares estimators were used to determine fun-

damental frequency of harmonic sinusoidal signals. In Ref.

8, speech pitch was estimated by maximizing the cross cor-

relation of a speech signal over a range of feasible pitch val-

ues. An adaptive comb filtering technique was used in Ref. 9

to estimate fundamental frequency of noisy harmonic sig-

nals. A marginalized particle filter was used in Ref. 11 to

estimate and to track the fundamental frequency, and in this

case, multiple fundamental frequencies, of musical signals.

In Ref. 10, a marginalized particle filter was also used to

estimate and to track the instantaneous frequency of two

biomedical signals: electrocardiogram and arterial blood

pressure.

In this paper a Harmonic Extraction and Analysis Tool

(HEAT) has been designed to estimate the fundamental fre-

quency of the harmonic content generated by the engine and

propeller of small boats. A discrete Kalman filter is applied

to refine the estimated fundamental frequency and create a

track through time. The Kalman filter is a widely used recur-

sive algorithm used to estimate the mean and error covari-

ance of a state through time given a series of noisy

observations of the state.15 Kalman filter and its extended

forms have been applied to many areas in acoustic signal

processing. In Ref. 16, an extended Kalman filter is used

to track objects in a multistatic active sonar geometry.a)Electronic mail: ogdengl@gmail.com
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In Ref. 17, a Kalman filter was applied in real time speech

processing to find a model that fits the natural speech.

Harmonics of the fundamental frequency are extracted,

and the amplitudes of each harmonic are used as signatures

of the boat. Extracted signatures from data collected in

Sequim Bay, WA are presented. These examples quantify

the algorithms ability to automatically extract these har-

monic signatures for later use in classification.

II. SIGNAL MODEL AND DIGITAL PROCESSING

Many researchers have studied radiated noise from large

ships, both by modeling and measurement. In the 1970s,

Gray and Greely18 developed a model to predict source level

and frequency of the acoustic energy generated by propeller

cavitations. In the 1990s, Arveson and Vendettis19 con-

ducted a series of measurements of the noise radiated from

the M/V Overseas Harriette and found agreement with Gray

and Greeley’s model. These references characterize the radi-

ated noise from large ships quite well. However, much less

work has been done to characterize the radiated noise from

small vessels.

Ross3 and Urick4 have given an excellent description of

radiated noise from large surface ships and submarines.

They have shown that the radiated noise from a ship is a

combination of broadband noise and sinusoidal tonal signals.

The broadband noise is generated by many sources including

propeller cavitations and impulsive events in the engine.

This broadband noise propagates through the water, and

when received on a hydrophone, generates the classical bath-

tub pattern that is often associated with passive acoustic sig-

natures. This bathtub pattern is due to the different multi-

path arrivals of the noise adding up in and out of phase. The

sinusoidal tonal signals can be related to details about the

ships engine and propeller. They are also the fundamental

components of a harmonic set. Table I shows the major con-

tributions to the tonals from the ships engine and propeller.

The model of radiated ship noise represented as a sum of

broadband noise and tonal frequencies is used to describe

the noise radiated from small boats.

A. Signal model

Consider a sum of many periodic sinusoidal signals

whose frequencies are all harmonically related, being integer

multiples of a fundamental frequency. This signal can be

written as follows:

sðtÞ ¼
XH

h¼1

Ah cosð2phc tþ uhÞ;

where h is the harmonic number, Ah and uh are the ampli-

tude and phase of the hth harmonic component, and c is the

fundamental frequency. Assume that this signal is of infinite

length. The Fourier transform of s(t) consists of a series of

delta functions with even spacing c.

Now consider the noise radiated from a ship as a combi-

nation of broadband noise and harmonically related sinusoi-

dal tonal signals. This can be written as:

rðtÞ ¼ sðtÞ þ nðtÞ

¼
XH

h¼1

Ah cosð2phc tþ uhÞ þ nðtÞ: (1)

In this equation the fundamental frequency and harmonic

amplitudes are unknown. This fundamental frequency c is

related to the engine speed and other parameters by Table I.

