
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

2015

A Theory of Name Resolution A Theory of Name Resolution

Pierre Néron
Delft University of Technology

Andrew Tolmach
Portland State University

Eelco Visser
Delft University of Technology

Guido Wachsmuth
Delft University of Technology

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Néron, Pierre; Tolmach, Andrew; Visser, Eelco; and Wachsmuth, Guido, "A Theory of Name Resolution"
(2015). Computer Science Faculty Publications and Presentations. 146.
https://pdxscholar.library.pdx.edu/compsci_fac/146

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Computer Science
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can
make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/146
https://pdxscholar.library.pdx.edu/compsci_fac/146?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

A Theory of Name Resolution

Pierre Neron1, Andrew Tolmach2, Eelco Visser1, and Guido Wachsmuth1

1) Delft University of Technology, The Netherlands,
{p.j.m.neron, e.visser, g.wachsmuth}@tudelft.nl,

2) Portland State University, Portland, OR, USA
tolmach@pdx.edu

Abstract. We describe a language-independent theory for name binding
and resolution, suitable for programming languages with complex scop-
ing rules including both lexical scoping and modules. We formulate name
resolution as a two-stage problem. First a language-independent scope
graph is constructed using language-specific rules from an abstract syn-
tax tree. Then references in the scope graph are resolved to correspond-
ing declarations using a language-independent resolution process. We
introduce a resolution calculus as a concise, declarative, and language-
independent specification of name resolution. We develop a resolution
algorithm that is sound and complete with respect to the calculus. Based
on the resolution calculus we develop language-independent definitions
of α-equivalence and rename refactoring. We illustrate the approach us-
ing a small example language with modules. In addition, we show how
our approach provides a model for a range of name binding patterns in
existing languages.

1 Introduction

Naming is a pervasive concern in the design and implementation of programming
languages. Names identify declarations of program entities (variables, functions,
types, modules, etc.) and allow these entities to be referenced from other parts
of the program. Name resolution associates each reference to its intended decla-
ration(s), according to the semantics of the language. Name resolution underlies
most operations on languages and programs, including static checking, trans-
lation, mechanized description of semantics, and provision of editor services in
IDEs. Resolution is often complicated, because it cuts across the local inductive
structure of programs (as described by an abstract syntax tree). For example,
the name introduced by a let node in an ML AST may be referenced by an
arbitrarily distant child node. Languages with explicit name spaces lead to fur-
ther complexity; for example, resolving a qualified reference in Java requires first
resolving the class or package name to a context, and then resolving the member
name within that context. But despite this diversity, it is intuitively clear that
the basic concepts of resolution reappear in similar form across a broad range of
lexically-scoped languages.

In practice, the name resolution rules of real programming languages are
usually described using ad hoc and informal mechanisms. Even when a lan-
guage is formalized, its resolution rules are typically encoded as part of static

Pierre Neron, Andrew P. Tolmach, Eelco Visser, Guido Wachsmuth. A Theory of
Name Resolution. In Jan Vitek (editor), Programming Languages and Systems - 24th
European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015, Proceedings. Lecture Notes in Computer Science, Springer, April
2015.

2

and dynamic judgments tailored to the particular language, rather than being
presented separately using a uniform mechanism. This lack of modularity in lan-
guage description is mirrored in the implementation of language tools, where the
resolution rules are often encoded multiple times to serve different purposes, e.g.,
as the manipulation of a symbol table in a compiler, a use-to-definition display
in an IDE, or a substitution function in a mechanized soundness proof. This rep-
etition results in duplication of effort and risks inconsistencies. To see how much
better this situation might be, we need only contrast it with the realm of syntax
definition, where context-free grammars provide a well-established declarative
formalism that underpins a wide variety of useful tools.

Formalizing resolution. This paper describes a formalism that we believe can
help play a similar role for name resolution in lexically-scoped languages. It con-
sists of a scope graph, which represents the naming structure of a program, and
a resolution calculus, which describes how to resolve references to declarations
within a scope graph. The scope graph abstracts away from the details of a pro-
gram AST, leaving just the information relevant to name resolution. Its nodes
include name references, declarations, and “scopes,” which (in a slight abuse of
conventional terminology) we use to mean minimal program regions that behave
uniformly with respect to name resolution. Edges in the scope graph associate
references to scopes, declarations to scopes, or scopes to “parent” scopes (corre-
sponding to lexical nesting in the original program AST). The resolution calculus
specifies how to construct a path through the graph from a reference to a decla-
ration, which corresponds to a possible resolution of the reference. Hiding of one
definition by a “closer” definition is modeled by providing an ordering on reso-
lution paths. Ambiguous references correspond naturally to multiple resolution
paths starting from the same reference node; unresolved references correspond
to the absence of resolution paths. To describe programs involving explicit name
spaces, the scope graph also supports giving names to scopes, and can include
“import” edges to make the contents of a named scope visible inside another
scope. The calculus supports complex import patterns including transitive and
cyclic import of scopes.

This language-independent formalism gives us clear, abstract definitions for
concepts such as scope, resolution, hiding, and import. We build on these con-
cepts to define generic notions of α-equivalence and valid renaming. We also give
a practical algorithm for computing conventional static environments mapping
bound identifiers to the AST locations of the corresponding declarations, which
can be used to implement a deterministic, terminating resolution function that
is consistent with the calculus. We expect that the formalism can be used as
the basis for other language-independent tools. In particular, any tool that relies
on use-to-definition information, such as an IDE offering code completion for
identifiers, or a live variable analysis in a compiler, should be specifiable using
scope graphs.

On the other hand, the construction of a scope graph from a given program is
a language-dependent process. For any given language, the construction can be
specified by a conventional syntax-directed definition over the language gram-

3

mar; we illustrate this approach for a small language in this paper. We would
also like a more generic binding specification language which could be used to
describe how to construct the scope graph for an arbitrary object language. We
do not present such a language in this paper. However, the work described here
was inspired in part by our previous work on NaBL [16], a DSL that provides
high-level, non-algorithmic descriptions of name binding and scoping rules suit-
able for use by a (relatively) naive language designer. The NaBL implementation
integrated into the Spoofax Language Workbench [14] automatically generates
an incremental name resolution algorithm that supports services such as code
completion and static analysis. However, the NaBL language itself is defined
largely by example and lacks a high-level semantic description; one might say
that it works well in practice, but not in theory. Because they are language-
independent, scope graphs can be used to give a formal semantics for NaBL
specifications, although we defer detailed exploration of this connection to fur-
ther work.

Relationship to Related Work. The study of name binding has received a great
deal of attention, focused in particular on two topics. The first is how to represent
(already resolved) programs in a way that makes the binding structure explicit
and supports convenient program manipulation “modulo α-equivalence” [7, 20, 3,
10, 4]. Compared to this work, our system is novel in several significant respects.
(i) Our representation of program binding structure is independent of the under-
lying language grammar and program AST, with the benefits described above.
(ii) We support representation of ill-formed programs, in particular, programs
with ambiguous or undefined references; such programs are the normal case in
IDEs and other front-end tools. (iii) We support description of binding in lan-
guages with explicit name spaces, such as modules or OO classes, which are
common in practice.

A second well-studied topic is binding specification languages, which are usu-
ally enriched grammar descriptions that permit simultaneous specification of
language syntax and binding structure [22, 8, 13, 23, 25]. This work is essentially
complementary to the design we present here.

Specific contributions.

– Scope Graph and Resolution Calculus: We introduce a language-independent
framework to capture the relations among references, declarations, scopes,
and imports in a program. We give a declarative specification of the res-
olution of references to declarations by means of a calculus that defines
resolution paths in a scope graph (Section 2).

– Variants: We illustrate the modularity of our core framework design by de-
scribing several variants that support more complex binding schemes (Sec-
tion 2.5).

– Coverage: We show that the framework covers interesting name binding pat-
terns in existing languages, including various flavors of let bindings, qualified
names, and inheritance in Java (Section 3).

4

– Scope graph construction: We show how scope graphs can be constructed
for arbitrary programs in a simple example language via straightforward
syntax-directed traversal (Section 4).

– Resolution algorithm: We define a deterministic and terminating resolution
algorithm based on the construction of binding environments, and prove that
it is sound and complete with respect to the calculus (Section 5).

– α-equivalence and renaming : We define a language-independent characteri-
zation of α-equivalence of programs, and use it to define a notion of valid
renaming (Section 6).

The extended version of this paper [19] presents the encoding of additional
name binding patterns and the details of the correctness proof of the resolution
algorithm.

