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Abstract—We ”naturalize” the handshake communication links
of a self-timed system by assigning the capabilities of filling and
draining a link and of storing its full or empty status to the
link itself. This contrasts with assigning these capabilities to the
joints, the modules connected by the links, as was previously
done. Under naturalized communication, the differences between
Micropipeline, GasP, Mousetrap, and Click circuits are seen only
in the links — the joints become identical; past, present, and
future link and joint designs become interchangeable.

We also “naturalize” the actions of a self-timed system, giving
actions status equal to states — for the purpose of silicon test
and debug. We partner traditional scan test techniques dedicated
to state with new test capabilities dedicated to action. To each
and every joint, we add a novel proper-start-stop circuit, called
MrGO, that permits or forbids the action of that joint. MrGO,
pronounced “Mister GO,” makes it possible to (1) exit an initial
state cleanly to start circuit operation in a delay-insensitive
manner, (2) stop a running circuit in a clean and delay-insensitive
manner, (3) single- or multi-step circuit operations for test and
debug, and (4) test sub-systems at speed.

I. INTRODUCTION

Point of view is worth 80 IQ points
Alan Kay, Turing Award 2003, Kyoto Prize 2004, Draper Prize 2004

We view a self-timed dataflow or pipeline system as a directed

graph with links as edges and joints as nodes, as suggested

by Figure 1. The links are the communication channels,

with data flowing in the direction of the arrows. The joints

are the self-timed modules that implement flow control and

data operations. In this paper, we take a novel point of

view of links and joints. We present this view using two-

phase handshake channels with bundled data [9] as links, and

Micropipeline [11], GasP [12], Mousetrap [8], and Click [5]

modules as joints. Note however that this new viewpoint is

useful beyond these self-timed families and protocols!

Links deserve the full attention of circuit designers because

they consume most of the energy, cause most of the delay,

and occupy most of the area in a modern digital system.

Nevertheless, publications presenting the Micropipeline, GasP,

Mousetrap, and Click circuit families treat the links merely as

simple wires and put all the digital logic in the joints. We

offer a different, communication-aware or link-aware, point of

view. Our link-aware view puts equal emphasis on links and

joints, by giving each the digital logic needed to perform its

role in the system. The title of the paper comes from the idea

that naturalized 1 citizens share the same rights as native-born

citizens. We naturalize links, giving them status equal to joints.

1Although there are many two-word oxymorons, such as the “guest host”
for a late night TV show or a “giant shrimp,” single-word oxymorons, like
“naturalized,” are rare.

Link
Joint

Figure 1 A self-timed dataflow system with communication
channels, called links, and flow control and data computation
modules, called joints, can be viewed as a directed graph
with data flowing in the direction indicated by the arrows.

This point of view is so simple that readers may consider it

obvious. Simple, yes, but it is also very powerful for it reveals

how self-timed circuits and systems work, how to represent

them, how to design them, and how to test them. This point

of view unifies the existing families of self-timed circuits.

The role of a joint becomes much clearer and much simpler

after pruning away its link-specific tasks. Joints are, more

obviously than ever, the meeting points for links to coordinate

states and exchange data. The coordinating actions are done

in the joints, making joints the ideal place to start and stop

self-timed action. This sets the stage for a new view of testing,

with joints controlling the actions and links holding the states.

To support this test view, we advocate adding a novel proper

start-stop circuit, called MrGO, to each and every joint in

the system. MrGO, pronounced “Mister GO,” has a single

external input, called go, which it arbitrates against pending

or underway joint actions. De-assertion of the go signal to

MrGO provides reliable stopping of self-timed operation, but

more importantly, freezes joint action. Freezing joints while

initializing links to full or empty prevents the self-timed

joint actions from prematurely changing the initial states of

links. Selectively permitting joints to “go” allows for single-

and multi-step operation and at-speed testing of sub-systems.

MrGO removes the timing uncertainty of every joint, thus

rendering a desired part or all of a self-timed system as orderly

as a clocked system, whenever needed.

The outline of this paper is as follows. Section II reviews the

Micropipeline, GasP, Mousetrap, and Click circuit families, as

presented in their original publications. Section III presents the

new link-aware view and the corresponding link-joint interface

for “what a link tells a joint” and “what a joint tells a link.”