We can rewrite r(t) as rðt; hÞ, where the value h represents a

set of estimation parameters including the fundamental fre-

quency, c, as well as the amplitude of all the harmonics, Ah,

thus h ¼ c;Ahf g.
The signal received on the hydrophone is different from

the signal radiated from the boat for a number of reasons

including changes in engine speed, Doppler shift, and other

propagation effects. The received signal can still be modeled

as a sum of sinusoidal signals as in (1), but with a time-

varying fundamental frequency c. Hence, c is written as

cðtÞ ¼ fo þ D f ðtÞ where fo is the fundamental frequency, and

D f ðtÞ is the change in fundamental frequency over time. The

quantity rðt; hÞ can finally be written as:

rðt; hÞ ¼ sðt; hÞ þ nðtÞ

¼
XH

h¼1

Ah cosð2phcðtÞtþ uhÞ þ nðtÞ: (2)

B. Digital processing

The signal received on the hydrophone, rðt; hÞ, is a con-

tinuous signal with time-varying frequency content. The sig-

nal is first digitally sampled before being processed. A time-

frequency transform is then applied to the signal to show the

time-varying frequency content. The Short-time Fourier

Transform (STFT) is computed by moving a short window

along the data (creating a “snapshot”) and computing the

Fourier transform of the data along that window. The win-

dow length is assumed to be short enough that the change in

fundamental frequency within the window is negligible, i.e.,

D f ðtÞ � D f ðtkÞ within the window. Now ck ¼ fo þ D f ðtkÞ,
where tk is the center time for the kth snapshot.

The signal in frequency domain for each window is the

convolution of the Fourier transformed data with the Fourier

TABLE I. Fundamental frequencies from the engine and propeller.

Engine Rates Propeller Rates

Cylinder Firing Rate Shaft Rotation Rate

fCF ¼ fCR=2 fSR ¼ fCR=Kg

Kg¼Gear Ratio

Crankshaft Rotation Rate Blade Rotation Rate

fCR ¼ RPM=60 fBR ¼ NbfSR

RPM¼Engine Speed Nb¼Number of Blades

Engine Firing Rate

fEF ¼ NcfCF

Nc¼Number of Cylinders
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transform of the time-domain window, Sðf ; hÞ ¼F sðt;f
hÞg � F rectwinðtÞf g, which results in Sðf ; hÞ being a sum-

mation of weighted sinc (sincx � sin x=x ) functions:

Sðf ; hkÞ ¼
XH

h¼1

Ah

2
sinc p f � hckð Þ½ �: (3)

Suppose rðt; hÞ to be of finite length Tr. The signal is

sampled at frequency fs, with a sampling period D t ¼ 1=fs.

Thus rðt; hÞ can be written as rðjD t; hÞ where j ¼ 0;f
1; � � � ;Nr � 1g and Nr ¼ Tr=D t. Then the signal is parti-

tioned into K overlapping segments, or snapshots, where

each snapshot is of length T seconds, or Ns samples where

Ns ¼ T=D t. The notation rkðnD t; hkÞ is used to represent the

nth sample of the kth snapshot. The received data, rðnD t; hÞ,
is now of dimension Ns � K½ �. Each snapshot is then trans-

formed to the frequency domain by computing the Ns-point

DFT using an FFT algorithm:

RkoðmD f ; hkÞ ¼ 2
Ns

XNs=2�1

n¼�Ns=2

rkðtk þ nD t; hkÞe�jm2pD fnD t (4)

where tk is the center time for the kth snapshot and

RkoðmD f ; hkÞ is the DFT coefficient at the frequency bin

mD f . The frequency resolution, or width of the bin D f , is

determined by the length of the snapshot window such that

D f ¼ 1=T. For simplicity let fm � mD f , where fm

¼ D f �Ns=2; � � � ;�1; 0; 1; � � � ;Ns=2� 1f g, so RkoðmD f ;
hkÞ¼Rkoðfm; hkÞ, which is of dimension Ns � K½ �.

Lastly, once the STFT is computed, each snapshot is

normalized along frequency. The signal that is received is a

combination of the tonals from the engine and propeller,

broadband noise, and any environmental noise in the area.

Since this noise is generally non-Gaussian, the received sig-

nal is normalized using a moving window of length W along

frequency.

Rkðfm; hkÞ ¼
Rkoðfm; hkÞ � lR;W

rR;W
; (5)

where lR;W and rR;W are the mean and standard deviation of

Rkoðfm; hkÞ in the window W.