2 Scope Graphs and Resolution Paths

Defining name resolution directly in terms of the abstract syntax tree leads to
complex scoping patterns. In unary lexical binding patterns, such as lambda
abstraction, the scope of the bound variable is the subtree dominated by the
binding construct. However, in name binding patterns such as the sequential
let in ML, or the variable declarations in a block in Java, the set of abstract
syntax tree locations where the bindings are visible does not necessarily form
a contiguous region. Similarly, the list of declarations of formal parameters of
a function is contained in a subtree of the function definition that does not
dominate their use positions. Informally, we can understand these name binding
patterns by a conceptual mapping from the abstract syntax tree to an underlying
pattern of scopes. However, this mapping is not made explicit in conventional
descriptions of programming languages.

We introduce the language-independent concept of a scope graph to capture
the scoping patterns in programs. A scope graph is obtained by a language-
specific mapping from the abstract syntax tree of a program. The mapping col-
lapses all abstract syntax tree nodes that behave uniformly with respect to name
resolution into a single ‘scope’ node in the scope graph. In this paper, we do not
discuss how to specify such mappings for arbitrary languages, which is the task
of a binding specification language, but we show how it can be done for a par-
ticular toy language, first by example and then systematically. We assume that
it should be possible to build a scope graph in a single traversal of the abstract
syntax tree. Furthermore, the mapping should be syntactic; no name resolution
should be necessary to construct the mapping.

Figures 1 to 3 define the full theory. Fig. 1 defines the structure of scope
graphs. Fig. 2 defines the structure of resolution paths, a subset of resolution
paths that are well-formed, and a specificity ordering on resolution paths. Finally,
Fig. 3 defines the resolution calculus, which consists of the definition of edges
between scopes in the scope graph and their transitive closure, the definition of
reachable and visible declarations in a scope, and the resolution of references to
declarations. In the rest of this section we motivate and explain this theory.

5

References and declarations

– xD
i :S: declaration with name x at

position i and optional associated
named scope S

– xR
i : reference with name x at posi-

tion i

Scope graph

– G: scope graph
– S(G): scopes S in G
– D(S): declarations xD

i :S
′ in S

– R(S): references xR
i in S

– I(S): imports xR
i in S

– P(S): parent scope of S

Well-formedness properties

– P(S) is a partial function
– The parent relation is well-founded
– Each xR

i and xD
i appears in exactly

one scope S

Fig. 1. Scope graphs

Resolution paths

s := D(xD
i) | I(xR

i , x
D
j :S) | P

p := [] | s | p · p
(inductively generated)

[] · p = p · [] = p
(p1 · p2) · p3 = p1 · (p2 · p3)

Well-formed paths

WF(p)⇔ p ∈ P∗ · I(_,_)∗

Specificity ordering on paths

D(_) < I(_,_)
(DI)

I(_,_) < P
(IP)

D(_) < P
(DP)

s1 < s2
s1 · p1 < s2 · p2

(Lex1)

p1 < p2
s · p1 < s · p2

(Lex2)

Fig. 2. Resolution paths, well-formedness
predicate, and specificity ordering.

Edges in scope graph
P(S1) = S2

I ` P : S1 −→ S2
(P)

yR
i ∈ I(S1) \ I I ` p : yR

i 7−→ yD
j :S2

I ` I(yR
i , y

D
j :S2) : S1 −→ S2

(I)

Transitive closure

I ` [] : A� A
(N)

I ` s : A −→ B I ` p : B� C

I ` s · p : A� C
(T)

Reachable declarations

xD
i ∈ D(S′) I ` p : S� S′ WF(p)

I ` p ·D(xD
i) : S� xD

i

(R)

Visible declarations

I ` p : S� xD
i ∀j, p′(I ` p′ : S� xD

j ⇒ ¬(p′ < p))

I ` p : S 7−→ xD
i

(V)

Reference resolution

xR
i ∈ R(S) {xR

i } ∪ I ` p : S 7−→ xD
j

I ` p : xR
i 7−→ xD

j

(X)

Fig. 3. Resolution calculus

6

program = decl∗

decl = module id { decl∗ } | import qid | def id = exp
exp = qid | fun id { exp } | fix id { exp }

| let bind∗ in exp | letrec bind∗ in exp | letpar bind∗ in exp
| exp exp | exp ⊕ exp | int

qid = id | id . qid
bind = id = exp

Fig. 4. Syntax of LM.

2.1 Example Language

To illustrate the scope graph framework we use the toy language LM, defined in
Fig. 4, which contains a rather eclectic combination of features chosen to exhibit
both simple and challenging name binding patterns. LM supports the following
constructs for binding variables:

– Lambda and mu: The functional abstractions fun and fix represent lambda
and mu terms, respectively; both have basic unary lexically scoped bindings.

– Let: The various flavors of let bindings (sequential let, letrec, and letpar)
challenge the unary lexical binding model.

– Definition: A definition (def) declares a variable and binds it to the value
of an initializing expression. The definitions in a module are not ordered (no
requirement for ‘def-before-use’), giving rise to mutually recursive definitions.

Most programming languages have some notion of module to divide a pro-
gram into separate units and a notion of imports that make elements of one
module available in another. Modules change the standard lexical scoping model,
since names can be declared either in the lexical parent or in an imported mod-
ule. The modules of LM support the following features:

– Qualified names: Elements of modules can be addressed by means of a qual-
ified name using conventional dot notation.

– Imports: All declarations in an imported module are made visible without
the need for qualification.

– Transitive imports: The definitions imported into an imported module are
themselves visible in the importing module.

– Cyclic imports: Modules can (indirectly) mutually import each other, leading
to cyclic import chains.

– Nested modules: Modules may have sub-modules, which can be accessed
using dot notation or by importing the containing module.

In the remainder of this section, we use LM examples to illustrate the basic
features of our framework. In Section 3 and Appendix A of [19] we explore the
expressive power of the framework by applying it to a range of name binding
patterns from both LM and real languages. Section 4 shows how to construct
scope graphs for arbitrary LM programs.

7

2.2 Declarations, References, and Scopes

We now introduce and motivate the various elements of the name binding frame-
work, gradually building up to the full system described in Figures 1 to 3. The
central concepts in the framework are declarations, references, and scopes. A dec-
laration (also known as binding occurrence) introduces a name. For example, the
def x = e and module m { .. } constructs in LM introduce names of vari-
ables and modules, respectively. (A declaration may or may not also define the
name; this distinction is unimportant for name resolution—except in the case
where the declaration defines a module, as discussed in detail later.) A reference
(also known as applied occurrence) is the use of a name that refers to a declara-
tion with the same name. In LM, the variables in expressions and the names in
import statements (e.g. the x in import x) are references. Each reference and
declaration is unique and is distinguished not just by its name, but also by its
position in the program’s AST. Formally, we write xR

i for a reference with name
x at position i and xD

i for a declaration with name x at position i.
A scope is an abstraction over a group of nodes in the abstract syntax tree

that behave uniformly with respect to name resolution. Each program has a
scope graph G, whose nodes are a finite set of scopes S(G). Every program has
at least one scope, the global or root scope. Each scope S has an associated
finite set D(S) of declarations and finite set R(S) of references (at particular
program positions), and each declaration and reference in a program belongs
to a unique scope. A scope is the atomic grouping for name resolution: roughly
speaking, each reference xR

i in a scope resolves to a declaration of the same
variable xD

j in the scope, if one exists. Intuitively, a single scope corresponds to
a group of mutually recursive definitions, e.g., a letrec block, the declarations
in a module, or the set of top-level bindings in a program. Below we will see that
edges between nodes in a scope graph determine visibility of declarations in one
scope from references in another scope.

Name resolution. We write R(G) and D(G) for the (finite) sets of all references
and all declarations, respectively, in the program with scope graph G. Name
resolution is specified by a relation 7−→ ⊆ R(G)×D(G) between references and
corresponding declarations in G. In the absence of edges, this relation is very
simple:

xR
i ∈ R(S) xD

j ∈ D(S)

xR
i 7−→ xD

j

(X0)

That is, a reference xR
i resolves to a declaration xD

j , if the scope S in which xR
i

is contained also contains xD
j . We say that there is a resolution path from xR

i to
xD
j . We will see soon that paths will grow beyond the one step relation defined

by the rule above.