Section IV presents test and debug from the new point of

view and an implementation for MrGO and its use. Section V

describes test scenarios with MrGO performed on two 40nm

TSMC chip experiments. Section VI concludes the paper.
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Figure 2 Circuit designs for a single-input single-output
FIFO module in each of the four bundled-data two-phase
circuit families. The dashed lines mark the interface between
the joint in the middle and the left-hand and right-hand links.
Note that the joints hold all the logic for flow control and
data computation — the links are “just wires.”

II. FOUR BUNDLED-DATA TWO-PHASE CIRCUIT FAMILIES

The bundled-data circuit descriptions for Micropipeline [11],

GasP [12], [10], Mousetrap [8], and Click [5] use two-phase

handshake protocols to communicate the presence or absence

of valid data on a link. A full link carries valid data. An

empty link carries data that are no longer or not yet significant.

Figure 2 describes the circuit of a FIFO module in each family.

The circuit description of each FIFO module includes half of

the incoming link over which data arrive, a joint between the

two links, and half of the outgoing link. The designs emphasize

the joint between links, and treat each link as merely a

handshake channel of nothing but wire. This joint-centric

view has implications for initialization and testing at the

system level — see Section III-C. To restore compositionality

for initialization and testing, we re-designed the four circuit

descriptions from a link-aware point of view.

Before we explain the re-designs, let us go over the original

module designs in Figure 2. Whenever the incoming link is

full and the outgoing link is empty, the FIFO module performs

three tasks:

• capture and hand-over one data item,

• make the incoming link empty, and

• make the outgoing link full.

These tasks are performed in parallel. They are repeated when

the incoming link has new data and is again full and the

outgoing link has transferred captured data and is again empty.

The four FIFO module designs differ mainly in two ways:

• how they represent full and empty links, and

• when they capture data.

The representations for full and empty links depend on the

specific variant of the two-phase handshake protocol used.

Micropipeline, Mousetrap and Click use a non-return-to-zero

(non-RTZ) variant. GasP uses a return-to-zero (RTZ) variant.

The link representations used in this paper appear in Figure 3.

Time

full fullempty emptyempty

request (r)

acknowledge (a)

non-RTZ

statewire (sw)
RTZ

valid validdata (D)
bundled data Voltage

Figure 3 Non-RTZ and RTZ two-phase handshake variants.
By convention, data must be valid when the link is full, and
may change only when the link is empty. In reality, data may
be kited, as long as the values are valid when captured.

When data are captured depends on the protocol variant for

bundled data. Micropipeline and Mousetrap use normally-

transparent latches for which the clock signal is high when the

outgoing links that forward the data are empty. The intent is to

decrease latency by forwarding data as far into the pipeline as

is possible. GasP and Click use normally-opaque latches and

flipflops for which the clock signal is high when all incoming

links over which the data arrive are full and all outgoing links

that forward the data are empty. The intent is to save energy by

preventing data from rippling through the pipeline prematurely.



These family differences, explained for a simple FIFO design

but present in any design at the module- or system- level, make

the various circuit families much harder to work with than is

necessary, and much harder to exchange or combine. These

differences permeate many parts of a design flow, ranging

from compilation and throughput analysis to relative timing

verification, static and dynamic timing and function validation,

and silicon test and debug.

In Section III, we present a link-aware re-design approach that

de-emphasizes the differences in “how data are captured” and

“how full and empty links are represented” by moving both

the data latches and the full and empty logic out of the joints

and into the links. This results in a standard link-joint interface

for all four circuit families, and allows free exchange between

the families of past, present, and future link and joint designs.

III. NATURALIZED COMMUNICATION

Figure 4 repeats the GasP FIFO module of Figure 2(b) after

moving both the data latches and the full and empty link

retention into the links. The interface signals thus created sense

the full-empty status of the links (fullin, fullout), hand over

data (Din, Dout), make an incoming link empty (drainin),

and an outgoing link full (fillout).

swin

Din[1:N] Dout[1:N]

swout

k

k

k

k

drainin fillout

fullin fullout

Din Dout
latch

clock

Figure 4 Circuit re-design for the GasP FIFO module of
Figure 2(b). The responsibility for capturing data has moved
from the joint to the receiving link. Representing full or
empty is now entirely in the links. We colored “link logic”
grey, reserving the white center for the simplified joint.