III. HARMONIC EXTRACTION AND ANALYSIS TOOL
(HEAT)

The overall goal is to develop a boat detection and sig-

nature extraction algorithm that can be implemented in real-

time on passive acoustic systems. Figure 1 shows the struc-

ture of the developed approach. The first block shows data

collection and pre-processing, as discussed in the previous

section. The next block is an event detection algorithm,

which is used to pick out segments of acoustic data where a

ship signature is present. Once a boat signature has been

detected, certain parameters about the boat need to be esti-

mated in order to give some kind of information that will

help in identifying the type of boat. The Harmonic Extrac-

tion and Analysis Tool (HEAT) has been designed to extract

important information from the data for later use in

classification.

There are three main steps to the HEAT algorithm. The

first step is to estimate the fundamental frequency of the har-

monic content from the boat. The method used in this paper

is a frequency domain method similar to the maximum like-

lihood method described in Ref. 20. In their research, a time

domain method for estimating the pitch period of voiced

speech based on a maximum likelihood formulation. The fre-

quency domain analog to that method matches a comb-like

filter to the autocorrelation of the periodic signal. The Fou-

rier transform of a signal is correlated to a comb filter to gen-

erate an estimate of the fundamental frequency. This puts

the frequency in a linear space, so a Kalman filter can then

be used to track the fundamental frequency through time.

The time evolving fundamental frequency estimated from

the Kalman filter is used as a basis for extracting the ampli-

tude of the harmonic tonals from the data. These harmonic

amplitudes are what make up the harmonic signature.

A. Fundamental frequency estimation

The noise radiated from small boats is modeled as a per-

iodic, multi-harmonic signal, as described in Sec. 2.1. In this

section, a method of estimating the fundamental frequency

of a harmonic set is described. The Pearson Product-Moment

Correlation Coefficient (PMCC) is used to estimate the cor-

relation of the unknown harmonic set to a signal with known

fundamental frequency.

The PMCC is a measure of linear association between

two random variables.21 Consider an ordered pair of random

variables X and Y with mean lx and ly, standard deviation rx

FIG. 1. General overview of detection and estimation algorithm.
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and ry, and covariance rxy. The correlation coefficient

between X and Y is defined as

q ¼ rxy

rxry
;

where q is bounded between �1 and 1. This can be esti-

mated from a sample of X and Y by

q̂ ¼
P

i xi � lxð Þ yi � ly

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i xi � lxð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i yi � ly

� �2
q ; (6)

The variable q̂ will be used to indicate an estimate of the cor-

relation coefficient. The PMCC is used in this algorithm to

measure the similarity of the measured signal Rkðfm; hkÞ to a

signal with known parameters.

1. Signal replica model

In (3) the tonals recorded on the hydrophone were mod-

eled as a sum of weighted, harmonically related sinc func-

tions, with fundamental frequency ck at time tk. This same

model is used to generate comb filters which are correlated

to the received signal, only here it is assumed that all the har-

monics have equal amplitude:

Cmp ¼ Sðfm; hkjck ¼ fp;Ah ¼ 2Þ

¼
XH

h¼1

sinc p fm � hfp

� �� �
; (7)

where Cmp is a row in the matrix C
¼

. The matrix C
¼

is dimen-

sion Nc � Ns

� �
, where the fundamental frequency is discre-

tized into Nc points of width Dc. The variable f gives the

fundamental frequency of each comb filter. It is indexed by

p such that fp ¼ cmin þ pDc.

2. Fundamental frequency estimation using PMCC

To estimate the fundamental frequency of the signal

received at time tk, Rkðfm; hkÞ, the signal is compared with a

signal replica model (7) using the PMCC (6):

q̂pkðfp; tkÞ ¼
P

fm
Cmp�lCð ÞRkðfm;hkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

fm
Cmp�lCð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
fm

Rk fm;hkð Þ2
q : (8)

Note that the mean of Rkðfm; hkÞ does not appear in (8) since

it is already zero mean by Eq. (5). The value q̂pkðfp; tkÞ is the

correlation coefficient of the kth snapshot of Rkðfm; hkÞ to a

comb filter with fundamental frequency fp. This is done for

each snapshot which makes the matrix ��q dimension

Nc � K
� �

. For brevity, we will drop the variables from

q̂pkðfp; tkÞ, i.e., q̂pk � q̂pkðfp; tkÞ.
When the fundamental frequency in Cmp is equal to the

fundamental frequency in Rkðfm; hkÞ, i.e., fp ¼ ck, q̂pk results

in a high correlation and a peak in q¼. This peak frequency is

denoted as ĉk. Also, if the spacing in the replica signal is

twice the fundamental frequency of the received signal, it

generates another peak in q¼ at that frequency. In fact, there

are many peaks that show up in q¼ as a result of partial

matches with multiples of the fundamental frequency. This

is demonstrated in Figure 2, which shows the result the

PMCC analysis of C
¼

to Sðfm; hkjck ¼ 20;Ah ¼ 2Þ.
The peak at 20 Hz shows the perfect correlation of the

replica signal with fundamental frequency of 20 Hz to itself.