Scope graph diagrams. It can be illuminating to depict a scope graph graphically.
In a scope graph diagram, a scope is depicted as a circle, a reference as a box
with an arrow pointing into the scope that contains it, and a declaration as a

8

1
b2

a1

b5

c4

d7

a3 1 a1a3

1
b2

b5
b6b6

c8

1 c8c4

1d7

def a1 = 0
def b2 = a3 + c4
def b5 = b6 + d7
def c8 = 0

Fig. 5. Declarations and references in global scope.

box with an arrow from the scope that contains it. Fig. 5 shows an LM program
consisting of a set of mutually-recursive global definitions; its scope graph; the
resolution paths for variables a, b, and c; and an incomplete resolution path
for variable d. In concrete example programs and scope diagrams we write both
xR
i and xD

i as xi, relying on context to distinguish references and declarations.
For example, in Fig. 5, all occurrences bi denote the same name b at different
positions. In scope diagrams, the numbers in scope circles are arbitrarily chosen,
and are just used to identify different scopes so that we can talk about them.

Duplicate declarations. It is possible for a scope to contain multiple references
and/or declarations with the same name. For example, scope 1 in Fig. 5 has
two declarations of the variable b. While the existence of multiple references is
normal, multiple declarations may give rise to multiple resolutions. For example,
the b6 reference in Fig. 5 resolves to each of the two declarations b2 and b5.

Typically, correct programs will not declare the same identifier at two dif-
ferent locations in the same scope, although some languages have constructs
(e.g. or-patterns in OCaml [17]) that are most naturally modeled this way. But
even when the existence of multiple resolutions implies an erroneous program,
we want the resolution calculus to identify all these resolutions, since IDEs and
other front-end tools need to be able to represent erroneous programs. For ex-
ample, a rename refactoring should support consistent renaming of identifiers,
even in the presence of ambiguities (see Section 6). The ability of our calculus to
describe ambiguous resolutions distinguishes it from systems, such as nominal
logic [4], that inherently require unambiguous resolution of references.

2.3 Lexical Scope

We model lexical scope by means of the parent relation on scopes. In a well-
formed scope graph, each scope has at most one parent and the parent relation
is well-founded. Formally, the partial function P(_) maps a scope S to its parent
scope P(S). Given a scope graph with parent relation we can define the notion
of reachable and visible declarations in a scope.

Fig. 6 illustrates how the parent relation is used to model common lexical
scope patterns. Lexical scoping is typically presented through nested regions in
the abstract syntax tree, as illustrated by the nested boxes in Fig. 6. Expressions
in inner boxes may refer to declarations in surrounding boxes, but not vice versa.
Each of the scopes in the program is mapped to a scope (circle) in the scope
graph. The three scopes correspond to the global scope, the scope for fix f2, and
the scope for fun n3. The edges from scopes to scopes correspond to the parent

9

1

n8

f1f9

2 f2

3 n3

f6

n4

n7n5

1 f1f9

1

n8

23

n3

n4

1

f1

2

f2

3f6

def f1 =
 fix f2 {
 fun n3 {
 ifz n4 then 1
 else n5*f6(n7-1)
 }
 }
def n8 = f9 5

Fig. 6. Lexical scoping modeled by edges between scopes in the scope graph with
example program, scope graph, and reachability paths for references.

relation. The resolution paths on the right of Fig. 6 illustrate the consequences
of the encoding. From reference f6 both declarations f1 and f2 are reachable,
but from reference f9 only declaration f1 is reachable. In languages with lexical
scoping, the redeclaration of a variable inside a nested region typically hides the
outer declaration. Thus, the duplicate declaration of variable f does not indicate
a program error in this situation because only f2 is visible from the scope of f6.

Reachability. The first step towards a full resolution calculus is to take into
account reachability. We redefine rule (X0) as follows:

xR
i ∈ R(S1) p : S1� S2 xD

j ∈ D(S2)

p : xR
i 7−→ xD

j

(X1)

That is, xR
i in scope S1 can be resolved to xD

j in scope S2, if S2 is reachable from
S1, i.e. if S1 � S2. Reachability is defined in terms of the parent relation as
follows:

P(S1) = S2

P : S1 −→ S2 [] : A� A

s : A −→ B p : B� C

s · p : A� C

The parent relation between scopes gives rise to a direct edge S1 −→ S2 between
child and parent scope, and A� B is the reflexive, transitive closure of the direct
edge relation. In order to reason about the different ways in which a reference
can be resolved, we record the resolution path p. For example, in Fig. 6 reference
f6 can be resolved with path P to declaration f2 and with path P ·P to f1.

Visibility. Under lexical scoping, multiple possible resolutions are not problem-
atic, as long as the declarations reached are not declared in the same scope. A
declaration is visible unless it is shadowed by a declaration that is ‘closer by’.
To formalize visibility, we first extend reachability of scopes to reachability of
declarations:

xD
i ∈ D(S′) p : S� S′

p ·D(xD
i) : S� xD

i

(R2)

10

That is, a declaration xD
i in S′ is reachable from scope S (S� xD

i), if scope S′
is reachable from S.

Given multiple reachable declarations, which one should we prefer? A reach-
able declaration xD

i is visible in scope S (S 7−→ xD
i) if there is no other declaration

for the same name that is reachable through a more specific path:

p : S� xD
i ∀j, p′(p′ : S� xD

j ⇒ ¬(p′ < p))

p : S 7−→ xD
i

(V2)

where the specificity ordering p′ < p on paths is defined as

D(_) < P
s1 < s2

s1 · p1 < s2 · p2

p1 < p2

s · p1 < s · p2

That is, a path with fewer parent transitions is more specific than a path with
more parent transitions. This formalizes the notion that a declaration in a
“nearer” scope shadows a declaration in a “farther” scope.

Finally, a reference resolves to a declaration if that declaration is visible in
the scope of the reference.

xR
i ∈ R(S) p : S 7−→ xD

j

p : xR
i 7−→ xD

j

(X2)

Example. In Fig. 6 the scope (labeled 3) containing reference f6 can reach two
declarations for f: P ·D(fD

2) : S3� fD
2 and P ·P ·D(fD

1) : S3� fD
1 . Since the

first path is more specific than the second path, only f2 is visible, i.e. P ·D(fD
2) :

S3 7−→ fD
2 . Therefore f6 resolves to f2, i.e. P ·D(fD

2) : fR
6 7−→ fD

2 .

Scopes, revisited. Now that we have defined the notions of reachability and
visibility, we can give a more precise description of the sense in which scopes
“behave uniformly” with respect to resolution. For every scope S:

– Each declaration in the program is either visible at every reference in R(S)
or not visible at any reference in R(S).

– For each reference in the program, either every declaration in D(S) is reach-
able from that reference, or no declaration in D(S) is reachable from that
reference.

– Every declaration in D(S) is visible at every reference in R(S).

2.4 Imports

Introducing modules and imports complicates the name binding picture. Decla-
rations are no longer visible only through the lexical context, but may be visible
through an import as well. Furthermore, resolving a reference may require first
resolving one or more imports, which may in turn require resolving further im-
ports, and so on.

We model an import by means of a reference xR
i in the set of imports I(S) of a

scope S. (Imports are also always references and included in some R(S′), but not

11

A2

C10

B7

b9 b11

1

2 3 4a4

b5 c6 B3 C8 c12

2c6 B3 C10 c124B7 3 C8

c1

b13

B7B3 12 C8 C1013

1 c1

def c1 = 4
module A2 {
 import B3
 def a4 = b5 + c6
}
module B7 {
 import C8
 def b9 = 0
}
module C10 {
 def b11 = 1
 def c12 = b13
}

Fig. 7. Modules and imports with example program, scope graph, and reachability
paths for references.

necessarily in the same scope in which they are imports.) We model a module by
associating a scope S with a declaration xD

i :S. This associated named scope (i.e.,
named by x) represents the declarations introduced by, and encapsulated in, the
module. (We write the :S only in rules where it is required; where we omit it, the
declaration may or may not have an associated scope.) Thus, importing entails
resolving the import reference to a declaration and making the declarations in
the scope associated with that declaration available in the importing scope.

Note that ‘module’ is not a built-in concept in our framework. A module is
any construct that (1) is named, (2) has an associated scope that encapsulates
declarations, and (3) can be imported into another scope. Of course, this can be
used to model the module systems of languages such as ML. But it can be applied
to constructs that are not modules at first glance. For example, a class in Java
encapsulates class variables and methods, which are imported into its subclasses
through the ‘extends’ clause. Thus, a class plays the role of module and the
extends clause that of import. We discuss further applications in Section 3.