One forms longer GasP FIFOs by connecting GasP FIFO

modules head to tail. Each head-to-tail connection pairs the

“link logic” in the two grey halves, forming a closed grey

rectangle as in Figure 5. Inside each GasP grey rectangle live

data latches, a statewire, weak half-keepers, and strong pull-

up and pull-down drivers. Outside, we see D, fill, drain,

and full. The GasP control circuitry for the link in Figure 5,

which we call a naturalized link, appears in Figure 6(b).

Our new viewpoint makes the link-joint interface of Figure 5

the standard communication interface for all four families. The

interface involves data and commands from the joint and state

reports from the link. The joint can command a full incoming

link to drain and an empty outgoing link to fill. Fill and drain

link control circuitry (see Figure 6)

fill

full full

drain

D Dlatch

clock

Figure 5 Naturalized link with standard link-joint interface.
Wiring clock to fill makes the latches normally-opaque, and
wiring clock to ¬full makes them normally-transparent.

commands come from opposite ends of the link. Data flow

from one end of the link to the other end, and are captured

in-between. Each link reports its full-empty state to the joints

at its two ends. Those reports, as well as the data at the two

ends, may differ briefly as information flows through the link.

In the following sub-sections, we discuss the types of links

(Section III-A) and the types of joints (Section III-B) that the

naturalized communication viewpoint yields, and their impact

on self-timed system design (Section III-C).

A. Link Types

A naturalized link receives fill or drain commands and data. It

reports the data and its full-empty state. Data flow from one

end of the link to the other end, and are captured in-between.

Fill and drain commands arrive at opposite ends of the link.

When the link receives a fill command, i.e. fill is high, the link

changes its state to full. Upon receiving a drain command, i.e.

drain is high, the link changes its state to empty.

Data may flow normally-opaque or normally-transparent in

each link, as indicated in Figure 5. Fill and drain actions can be

implemented in various ways. Figure 6 shows a few options:

• The GasP link in Figure 6(b) has two isolated transistors,

one at each end of the link, to perform the fill and drain

actions: the PMOS pull-up transistor fills; the NMOS

pull-down transistor drains. The statewire itself and the

two half-keepers, one at each end, maintain the full-empty

state between fill and drain actions. The states at the two

ends may differ briefly but will ultimately match [2].

• Each Micropipeline (a), Mousetrap (c), and Click (d)

link stores the full-empty state on two wires: the request

wire and the acknowledge wire. The fill action changes

the request wire, making its value differ from that of

the acknowledge. The drain action changes the acknowl-

edge wire, making its value match that of the request.

Exclusive-OR gates generate the full-empty state of the

link by comparing the request and the acknowledge val-

ues, giving full (1) for “differ” and empty (0) for “match.”

Because request and acknowledge are separate signals,

they have separate state-holding circuit elements to hold

and change them. Micropipeline and Mousetrap change

each wire by copying the other wire and complementing

if needed. Click changes each wire by complementing its

value, using a flipflop to store the old and new values.

• A Set-Reset flipflop (e) provides a simple and perhaps

the most standard link control circuit one can imagine.



(a) Micropipeline

(b) GasP

(d) Click

(e) Set-Reset flipflop

(c) Mousetrap
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Figure 6 Implementation examples of link control circuitry.
These supplement the link data circuitry of Figure 5.

B. Joint Types

Joints respond to the full and empty state of their links. In

general, the control logic of a joint is an AND-function of the

conditions necessary for it to act. Some joints have multiple

such AND-functions to guard different actions. The response

of a joint usually changes one or more of the link states to

which the joint responded. Thus, there is a feedback loop from

link-state to joint-action and back to link-state. The throughput

of a self-timed system is in part dependent on the delay of such

feedback loops. The delay may be adjusted to accommodate

data operations coordinated by the joint. The signals that call

for fill or drain action may persist for only a short time, a time

whose duration depends on the circuits in the feedback loop.

Naturalizing the links clarifies the role of a joint. Joints that

pipeline, fork, or join combinational dataflow operations can

be free of stored state. Figure 7 sketches the design of such a

joint. The joint in Figure 4 (center section) is an example of

such a joint — with n = m = 1.

Din1
[1:N1]

... ...
AND-function

...

fullin1

fullinn

...

fullout1

fulloutm

Dinn
[1:Nn]

Doutj
[1:M]

... ...drainini

...... ...

...

filloutj
[1:M]

...