There are many other peaks that give high correlation due to

only a fraction of the peaks lining up with the model. It is for

this reason, as well as the desire to track the changing fre-

quency content through time, that a Kalman filter is applied

to q¼. Each of the peaks in q¼ and their associated frequencies

ĉk will be combined into a set of detections Zk to be used as

measurements for the Kalman filter.

B. Kalman filter

The fundamental frequency estimator in (8) results in a

correlation of the measured signal Rkðfm; hkÞ with a replica

signal Cmp for all possible fundamental frequencies fp and for

every snapshot k. A simple way to estimate the fundamental

frequency at time k is to find the value of fp where q̂pk is

maximum ĉk ¼ arg maxpq̂pk. However, it is not enough since

multiple signals of interest (boats) can be present with differ-

ent fundamental frequencies. Also, if the gear ratio in the

engine is not an integer number, the fundamental frequency

for the engine harmonics will be different from the funda-

mental frequency of the shaft and propeller harmonics. For

that reason, a Kalman filter has been implemented in the cor-

relation domain that will allow for a time evolving estimate

of the fundamental frequency for each of the peaks present.

The Kalman filter works by projecting the mean Ĉ�k and

error covariance P�k of the state forward in time from time

tk�1 to time tk from initial estimates supplied to the filter,

Ĉk�1 and Pk�1.15

Predict

Ĉ�k ¼ FĈk�1

P�k ¼ FPk�1FT þ Q; (9)

where F is the state transition matrix and Q is the process

noise covariance matrix. The estimate of the mean Ĉk and

error covariance Pk are then corrected, or updated (10),

based on the measurement of the state zk at time tk.

FIG. 2. (Color online) The fundamental frequency correlation in (8) for the

replica signal with a fundamental frequency of 20 Hz shows a peak indicat-

ing perfect correlation at 20 Hz, as well as several partial matches.
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Update

Kk ¼ P�k HT HP�k HT þ R
� ��1

Ĉk ¼ Ĉ�k þ Kk zk � HĈ�k
� �

Pk ¼ I � KkHð ÞP�k ; (10)

where Kk is the Kalman gain at time tk, R is the measurement

noise covariance matrix, and H relates the state to the mea-

surement. At the next time step the corrected estimates are

fed back into the prediction equations and the process

repeats. This gives a filtered estimate of the mean and error

covariance of the state for all times which forms a track.

1. Fundamental frequency tracking using Kalman
filter

A discrete Kalman filter has been implemented as a

peak follower that tracks the PMCC in (8). The tracker

adapts a near constant velocity process model to tracking fre-

quency, given by

Ck ¼ FCk�1 þ wk;

Ck ¼
cKF;k

_cKF;k

qKF;pk

2
64

3
75;

F ¼
1 1 0

0 1 0

0 0 1

2
64

3
75;

wk � N 0;Qð Þ; (11)

where Ck is the state vector for a single track, cKF;k and _cKF;k

represent the frequency and change in frequency (frequency

velocity) from time tk�1 to tk, respectively, qKF;pk is the cor-

relation value for frequency cKF;k, F is the state transition

matrix, and wk is assumed to be a zero-mean white Gaussian

process with variance Q.

For a Kalman filter tracking an object’s position, the

near constant velocity model would assume that from time

tk�1 to tk, the change in velocity of the object is negligible.

The position can be predicted as the previous position plus

some change in position due to the object moving at some

velocity over some time step. The adaptation of this model

to tracking frequency assumes that the change in frequency

from time tk�1 to tk is negligible, so the frequency at time tk
can be predicted as cKF;k�1 þ _cKF;k. Actual changes to the

frequency are accounted for through the process noise term.

The measurement model directly relates the measure-

ment zk to the state at time tk as follows:

zk ¼ HCk þ tk;

zk ¼
ĉk

q̂pk

" #
;

H ¼
1 0 0

0 0 1

� �
;

vk � N 0;Rð Þ; (12)

where zk is the measurement with frequency ĉk and correla-

tion value q̂pk, H relates the state to the measurement, and vk

is assumed to be a zero-mean white Gaussian process with

variance R.