Reachability. To define name resolution in the presence of imports, we first
extend the definition of reachability. We saw above that the parent relation on
scopes induces an edge S1 −→ S2 between a scope S1 and its parent scope S2

in the scope graph. Similarly, an import induces an edge S1 −→ S2 between a
scope S1 and the scope S2 associated with a declaration imported into S1:

yR
i ∈ I(S1) p : yR

i 7−→ yD
j :S2

I(yR
i , y

D
j :S2) : S1 −→ S2

(I3)

Note the recursive invocation of the resolution relation on the name of the im-
ported scope.

Figure 7 illustrates extensions to scope graphs and paths to describe imports.
Association of a name to a scope is indicated by an open-headed arrow from the
name declaration box to the scope circle. (For example, scope 2 is associated to
declaration A2.) An import into a scope is indicated by an open-headed arrow
from the scope circle to the import name reference box. (For example, scope 2

12

imports the contents of the scope associated to the resolution of reference B3;
note that since B3 is also a reference within scope 2, there is also an ordinary
arrow in the opposite direction, leading to a double-headed arrow in the scope
graph.) Edges in reachability paths representing the resolution of imported scope
names to their definitions are drawn dashed. (For example, reference B3 resolves
to declaration B7, which has associated scope 3.) The paths at the bottom right
of the figure illustrate that the scope (labeled 2) containing reference c6 can
reach two declarations for c: P ·D(cD

1) : S2 � cD
1 and I(BR

3 , B
D
7 :S3) · I(CR

8 , C
D
10:

S4) ·D(cD
12) : S2� cD

12, making use of the subsidiary resolutions BR
3 7−→ BD

7 and
CR

8 7−→ CD
10.

def a1 = ...
module A2 {
def a3 = ...
def b4 = ...

}
module C5 {
import A6
def b7 = a8
def c9 = b10

}

Fig. 8. Parent vs
Import

def a1 = ...
module B2 {
}
module C3 {
def a4 = ...
module D5 {

import B6
def e7 = a8

}
}

Fig. 9. Parent of
import

Visibility. Imports cause new kinds of ambiguities in resolu-
tion paths, which require extension of the visibility policy.

The first issue is illustrated by Fig. 8. In the scope of ref-
erence b10 we can reach declaration b7 with path D(bD

7) and
declaration b4 with path I(AR

6 , A
D
2 :SA) · D(bD

4) (where SA
is the scope named by declaration A2). We resolve this con-
flict by extending the specificity order with the rule D(_) <
I(_,_). That is, local declarations override imported declara-
tions. Similarly, in the scope of reference a8 we can reach dec-
laration a1 with path P ·D(aD

1) and declaration a3 with path
I(AR

6 , A
D
2 :SA) ·D(aD

3). We resolve this conflict by extending
the specificity order with the rule I(_,_) < P. That is, res-
olution through imports is preferred over resolution through
parents. In other words, declarations in imported modules
override declarations in lexical parents.

The next issue is illustrated in Fig. 9. In the scope of ref-
erence a8 we can reach declaration a4 with path P · D(aD

4)
and declaration a1 with path P · P · D(aD

1). The specificity
ordering guarantees that only the first of these is visible,
giving the resolution we expect. However, with the rules as
stated so far, there is another way to reach a1, via the path
I(BR

6 , B
D
2 :SB)·P·D(aD

1). That is, we first import module B, and
then go to its lexical parent, where we find the declaration. In other words, when
importing a module, we import not just its declarations, but all declarations in
its lexical context. This behavior seems undesirable; to our knowledge, no real
languages exhibit it. To rule out such resolutions, we define a well-formedness
predicate WF(p) that requires paths p to be of the form P∗ ·I(_,_)∗, i.e. forbid-
ding the use of parent steps after one or more import steps. We use this predicate
to restrict the reachable declarations relation by only considering scopes reach-
able through a well-formed path:

xD
i ∈ D(S′) p : S� S′ WF(p)

p ·D(xD
i) : S� xD

i

(R3)

13

AD
2 :SA2 ∈ D(SA1)

AR
4 ∈ I(Sroot)

AR
4 ∈ R(Sroot) AD

1 :SA1 ∈ D(Sroot)

AR
4 7−→ AD

1 :SA1

Sroot −→ SA1 (∗)
Sroot� AD

2 :SA2

AR
4 ∈ R(Sroot) Sroot 7−→ AD

2 :SA2

AR
4 7−→ AD

2 :SA2

Fig. 10. Derivation for AR
4 7−→ AD

2 :SA2 in a calculus without import tracking.

The complete definition of well-formed paths and specificity order on paths is
given in Fig. 2. In Section 2.5 we discuss how alternative visibility policies can
be defined by just changing the well-formedness predicate and specificity order.

module A1 {
module A2 {

def a3 = ...
}

}
import A4
def b5 = a6

Fig. 11. Self im-
port

module A1 {
module B2 {

def x3 = 1
}

}
module B4 {

module A5 {
def y6 = 2

}
}
module C7 {

import A8
import B9
def z10 = x11

+ y12
}

Fig. 12. Anoma-
lous resolution

Seen imports. Consider the example in Fig. 11. Is declaration
a3 reachable in the scope of reference a6? This reduces to the
question whether the import of A4 can resolve to module
A2. Surprisingly, it can, in the calculus as discussed so far,
as shown by the derivation in Fig. 10 (which takes a few
shortcuts). The conclusion of the derivation is that AR

4 7−→
AD

2 :SA2 . This conclusion is obtained by using the import at A4

to conclude at step (*) that Sroot −→ SA1
, i.e. that the body

of module A1 is reachable! In other words, the import of A4

is used in its own resolution. Intuitively, this is nonsensical.
To rule out this kind of behavior we extend the calculus

to keep track of the set of seen imports I using judgements
of the form I ` p : xR

i 7−→ xD
j . We need to extend all rules to

pass the set I, but only the rules for resolution and import
are truly affected:

xR
i ∈ R(S) {xR

i } ∪ I ` p : S 7−→ xD
j

I ` p : xR
i 7−→ xD

j

(X)

yR
i ∈ I(S1) \ I I ` p : yR

i 7−→ yD
j :S2

I ` I(yR
i , y

D
j :S2) : S1 −→ S2

(I)

With this final ingredient, we reach the full calculus in
Fig. 3. It is not hard to see that the resolution relation is
well-founded. The only recursive invocation (via the I rule)
uses a strictly larger set I of seen imports (via the X rule); since the set R(G)
is finite, I cannot grow indefinitely.

Anomalies. Although the calculus produces the desired resolutions for a wide
variety of real language constructs, its behavior can be surprising on corner cases.
Even with the “seen imports” mechanism, it is still possible for a single derivation

14

to resolve a given import in two different ways, leading to unintuitive results.
For example, in the program in Fig. 12, x11 can resolve to x3 and y12 can resolve
to y6. (Derivations left as an exercise to the curious reader!) In our experience,
phenomena like this occur only in the presence of mutually-recursive imports; to
our knowledge, no real language has these (perhaps for good reason). We defer
deeper exploration of these anomalies to future work.

2.5 Variants

The resolution calculus presented so far reflects a number of binding policy
decisions. For example, we enforce imports to be transitive and local declarations
to be preferred over imports. However, not every language behaves like this. We
now present how other common behaviors can easily be represented with slight
modifications of the calculus. Indeed, the modifications do not have to be done
on the calculus itself (the −→, � , � and 7−→ relations) but can simply be
encoded in the WF predicate and the < ordering on paths.

Reachability policy. Reachability policies define how a reference can access a
particular definition, i.e. what rules can be used during the resolution. We can
change our reachability policy by modifying the WF predicate. For example, if
we want to rule out transitive imports, we can change WF to be

WF(p)⇔ p ∈ P∗ · I(_,_)?

where ? denotes the at most one operation on regular expressions. Therefore, an
import can only be used once at the end of the chain of scopes.

