Daylighting Optimization Study: Rock Creek High School Commons Skylight Optimization

Razieh Hosseini Nezhad
Portland State University

Ashley McDaniel-Harpster

Nicholas Papaefthimiou
Portland State University

Rosemary Hill
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/studentsymposium

Let us know how access to this document benefits you.

Hosseini Nezhad, Razieh; McDaniel-Harpster, Ashley; Papaefthimiou, Nicholas; and Hill, Rosemary, "Daylighting Optimization Study: Rock Creek High School Commons Skylight Optimization" (2018).
Student Research Symposium. 2.
https://pdxscholar.library.pdx.edu/studentsymposium/2018/Poster/2

This Poster is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.
Daylighting Optimization Study
Rock Creek High School Commons Skylight Optimization

ABSTRACT

This research investigates the effect of varying skylight shapes on the daylight distribution inside Rock Creek High School Commons. The study focuses on optimizing the natural lighting conditions within the space by exploring the potential of different skylight shapes. The research involves analyzing the light distribution, energy efficiency, and aesthetic qualities of the skylight. The study is expected to provide insights into the design of efficient and sustainable daylighting solutions for educational environments.

Methodology

The research methodology involves the following steps:

1. **Simulation Setup**: Setting up the simulation environment to model the skylight and the surrounding space.
2. **Skylight Shape Exploration**: Investigating various skylight shapes to understand their impact on daylight distribution.
3. **Lighting Analysis**: Conducting a detailed analysis of the light distribution inside the Commons area.
4. **Energy Efficiency Evaluation**: Assessing the energy efficiency of the skylight shapes.
5. **Aesthetic Quality Assessment**: Evaluating the aesthetic qualities of the skylight shapes.

Research Objectives

The primary research objectives include:

- Investigating the effect of skylight shape on daylight distribution.
- Analyzing the energy efficiency of different skylight shapes.
- Evaluating the aesthetic qualities of the skylight shapes.

Results

The research findings reveal that certain skylight shapes significantly improve the daylight distribution inside the Commons area. The results also indicate that certain shapes are more energy-efficient and aesthetically appealing. The study recommends the adoption of specific skylight shapes to enhance the daylighting conditions in educational environments.

Conclusion

The research findings provide valuable insights into the design of efficient and sustainable daylighting solutions for educational environments. The study highlights the importance of considering various factors, such as light distribution, energy efficiency, and aesthetic qualities, in the design of skylights. The results can be applied to enhance the daylighting conditions in educational spaces, contributing to a more comfortable and healthy learning environment.