The process noise covariance Q and the measurement

noise covariance R are both matrices defined as follows:

Q ¼
Qc 0 0

0 Q _c 0

0 0 Qq

2
64

3
75;

R ¼
Rc 0

0 Rq

� �
: (13)

These parameters are the main tuning parameters of the Kal-

man filter. The amount of noise injected into the process or

measurement model dictates the certainty with which the

models are trusted to estimate the state.

2. Tracker logic

The Kalman filter requires an initial estimate of the

state, so the tracking algorithm includes logic-based track

initiation and termination.16 There are several possible fun-

damental frequencies that fit the data, which are obtained by

applying a threshold, kc, to the fundamental frequency esti-

mate, q¼, for each snapshot. These frequencies are presented

to the tracker as a set of detections or observations for time

tk in the set Zk. These detected frequencies are used to initi-

ate tracks, as well as measurements for the Kalman filter.

There are three states which a track can be in:

• initiated—if a fundamental frequency is detected in M out

of N consecutive snapshots, a track is created,
• flagged—if a track has no associated observations in the

set Zk, the track is flagged for termination,
• terminated—if a track is flagged for NF consecutive snap-

shots, the track is terminated.

At each time step, a set of observations need to be

paired to the tracks. For an observation to be associated with

a track the observation must satisfy the following threshold

condition:

zk � HĈ�k
� �

HP�k HT þ R
� ��1

zk � HĈ�k
� �T

< v2: (14)

The v2 value gives a measurement of the difference between

each observed frequency and the frequency predicted by the

Kalman filter. A small value of v2 represents a closer match

between the observed and predicted frequencies. In the case

where multiple observations satisfy this condition, the best

match is the one with the smallest v2 value.

Before a track is initiated, the algorithm searches within

a small window, Wc, around the proposed frequency for any

existing tracks. If a track already exists within that window,

the new track is immediately terminated, as it is assumed to

belong to the already existing track. The Wc window keeps

the number of duplicate tracks within a preferred limit. The

more tracks the Kalman filter computes, the slower the algo-

rithm would run. The logic initiates more tracks with smaller
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window size. On the other hand, the larger the window, the

more likely that a real track nearby an existing track would

not be initiated.

3. Harmonic content parameter

The Kalman filter outputs multiple tracks, each track

being a time-evolving estimate of a fundamental frequency

for the harmonic content in the signal Rkðfm; hkÞ. To deter-

mine which track best fits the data, a parameter W is calcu-

lated from the estimate of the correlation, which is the third

component of the state vector in (11), as follows:

W j½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL

k¼1

qKF;pk j½ �
		 		2

vuut ; (15)

where j is the index of the track, qKF;pk j½ � is the estimate of

the amplitude from the Kalman filter for track j, and L is the

length of the track in snapshots. The track with the highest

W value is chosen as the best fit to the data and is considered

to be the best estimate of the fundamental frequency.

The value W is a measure of how well the data (5) fits

the signal replica model (7). A value of W equal to one

would mean that the data perfectly matches the model. Since

the signal replica model assumes that all the harmonics are

present and equal in amplitude, and that there is no noise

present, this perfect match of measurement to model is not

achievable. The value W can also be described as a measure

of how much harmonic content is present in the signal. Since

the parameter W j½ � is the average of qKF;pk over the length of

the track, the higher W j½ � is, the more harmonics will be visi-

ble in the spectrogram over the length of the track. The op-

posite case is also true in that the lower W j½ � is, the less

harmonic content will be visible in the spectrogram.

C. Harmonic signature extraction

The harmonic signature is considered to be the “acoustic

fingerprint” of a boat. Table I describes the fundamental fre-

quencies generated by a motor expressed in terms of engine

speed, number of cylinders, gear ratio, number of blades,

etc., which are fundamental frequencies of the tonals

described in (2). In the previous sections the fundamental

frequency ck was estimated and tracked through time using a

Kalman filter, cKF;k. This estimate of ck is the first part of the

estimation parameter h. The second part is the amplitude of

all the harmonics, Ah. These harmonic amplitudes are called

the harmonic signature of a boat.