For a language that supports both transitive and non-transitive imports, we
can add a label on references corresponding to imports. If xR is a reference
representing a non-transitive import and xTR a reference corresponding to a
transitive import, then the WF predicate simply becomes:

WF(p)⇔ p ∈ P∗ · I(_TR,_)∗ · I(_R,_)?

module A1 {
def x2 = 3

}
module B3 {
include A4;
def x5 = 6;
def z6 = x7

}

Fig. 13. Include

Now no import can occur after the use of a non-transitive one.
Similarly, we can modify the rule to handle the Export

declaration in Coq, which forces transitivity (a resolution can
always use an exported module even after importing from a
non-transitive one). Assume xR is a reference representing a
non-transitive import and xER a reference corresponding to an
export; then we can use the following predicate:

WF(p)⇔ p ∈ P∗ · I(_R,_)? · I(_ER,_)∗

Visibility policy. We can modify the visibility policy, i.e. how resolutions shadow
each other, by changing the definition of the specificity ordering. For example,
we might want imports to act like textual inclusion, so the declarations in the
included module have the same precedence as local declarations. This is similar
to Standard ML’s include mechanism. In the program in Fig. 13, the reference
x7 should be treated as having duplicate resolutions, to either x5 or x2; the

15

1

2

b2a1 c3

a4

b6

c12a10 b11

c5

b9

a7

c8

def a1 = 0
def b2 = 1
def c3 = 2

letpar
 a4 = c5
 b6 = a7
 c8 = b9
in
 a10+b11+c12

1

b2a1 c3

a4

b6

c12a10 b11

c5

b9

a7

c8

2

def a1 = 0
def b2 = 1
def c3 = 2

letrec
 a4 = c5
 b6 = a7
 c8 = b9
in
 a10+b11+c12

1

b2a1 c3

a4

b6

c12a10 b11

c5

b9

a7

c8

2

4

3

def a1 = 0
def b2 = 1
def c3 = 2

let
 a4 = c5
 b6 = a7
 c8 = b9
in
 a10+b11+c12

Fig. 14. Example LM programs with sequential, recursive, and parallel let, and their
encodings as scope graphs.

former should not hide the latter. To handle this situation, we can drop the rule
D(_) < I(_,_) so that definitions and references will get the same precedence,
and a definition will not shadow an imported definition. To handle both include
and ordinary imports, we can once again differentiate the references, and define
different ordering rules depending on the reference used in the import step.

3 Coverage

To what extent does the scope graph framework cover name binding systems
that live in the world of real programming languages? It is not possible to prove
complete coverage by the framework, in the sense of being able to encode all pos-
sible name binding systems that exist or may be designed in the future. (Indeed,
given that these systems are typically implemented in compilers with algorithms
in Turing-complete programming languages, the framework is likely not to be
complete.) However, we believe that our approach handles many lexically-scoped
languages. The design of the framework was informed by an investigation of a
wide range of name binding patterns in existing languages, their (attempted)
formalization in the NaBL name binding language [14, 16], and their encoding
in scope graphs. In this section, we discuss three such examples: let bindings,
qualified names, and inheritance in Java. This should provide the reader with a
good sense of how name binding patterns can be expressed using scope graphs.
Appendix A of [19] provides further examples, including definition-before-use,
compilation units and packages in Java, and namespaces and partial classes in
C#.

Let bindings. The several flavors of let bindings in languages such as ML,
Haskell, and Scheme do not follow the unary lexical binding pattern in which the
binding construct dominates the abstract syntax tree that makes up its scope.
The LM language from Fig. 4 has three flavors of let bindings: sequential,
recursive, and parallel let, each with a list of bindings and a body expression.
Fig. 14 shows the encoding into scope graphs for each of the constructs and
makes precise how the bindings are interpreted in each flavour. In the recursive

16

1

2

3 5c3

f7

B1

C2 D6

D4

4 f5

module B1 {
 module C2 {
 def c3 = D4.f5(3)
 }
 module D6 {
 def f7 = ...
 }
}

Fig. 15. Example LM program with
partially-qualified name.

3

2

1

C4

C1

4

D3
E7

D8

f2

g5

f6

f9

g10f12 h11

class C1 {
 int f2 = 42;
}
class D3 extends C4 {
 int g5 = f6;
}
class E7 extends D8 {
 int f9 = g10;
 int h11 = f12;
}

Fig. 16. Class inheritance in Java modeled
by import edges.

letrec, the bindings are visible in all initializing expressions, so a single scope
suffices for the whole construct. In the sequential let, each binding is visible in
the subsequent bindings, but not in its own initializing expression. This requires
the introduction of a new scope for each binding. In the parallel letpar, the
variables being bound are not visible in any of the initializing expressions, but
only in the body. This is expressed by means of a single scope (2) in which the
bindings are declared; any references in the initializing expressions are associated
to the parent scope (1).

Qualified names. Qualified names refer to declarations in named scopes outside
the lexical scoping. They can be either used as simple references or as imports.
For example, fully-qualified names of Java classes can be used to refer to (or
import) classes from other packages. While fully-qualified names allow navigating
named scopes from the root scope, partially-qualified names give access to lexical
subscopes, which are otherwise hidden from lexical parent scopes.

The LM program in Fig. 15 uses a partially-qualified name D.f to access
function f in submodule D. We can model this pattern using an anonymous
scope (4), which is not linked to the lexical context. The relative name (f5) is a
reference in the anonymous scope. We add the qualifying scope name (D4) as an
import in the anonymous scope.

Inheritance in Java. We can model inheritance in object-oriented languages
with named scopes and imports. For example, Fig. 16 shows a hierarchy of three
Java classes. Class C declares a field f. Class D extends C and inherits its field
f. Class E extends D, inheriting the fields of C and D. Each class name is a
declaration in the same package scope (1), and associated with the scope of its
class body. Inheritance is modeled with imports: a subclass body scope contains
an import referring to its super class, making the declarations in the super class
reachable from the body. In the example, the scope (4) representing the body
of class E contains an import referring to its super class D. Using this import,
g10 correctly resolves to g5 . Since local declarations hide imported declarations,
f12 also refers correctly to the local declaration f9, which hides the transitively

17

[[ds]]prog := let S := new⊥ in [[ds]]recdS

[[d ds]]recdS := [[d]]decS ; [[ds]]recdS

[[]]recdS := ()

[[module xi{ds}]]
dec
S := let S′ := newS in D(S) += xD

i :S
′; [[ds]]recdS′

[[import xs]]decS := [[xs]]rqidS ; [[xs]]iqidS

[[def xi = e]]decS := D(S) += xD
i ; [[e]]

exp
S

[[xs]]expS := [[xs]]rqidS

[[(fun | fix) xi{e}]]
exp
S := let S′ := newS in D(S′) += xD

i ; [[e]]
exp
S′

[[letrec bs in e]]expS := let S′ := newS in [[bs]]recbS′ ; [[e]]expS′

[[letpar bs in e]]expS := let S′ := newS in [[bs]]parb(S,S′); [[e]]
exp
S′

[[let bs in e]]expS := let S′ := [[bs]]seqbS in [[e]]expS′

[[e1 e2]]
exp
S := [[e1]]

exp
S ; [[e2]]

exp
S

[[e1 ⊕ e2]]
exp
S := [[e1]]

exp
S ; [[e2]]

exp
S

[[n]]expS := ()

[[xi.xs]]
rqid
S := R(S) += xR

i ; let S′ := new⊥ in I(S′) += xR
i ; [[xs]]

rqid
S′

[[xi]]
rqid
S := R(S) += xR

i

[[xi.xs]]
iqid
S := [[xs]]iqidS

[[xi]]
iqid
S := I(S) += xR

i

[[xi = e; bs]]recbS := D(S) += xD
i ; [[e]]

exp
S ; [[bs]]recbS

[[]]recbS := ()

[[xi = e; bs]]parb(S,S′) := D(S′) += xD
i ; [[e]]

exp
S ; [[bs]]parb(S,S′)

[[]]parb(S,S′) := ()

[[xi = e; bs]]seqbS := [[e]]expS ; let S′ := newS in D(S′) += xD
i ; ret(S′)

[[]]seqbS := ret(S)

Fig. 17. Scope graph construction for LM via syntax-directed AST traversal.

imported f2. Note that since a scope can contain several imports, encoding
multiple inheritance uses exactly the same principle.

4 Scope Graph Construction

The preceding sections have illustrated scope graph construction by means of
examples corresponding to various language features. Of course, to apply our
formalism in practice, one must be able to construct scope graphs systemati-
cally. Ultimately, we would like to be able to specify this process for arbitrary
languages using a generic binding specification language such as NaBL [16], but
that remains future work. Here we illustrate systematic scope graph construction
for arbitrary programs in a specific language, LM (Fig. 4), via straightforward
syntax-directed traversal.

Figure 17 describes the construction algorithm. For clarity of presentation,
the algorithm traverses the program’s concrete syntax; a real implementation
would traverse the program’s AST. The algorithm is presented in an ad hoc

18

imperative language, explained here. The traversal is specified as a collection of
(potentially) mutually recursive functions, one or more for each syntactic class
of LM. Each function f is defined by a set of clauses [[pattern]]fargs. When f is
invoked on a term, the clause whose pattern matches the term is executed. Func-
tions may also take additional arguments args. Each clause body consists of a
sequence of statements separated by semicolons. Functions can optionally return
a value using ret(). The let statement binds a metavariable in the remainder of
the clause body. An empty clause body is written ().