The fundamental frequency track cKF;k that best fits the

data is determined by the W parameter. To obtain a harmonic

signature, the best fitting track is first projected onto the

spectrogram at all harmonic frequencies. Figure 3 illustrates

the projection of the fundamental frequency track. Figure

3(a) shows the spectrogram of a short segment (100 seconds)

of recorded boat noise. Figure 3(b) shows the result of pro-

jecting the fundamental frequency track onto the spectro-

gram for all the harmonics. The x-axis was truncated to

show only 800–1400 Hz to better illustrate the projection.

Projecting the track onto the spectrogram is achieved by

finding the frequency bins fm closest to integer multiples of

cKF;k for each snapshot. The amplitude for each of the har-

monics is then found by searching for a peak in Rkoðfm; hkÞ
within a small window around the projected frequencies,

resulting in the estimate of the amplitude for each harmonic

Âh. The local noise of each harmonic is also estimated by

averaging the spectrogram in a small window on each side

of the peak. The window size is sensitive to the specific na-

ture of the data, specifically to the dynamics of the system,

that is, how quickly the boats are traveling and how much

the harmonics have changed within a given snapshot. The

amplitude and background noise are then averaged over the

length of the track to give the harmonic spectrum.

For the environment where the data presented in the pa-

per was collected, the boats had to carefully maneuver their

way out of Sequim Bay, so the velocity of the boat was not a

real issue. However, the boats had a tendency to not stay at a

constant velocity, thus the harmonics could spread across

multiple frequency bins in any given snapshot. The size of

the window to search for peaks was maximized for perform-

ance given that the peak could be a few frequency bins off of

the projected frequency.

IV. DATA RESULTS

The Sequim campus of PNNL is located at the mouth of

Sequim Bay on the northern part of the Olympic Peninsula

of Washington. The John Wayne Marina located inside the

bay allows for a very diverse population of boat traffic com-

ing in and out of the area. Thus it is an excellent location for

collecting test data from different types of small to mid scale

boats. PNNL has been continuously monitoring boat traffic

FIG. 3. (a) Spectrogram showing a 100 s segment of a recorded boat signa-

ture recorded in Sequim Bay, WA in the frequency range of 800Hz to

1400Hz. (b) The projections of the fundamental frequency track overlaid on

the spectrogram (white)
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at this site for almost two years, and provided a data set

including passes of 50 boats for testing the HEAT algorithm.

Many of the 50 boats are duplicate passes by the same or a

similar type of boat. This allows the evaluation of HEAT

algorithm on repeated harmonic signatures.

The data set included both acoustic and non-acoustic in-

formation. The acoustic data was collected using a single

hydrophone mounted approximately 20 ft from the dock on

the ocean floor (approximately 30 ft deep). The hydrophone

used to record the boat noise was cabled back to the PNNL

dock. At the dock the data was pre-processed using an anti-

aliasing filter with cut-off frequency of 2.5 kHz. The data

was then sampled at 8 kHz with 16-bit resolution.

Among the non-acoustic monitoring methods, there was

a radar system providing an estimate of boat velocity, an

electro-optic and infrared (EO/IR) camera recording a video

of each boat pass, and a number of environmental sensors

giving measurements of water temperature, current, etc.

PNNL also provided records of each boat such as the hull

material, engine type (e.g., inboard or outboard), and

approximated length.

In Ref. 22, the HEAT algorithm has been applied to

extract features from data recorded in Hawaii as well as

simulated boat data. In 2010, the authors in collaboration

with PNNL conducted another data collection in Sequim

Bay. In this data set, a boat with known parameters and

known RPM was recorded The data was processed using the

HEAT algorithm as well as a manual analysis which is

equivalent to calculating the fundamentals from the known

boat parameters and the RPM and comparing it to the

recorded data. These results were reported in Ref. 23.

A. Application of HEAT to data

The HEAT algorithm was used to process all 50 boat

recordings from PNNL as described in the previous section.

In this section we present the feature extraction results of four

boat passes which best represent the data set. Table II gives a

summary of these boats. This table shows the boat identifica-

tion by letter (A-D), the hull material and engine type (if

known), the harmonic content parameter W from the HEAT

algorithm, and the mean frequency of the track of best fit.

The four boats chosen were all 6 m inboard boats. The objec-

tive for selecting these four boats was to discriminate the har-

monic signatures between inboard engine boats of

approximately the same length with different hull materials.

Table III gives the parameters used for the HEAT algo-

rithm. The same parameters were used to process all the data

from the three different locations. The data has a low pass

filter with cutoff at 2.5 kHz. For this reason the analysis was

only performed for frequencies up to 2 kHz. This greatly

reduces the dimension of the data to be analyzed which

allows for faster processing.

Figure 4 shows the spectrograms of each boat and their

harmonic amplitude signatures extracted by HEAT. Boats A

and B (Figs. 4(a) and 4(c)) show the case where the harmon-

ics are clearly visible in the spectrogram throughout the

entire frequency band. Boats C and D (Figs. 4(e) and 4(g))

show the opposite case where there are limited visible har-

monics on the spectrogram within the frequency band.

The harmonic amplitude signatures for boats A through

D are shown in Figs. 4(b), 4(d), 4(f), and 4(h). The stem

plots represent the amplitude of each harmonic and the local

noise around each peak is represented as a solid line. The

amplitudes are in dB relative to the weakest harmonic. This

is done since depending on the distance of the boat from the

hydrophone, or the speed of the boat, the absolute ampli-

tudes can widely vary, but the relative amplitudes of all the

harmonics should stay the same regardless. An alternative

signature could be shown by dividing the amplitude by the

noise and then convert to dB to give the signal to noise ratio

(SNR), but by putting the noise curve on the amplitude sig-

nature plot, both are visible.

Comparing the spectrograms of all the boats to the har-

monic amplitude signatures, and specifically observing the

intensity of the harmonic lines relative to the background

noise, there is relatively good qualitative agreement between

what can be seen in the spectrogram and what the HEAT

algorithm extracted. Recall that the W parameter was defined

in (15) as a measure of how much harmonic content is visi-

ble in the spectrogram. In Table II boats A and B have higher

W values than boats C and D, which follows along with defi-

nition of the W parameter.

V. SUMMARY AND FUTURE WORK

Classification between the acoustic signature from dif-

ferent types of small boats is a relatively unexplored research

TABLE II. List of boats used to test the HEAT algorithm.

Boat ID

Approx.

Length

Engine

Type

Hull

Material W
Mean

cKF; k

A 6 m Inboard Fiberglass 0.468 31.6

B 6 m Inboard Fiberglass 0.400 32.4

C 6 m Inboard Unknown 0.195 20.6

D 6 m Inboard Aluminum 0.138 29.8

TABLE III. Parameters used in the HEAT algorithm.

Variable Value

Snapshot Window, T 1 s

Snapshot Overlap 50%

Frequency Limits 0 to 2000 Hz

Normalizing Window, W 25 bins

c Limits 4.5 to 65 Hz

Dc 0.025 Hz

kc 0.09

M of N 2 of 3 snapshots

v2 3

NF 3 snapshots

Wc 0.5 Hz

Process Noise Covariances

Qc ð2DcÞ2

Q _c ð2DcÞ2=10

Qq 0.02

Measurement Noise Covariances

Rc ð5DcÞ2

Rq 0.03
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area. There has been a large amount of work on classification

between large ships in the past, but for small boats there are

limited efforts found in the literature. The goal of this paper

is to develop a signal processing method to extract harmonic

signatures in the noise radiated from small boats. Future

work in this area includes testing the efficiency of these

extracted signatures in the development of a harmonic-based

classification scheme.

The signal processing algorithm developed in this paper

extracts the amplitude of the harmonic content from the

underwater noise generated by a boat using a combined like-

lihood and tracking approach. The likelihood provides an

estimate of the fundamental frequency, and a Kalman filter

is used to capture the time varying structure. These tracks of

the fundamental frequency are then used to extract the

amplitudes of the harmonics from the received data. The rel-

ative amplitudes of all the harmonics constitute a harmonic

signature that can later be used in identification of the boats.

The ability of the HEAT algorithm to estimate the funda-

mental and extract the harmonic information is demonstrated

with a shallow water data set comprised of a number of boats

with repeated occurrences. Preliminary results showing the

robustness of the amplitude signature as quantified by a cor-

relation analysis indicate the harmonics contain robust infor-

mation related to the nature of the boat. Future research is

needed to examine the harmonic output produced by the

HEAT algorithm for different propagation environments and

sensor geometries. Future research must also be done to

evaluate the algorithms ability to separate harmonic content

produced by multiple crafts passing the sensor.

FIG. 4. (Color online) The figures on the left show the STFT of the data recorded on the hydrophone as boats A-D passed by. The figures on the right are the

harmonic amplitude signatures (stem plot) with background noise (solid line) extracted from the STFT of each boat.
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