The algorithm is initiated by invoking [[_]]prog on an entire LM program. Its
net effect is to produce a scope graph via a sequence of imperative operations.
The construct newP creates a new scope S with parent P (or no parent if p =⊥)
and empty sets D(S), R(S), and I(S). These sets are subsequently populated
using the += operator, which extends a set imperatively. The program scope
graph is simply the set of scopes that have been created and populated when
the traversal terminates.

5 Resolution Algorithm

The calculus of Section 2 gives a precise definition of resolution. In principle, we
can search for derivations in the calculus to answer questions such as “Does this
variable reference resolve to this declaration?” or “Which variable declarations
does this reference resolve to?” But automating this search process is not trivial,
because of the need for back-tracking and because the paths in reachability
derivations can have cycles (visiting the same scope more than once), and hence
can grow arbitrarily long.

In this section we describe a deterministic and terminating algorithm for
computing resolutions, which provides a practical basis for implementing tools
based on scope graphs, and prove that it is sound and complete with respect
to the calculus. This algorithm also connects the calculus, which talks about
resolution of a single variable at a time, to more conventional descriptions of
binding which use “environments” or “contexts” to describe all the visible or
reachable declarations accessible from a program location.

For us, an environment is just a set of declarations xD
i . This can be thought

of as a function from identifiers to (possible empty) sets of declaration positions.
(In this paper, we leave the representation of environments abstract; in practice,
one would use a hash table or other dictionary data structure.) We construct an
atomic environment corresponding to the declarations in each scope, and then
combine atomic environments to describe the sets of reachable and visible dec-
larations resulting from the parent and import relations. The key operator for
combining environments is shadowing, which returns the union of the declara-
tions in two environments restricted so that if a variable x has any declarations
in the first environment, no declarations of x are included from the second envi-
ronment. More formally:

Definition 1 (Shadowing). For any environments E1, E2, we write:
E1 / E2 := E1 ∪ {xD

i ∈ E2 | @ xD
i′ ∈ E1}

19

Res[I](xR
i) := {xD

j | ∃S s.t. xR
i ∈ R(S) ∧ xD

j ∈ EnvV [{xR
i } ∪ I, ∅](S)}

EnvV [I, S](S) := EnvL[I, S](S) / EnvP [I, S](S)
EnvL[I, S](S) := EnvD[I, S](S) / EnvI [I, S](S)

EnvD[I, S](S) :=

{
∅ if S ∈ S
D(S)

EnvI [I, S](S) :=

 ∅ if S ∈ S⋃{
EnvL[I, {S} ∪ S](Sy) | yR

i ∈ I(S) \ I ∧ yD
j :Sy ∈ Res[I](yR

i)
}

EnvP [I, S](S) :=

{
∅ if S ∈ S
EnvV [I, {S} ∪ S](P(S))

Fig. 18. Resolution algorithm

Figure 18 specifies an algorithm Res[I](xR
i) for resolving a reference xR

i to a set of
corresponding declarations xD

j . Like the calculus, the algorithm avoids trying to
use an import to resolve itself by maintaining a set I of “already seen” imports.
The algorithm works by computing the full environment EnvV [I,S](S) of decla-
rations that are visible in the scope S containing xR

i , and then extracting just
the declarations for x. The full environment, in turn, is built from the more basic
environments EnvD of immediate declarations, EnvI of imported declarations,
and EnvP of lexically enclosing declarations, using the shadowing operator. The
order of construction matches both the WF restriction from the calculus, which
prevents the use of parent after an import, and the path ordering <, which
prefers immediate declarations over imports and imports over declarations from
the parent scope. (Note that the algorithm does not work for the variants of WF
and < described in Section 2.5.) A key difference from the calculus is that the
shadowing operator is applied at each stage in environment construction, rather
than applying the visibility criterion just once at the “top level” as in calculus
rule V . This difference is a natural consequence of the fact that the algorithm
computes sets of declarations rather than full derivation paths, so it does not
maintain enough information to delay the visibility computation.

Termination The algorithm is terminating using the well-founded lexicographic
measure (|R(G) \ I|, |S(G) \ S|). Termination is straightforward by unfolding the
calls to Res in EnvI and then inlining the definitions of EnvV and EnvL: this
gives an equivalent algorithm in which the measure strictly decreases at every
recursive call.

5.1 Correctness of Resolution Algorithm

The resolution algorithm is sound and complete with respect to the calculus.

Theorem 1. ∀ I, xR
i , j, (x

D
j ∈ Res[I](xR

i)) ⇐⇒ (∃p s.t. I ` p : xR
i 7−→ xD

j).

We sketch the proof of this theorem here; details of the supporting lemmas
and proofs are in Appendix B of [19]. To begin with, we must deal with the

20

Transitive closure
I, S ` [] : A� A

(N ′)

I ` s : A −→ B B 6∈ S I, {B} ∪ S ` p : B� C

I, S ` s · p : A� C
(T ′)

Reachable declarations

xD
i ∈ D(S′) S 6∈ S I, {S} ∪ S ` p : S� S′ WF(p)

I, S ` p ·D(xD
i) : S� xD

i

(R′)

Visible declarations

I, S ` p : S� xD
i ∀j, p′(I, S ` p′ : S� xD

j ⇒ ¬(p′ < p))

I, S ` p : S 7−→ xD
i

(V ′)

Reference resolution

xR
i ∈ R(S) {xR

i } ∪ I, ∅ ` p : S 7−→ xD
j

I ` p : xR
i 7−→ xD

j

(X ′)

Fig. 19. “Primed” resolution calculus with “seen scopes” component

fact that the calculus can generate reachability derivations with cycles, but the
algorithm does not follow cycles. In fact, visibility derivations cannot have cycles:

Lemma 1. If I ` p : xR
i 7−→ xD

j then p is cycle-free.

We therefore begin by defining an alternative version of the calculus that prevents
construction of cyclic paths. This alternative calculus consists of the original rules
(P), (I) from Figure 3 together with the new rules (N ′), (T ′), (R′), (V ′), (X ′)
from Figure 19. The new rules describe transitions that include a “seen scopes”
component S which is used to enforce acyclicity of paths. By inspection, this
is the only difference between the “primed” system and original one. Thus, by
Lemma 1, we have

Lemma 2. ∀I,S, xD
i , (∃p s.t. I ` p : S 7−→ xD

i) ⇐⇒ (∃p s.t. I, ∅ ` p : S 7−→ xD
i).

Hereinafter, we can work with the primed system.
Next we define a family of sets P of derivable paths in the (primed) calculus.

Definition 2 (Path Sets).

PD[I,S](S) := {p | ∃ xD
i s.t. p = D(xD

i) ∧ I,S ` p : S � xD
i }

PP [I,S](S) := {p | ∃ p′ xD
i s.t. p = P · p′∧

I,S ` p : S � xD
i ∧ I, {S} ∪ S ` p′ : P(S) 7−→ xD

i }
PI [I,S](S) := {p | ∃ p′ xD

i yR
j y

D
j′:S
′ s.t. p = I(yR

j , y
D
j′:S
′) · p′∧

I,S ` p : S � xD
i ∧ I, {S} ∪ S ` p′ : S′ 7−→ xD

i }
PL[I,S](S) := {p | ∃ xD

i s.t. I,S ` p : S 7−→ xD
i ∧ p ∈ I(_,_)∗ ·D(_)}

PV [I,S](S) := {p | ∃ xD
i s.t. I,S ` p : S 7−→ xD

i }

21

These sets are designed to correspond to the various classes of environments
EnvC . PD, PP , and PI contain all reachability derivations starting with a D(_),
P, or I(_,_) respectively, with the further condition that the tail of each deriva-
tion is a visibility derivation (i.e. is most specific among all reachability deriva-
tions). PV describes the set of all visibility derivations. (PL is similar, but omits
paths including P steps, because well-formedness prevents using these steps af-
ter an import step.) For compactness, we state the key result uniformly over all
classes of sets:

Definition 3. For any path p, δ(p) := xD
i iff ∃p′ s.t. p = p′ ·D(xD

i) and for any
set of paths P , ∆(P) := {δ(p) | p ∈ P}.

Lemma 3. For each class C ∈ {V,L,D, I, P}:

∀ I S S,Envc[I,S](S) = ∆(PC [I,S](S))

Proof. We first prove two auxiliary lemmas about reachability and visibility after
one step:

∀ I S s p S xD
i , (I,S ` s · p ·D(xD

i) : S� xD
i =⇒ I, {S}∪S ` s : S −→ S′ =⇒

I, {S} ∪ S ` p ·D(xD
i) : S′� xD

i) (♦)

∀ I S s p S xD
i , (I,S ` s · p : S 7−→ xD

i =⇒ I, {S} ∪ S ` s : S −→ S′ =⇒
I, {S} ∪ S ` p : S′ 7−→ xD

i) (�)

Then we proceed by three nested inductions, the outer one on I (or, more strictly,
on |R(G) \ I|, the number of references not in I), the second one on S (more
strictly, on |S(G) \ S|, the number of scopes not in S) and the third one on the
class C with the order V > L > P, I,D. Then we conclude using ♦ and � and a
number of other technical results. Details are in Appendix B of [19]. ut

With these lemmas in hand we proceed to prove Theorem 1.

Proof. Fix I, xR
i , and j. Given S, the (unique) scope such that xR

i ∈ R(S):
xD
j ∈ Res[xR

i](I)⇔ xD
j ∈ EnvV [{xR

i } ∪ I, ∅](S)
By the V case of Lemma 3 and the definition of PS , this is equivalent to

∃p s.t. {xR
i } ∪ I, ∅ ` p : S 7−→ xD

j

which, by Lemma 2 and rule X, is equivalent to ∃p s.t. I ` p : xR
i 7−→ xD

j . ut

6 α-equivalence and Renaming

The choice of a particular name for a bound identifier should not affect the
meaning of a program. This notion of name irrelevance is usually referred to as
α-equivalence, but definitions of α-equivalence exist only for some languages and
are language-specific. In this section we show how the scope graph and resolution
calculus can be used to specify α-equivalence in a language-independent way.

22

Free variables. A free variable is a reference that does not resolve to any decla-
ration (xR

i is free if @ j, p s.t. I ` p : xR
i 7−→ xD

j); a bound variable has at least
one declaration. For uniformity, we introduce for each possibly free variable x a
program-independent artificial declaration xD

x̄ with an artificial position x̄. These
declarations do not belong to any scope but are reachable through a particular
well-formed path >, which is less specific than any other path, according to the
following rules:

I ` > : S� xD
x̄

p 6= >
p < >

This path representing the resolution of a free reference is shadowed by any
existing path leading to a concrete declaration; therefore the resolution of bound
variables is unchanged.

6.1 α-Equivalence

We now define α-equivalence using scope graphs. Except for the leaves represent-
ing identifiers, two α-equivalent programs must have the same abstract syntax
tree. We write P ' P’ (pronounced “P and P’ are similar”) when the ASTs of P
and P’ are equal up to identifiers. To compare two programs we first compare
their AST structures; if these are similar then we compare how identifiers be-
have in these programs. Since two potentially α-equivalent programs are similar,
the identifiers occur at the same positions. In order to compare the identifiers’
behavior, we define equivalence classes of positions of identifiers in a program:
positions in the same equivalence class are declarations of, or references to, the
same entity. The abstract position x̄ identifies the equivalence class correspond-
ing to the free variable x.

Given a program P, we write P for the set of positions corresponding to
references and declarations and PX for P extended with the artificial positions
(e.g. x̄). We define the P∼ equivalence relation between elements of PX as the
reflexive symmetric and transitive closure of the resolution relation.

Definition 4 (Position equivalence).

I ` p : xR
i 7−→ xD

i′

i
P∼ i′

i′
P∼ i

i
P∼ i′

i
P∼ i′ i′

P∼ i′′

i
P∼ i′′ i

P∼ i

In this equivalence relation, the class containing the abstract free variable dec-
laration cannot contain any other declaration. So the references in a particular
class are either all free or all bound.

Lemma 4 (Free variable class). The equivalence class of a free variable does
not contain any other declaration, i.e. ∀ xD

i , i
P∼ x̄ =⇒ i = x̄

Proof. Detailed proof is in Appendix B of [19]. We first prove:
∀ xR

i , (I ` > : xR
i 7−→ xD

x̄) =⇒ ∀ p i′, I ` p : xR
i 7−→ xD

i′ =⇒ i′ = x̄ ∧ p = >
and then proceed by induction on the equivalence relation.

23

The equivalence classes defined by this relation contain references to or decla-
rations of the same entity. Given this relation, we can state that two programs
are α-equivalent if the identifiers at identical positions refer to the same entity,
that belong to the same equivalence class:

Definition 5 (α-equivalence). Two programs P1 and P2 are α-equivalent (de-
noted P1

α
≈ P2) when they are similar and have the same ∼-equivalence classes:

P1
α
≈ P2 , P1 ' P2 ∧ ∀ i i′, i P1∼ i′ ⇔ i

P2∼ i′

Remark 1.
α
≈ is an equivalence relation since ' and⇔ are equivalence relations.

Free variables. The P∼ equivalence classes corresponding to free variables x also
contain the artificial position x̄. Since the equivalence classes of two equivalent
programs P1 and P2 have to be exactly the same, every element equivalent to
x̄ (i.e. a free reference) in P1 is also equivalent to x̄ in P2. Therefore the free
references of α-equivalent programs have to be identical.

Duplicate declarations. The definition allows us to also capture α-equivalence of
programs with duplicate declarations. Assume that a reference xR

i1
resolves to

two definitions xD
i2

and xD
i3
; then i1, i2 and i3 belong to the same equivalence

class. Thus all α-equivalent programs will have the same ambiguities.

6.2 Renaming

Renaming is the substitution of a bound variable by a new variable throughout
the program. It has several practical applications such as rename refactoring in
an IDE, transformation to a program with unique identifiers, or as an interme-
diate transformation when implementing capture-avoiding substitution.

A valid renaming should respect α-equivalence classes. To formalize this idea
we first define a generic transformation scheme on programs that also depends
on the position of the sub-term to rewrite:

Definition 6 (Position dependent rewrite rule). Given a program P, we
denote by (ti → t′ | F) the transformation that replaces the occurrences of the
sub-term t at positions i by t′ if the condition F is true. (T)P denotes the appli-
cation of the transformation T to the program P.

Given this definition we can now define the renaming transformation that re-
places the identifier corresponding to an entire equivalence class:

Definition 7 (Renaming). Given a program P and a position i corresponding
to a declaration or a reference for the name x, we denote by [xi:=y]P the program
P’ corresponding to P where all the identifiers x at positions P∼-equivalent to i
are replaced by y:

[xi := y]P , (xi′ → y | i′ P∼ i)P

24

However, not every renaming is acceptable: a renaming might provoke variable
captures and completely change the meaning of a program.

Definition 8 (Valid renamings). Given a program P, renaming [xi := y] is
valid only if it produces an α-equivalent program, i.e. [xi := y]P

α
≈ P

Remark 2. This definition prevents the renaming of free variables since α-equivalent
programs have exactly the same free variables.

Intuitively, valid renamings are those that do not accidentally “capture” vari-
ables. Since the capture of a reference resolution also depends on the seen-import
context in which this resolution occurs, a precise characterization of capture in
our general setting is complex and we leave it for future work.

7 Related Work

Binding-sensitive program representations. There has been a great deal of work
on representing program syntax in ways that take explicit note of binding struc-
ture, usually with the goal of supporting program transformation or mechanized
reasoning tools that respect α-equivalence by construction. Notable techniques
include de Bruijn indexing [7], Higher-Order Abstract Syntax (HOAS) [20], lo-
cally nameless representations [3], and nominal sets [10]. (Aydemir, et al. [2] give
a survey in the context of mechanized reasoning.) However, most of this work
has concentrated on simple lexical binding structures, such as single-argument
λ-terms. Cheney [4] gives a catalog of more interesting binding patterns and
suggests how nominal logic can be used to describe many of them. However, he
leaves treatment of module imports as future work.

Binding specification languages. The Ott system [22] allows definition of syntax,
name binding and semantics. This tool generates language definitions for theo-
rem provers along with a notion of α-equivalence and functions such as capture-
avoiding substitution that can be proven correct in the chosen proof assistant
modulo α-equivalence. Avoiding capture is also the basis of hygienic macros in
Scheme. Dybvig [8] gives an algorithmic description of what hygiene means.
Herman and Wand [13, 12] introduce static binding specifications to formalize
a notion of α-equivalence that does not depend on macro expansion. Stansifer
and Wand’s Romeo system [23] extends these specifications to somewhat more
elaborate binding forms, such as sequential let. Unbound [25] is another re-
cent domain specific language for describing bindings that supports moderately
complex binding forms. Again, none of these systems treat modules or imports.

Language engineering. In language engineering approaches, name bindings are
often realized using a random-access symbol table such that multiple analysis
and transformation stages can reuse the results of a single name resolution pass
[1]. Another approach is to represent the result of name resolution by means
of reference attributes, direct pointers from the uses of a name to its definition

25

[11]. However these representations are usually built using an implementation
of a language-specific resolution algorithm. Erdweg, et al. [9] describe a system
for defining capture-free transformations, assuming resolution algorithms are
provided for the source and target languages. The approach represents the result
of name resolution using ‘name graphs’ that map uses to definitions (references
to declarations in our terminology) and are language independent. This notion
of ‘name graph’ inspired our notion of ‘scope graph’. The key difference is that
the results of name resolution generated by the resolution calculus are paths that
extend a use-def pair with the language-independent evidence for the resolution.

Semantics engineering. Semantics engineering approaches to name binding vary
from first-order representation with substitution [15], to explicit or implicit en-
vironment propagation [21, 18, 6], to HOAS [5]. Identifier bindings represented
with environments are passed along in derivation rules, rediscovering bindings
for each operation. This approach is inconvenient for more complex patterns
such as mutually recursive definitions.

8 Conclusion and Future Work

We have introduced a generic, language-independent framework for describing
name binding in programming languages. Its theoretical basis is the notion of
a scope graph, which abstracts away from syntax, together with a calculus for
deriving resolution paths in the graph. Scope graphs are expressive enough to
describe a wide range of binding patterns found in real languages, in particular
those involving modules or classes. We have presented a practical resolution
algorithm, which is provably correct with respect to the resolution calculus. We
can use the framework to define generic notions of α-equivalence and renaming.

As future work, we plan to explore and extend the theory of scope graphs,
in particular to find ways to rule out anomalous examples and to give precise
characterizations of variable capture and substitution. On the practical side, we
will use our formalism to give a precise semantics to the NaBL DSL, and verify
(using proof and/or testing) that the current NaBL implementation conforms to
this semantics.

Our broader vision is that of a complete language designer’s workbench that
includes NaBL as the domain-specific language for name binding specification
and also includes languages for type systems and dynamic semantics specifica-
tions. In this setting, we also plan to study the interaction of name resolution
and types, including issues of dependent types and name disambiguation based
on types. Eventually we aim to derive a complete mechanized meta-theory for
the languages defined in this workbench and to prove the correspondence be-
tween static name binding and name binding in dynamics semantics as outlined
in [24].

Acknowledgments We thank the many people who reacted to our previous work
on NaBL by asking “but what is its semantics?”; this paper provides our an-
swer. We thank the anonymous reviewers for their feedback on previous versions

26

of this paper. This research was partially funded by the NWO VICI Language
Designer’s Workbench project (639.023.206). Andrew Tolmach was partly sup-
ported by a Digiteo Chair at Laboratoire de Recherche en Informatique, Univer-
sité Paris-Sud.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

2. B. E. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engi-
neering formal metatheory. In G. C. Necula and P. Wadler, editors, Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages
3–15. ACM, 2008.

3. A. Charguéraud. The locally nameless representation. Journal of Automated Rea-
soning, 49(3):363–408, 2012.

4. J. Cheney. Toward a general theory of names: binding and scope. In R. Pol-
lack, editor, ACM SIGPLAN International Conference on Functional Program-
ming, Workshop on Mechanized reasoning about languages with variable binding,
MERLIN 2005, Tallinn, Estonia, September 30, 2005, pages 33–40. ACM, 2005.

5. A. J. Chlipala. A verified compiler for an impure functional language. In
M. V. Hermenegildo and J. Palsberg, editors, Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 93–106. ACM, 2010.

6. M. Churchill, P. D. Mosses, and P. Torrini. Reusable components of semantic spec-
ifications. In W. Binder, E. Ernst, A. Peternier, and R. Hirschfeld, editors, 13th
International Conference on Modularity, MODULARITY ’14, Lugano, Switzer-
land, April 22-26, 2014, pages 145–156. ACM, 2014.

7. N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 34(5):381–392, 1972.

8. R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic abstraction in scheme.
Higher-Order and Symbolic Computation, 5(4):295–326, 1992.

9. S. Erdweg, T. van der Storm, and Y. Dai. Capture-avoiding and hygienic program
transformations. In R. Jones, editor, ECOOP 2014 - Object-Oriented Programming
- 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceed-
ings, volume 8586 of Lecture Notes in Computer Science, pages 489–514. Springer,
2014.

10. M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

11. G. Hedin and E. Magnusson. Jastadd–an aspect-oriented compiler construction
system. Science of Computer Programming, 47(1):37–58, 2003.

12. D. Herman. A Theory of Hygienic Macros. PhD thesis, Northeastern University,
Boston, Massachusetts, May 2010.

13. D. Herman and M. Wand. A theory of hygienic macros. In S. Drossopoulou,
editor, Programming Languages and Systems, 17th European Symposium on Pro-
gramming, ESOP 2008, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April
6, 2008. Proceedings, volume 4960 of Lecture Notes in Computer Science, pages
48–62. Springer, 2008.

27

14. L. C. L. Kats and E. Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In W. R. Cook, S. Clarke, and M. C. Rinard,
editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010,
pages 444–463, Reno/Tahoe, Nevada, 2010. ACM.

15. C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A.
McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. Run your research:
on the effectiveness of lightweight mechanization. In J. Field and M. Hicks, editors,
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012, pages 285–296. ACM, 2012.

16. G. D. P. Konat, L. C. L. Kats, G. Wachsmuth, and E. Visser. Declarative name
binding and scope rules. In K. Czarnecki and G. Hedin, editors, Software Lan-
guage Engineering, 5th International Conference, SLE 2012, Dresden, Germany,
September 26-28, 2012, Revised Selected Papers, volume 7745 of Lecture Notes in
Computer Science, pages 311–331. Springer, 2012.

17. X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml
system (release 4.00): Documentation and user’s manual. Institut National de
Recherche en Informatique et en Automatique, July 2012.

18. P. D. Mosses. Modular structural operational semantics. Journal of Logic and
Algebraic Programming, 60-61:195–228, 2004.

19. P. Neron, A. P. Tolmach, E. Visser, and G. Wachsmuth. A theory of name resolu-
tion with extended coverage and proofs. Technical Report TUD-SERG-2015-001,
Software Engineering Research Group. Delft University of Technology, January
2015. Extended version of this paper.

20. F. Pfenning and C. Elliott. Higher-order abstract syntax. In R. L. Wexelblat, edi-
tor, Proceedings of the ACM SIGPLAN’88 Conference on Programming Language
Design and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988,
pages 199–208. ACM, 1988.

21. B. C. Pierce. Types and Programming Languages. MIT Press, Cambridge, Mas-
sachusetts, 2002.

22. P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa.
Ott: Effective tool support for the working semanticist. Journal of Functional
Programming, 20(1):71–122, 2010.

23. P. Stansifer and M. Wand. Romeo: a system for more flexible binding-safe pro-
gramming. In J. Jeuring and M. M. T. Chakravarty, editors, Proceedings of the 19th
ACM SIGPLAN international conference on Functional programming, Gothenburg,
Sweden, September 1-3, 2014, pages 53–65. ACM, 2014.

24. E. Visser, G. Wachsmuth, A. P. Tolmach, P. Neron, V. A. Vergu, A. Passalaqua,
and G. D. P. Konat. A language designer’s workbench: A one-stop-shop for imple-
mentation and verification of language designs. In A. P. Black, S. Krishnamurthi,
B. Bruegge, and J. N. Ruskiewicz, editors, Onward! 2014, Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, part of SLASH ’14, Portland, OR, USA, October 20-24,
2014, pages 95–111. ACM, 2014.

25. S. Weirich, B. A. Yorgey, and T. Sheard. Binders unbound. In M. M. T.
Chakravarty, Z. Hu, and O. Danvy, editors, Proceeding of the 16th ACM SIG-
PLAN international conference on Functional Programming, ICFP 2011, Tokyo,
Japan, September 19-21, 2011, pages 333–345. ACM, 2011.

	A Theory of Name Resolution
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1458317825.pdf.EhsTu