Combinational Logic

Figure 7 Design sketch of a joint without stored state with
n naturalized incoming and m naturalized outgoing links,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m. If data are just copied
then Doutj

[1 :M ] is the concatenation of Din1
[1 :N1] to

Dinn [1 :Nn] and M = N1 + . . .+Nn (N1, . . . , Nn ≥ 0).

Stored state for control logic appears only in joints sensitive

to selective link participation. Examples are joints that send

arriving data alternately to different outgoing links, joints that

arbitrate between incoming links, and joints that guard the

participation of links based on data reported on other links.

The store-free joint shown in Figure 7 works with any of the

links in Figure 6. The same is true for joints with locally stored

state for flow control. The functionality and compositionality

of each link combination are the same. Different links may

have different timing constraints — a topic that, due to space

limitations, is outside the scope of this paper. However, the

fact that functional and timing differences are confined to the

links simplifies modeling, validation, and silicon compilation.

With the responsibilities for full-empty link retention and data

storage assigned to the links, the link-aware view makes both

types of joints significantly easier to understand and design.

C. Impact of Naturalization on System Design

The link-aware point of view offers complete generality to

self-timed systems. All types of links are interchangeable —

see Figure 6. Moreover, substituting a normally-transparent

for a normally-opaque link or vice versa is always possible

— see Figure 5. System designers can choose which type to

use based on system demands for power conservation or data

latency. Remarkably, the circuit of Figure 7 can drive a mix

of normally-transparent and normally-opaque outgoing links.

Figure 8 illustrates the impact on throughput that naturalized

communication can have. The naturalized Mousetrap ring with

Mousetrap links is slower than the original Mousetrap ring.

However, the naturalized Mousetrap ring with GasP links is

faster than the original Mousetrap ring.

Throughput differences between naturalized and original

pipelines within the same family become smaller and may

disappear completely for joints that accommodate selective

participation. This is because selective participation and shared

state do not fare well together, and because AND-functions

and exclusive-OR gates that can be optimized away when all

links participate become essential when it is necessary to select

participants — as the original Click modules in [5] attest.

We avoided estimating the power and area cost of naturalized

communication, because we expect that power and area are

dominated by datapath operations and wire lengths.
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Figure 8 Three canopy graphs for simulations of rings
with 24 pipeline stages. The center graph with fewer data
points is from simulation with an original Mousetrap module.
Naturalizing its links with the circuit of Figure 6(c) produces
the lower graph. The increased number of logic gates costs
performance. Using the link circuits of Figure 6(b) produces
the upper graph, improving the original performance. These
three 90nm simulations omit data latches and wire loads.

IV. NATURALIZED TESTING

In the context of this paper “testing” means validating whether

or not the fabricated design-on-silicon operates as intended [1].

This includes structural testing, by which we mean low-speed

testing to uncover fabrication defects, as well as functional and

at-speed testing to uncover incorrect or marginal functionality.

A great deal of the wisdom for testing self-timed circuits

comes from testing synchronous circuits. When its clock

“ticks” the synchronous circuit acts. It acts by using the present

state to compute a next state, which takes over at the next tick.

Many synchronous test solutions use some form of scan test

to control and observe state. They re-use the existing clock to

start and stop the test action [13]. This works because each

cycle in the design contains a clocked state-holding element.

The “tick” governs every synchronous loop.

What makes self-timed circuits “tick” ? 2 One may be tempted

to point at local clocks, but these are just by-products. Self-

timed circuits act upon the state of their links. Links meet at

joints. Each cycle in the design contains a joint. This makes

joints the ideal place to start and stop self-timed action.

We emphasize that testing requires access to both state and

action. Unfortunately, the two are often confounded: the action

part of a test solution is often integrated into the state part.

Once integrated, it becomes much harder to separate them

in order to reduce test access costs or to fine-tune or re-use

test solutions for debug. With this paper, we call attention to

actions, and let them play their own part in the test solution.

In the following sub-sections, we introduce a new circuit

element, MrGO, dedicated to actions, which it can safely

start, stop, and freeze. MrGO fits into joints. Combined with

scan-test based access to naturalized links, joints with MrGO

provide a rich environment for test and debug.

⊗
Did You Know
that a ring of original Mousetrap modules cannot possibly
hold an odd number of tokens? The same is true for rings
of original Micropipeline and Click modules.

The reason is that all three circuit families fuse together
a forward request and a reverse acknowledge wire.

• To see why odd initialization is impossible start with an
empty ring. During initialization, any change in state of a
fused wire changes the state of two links. The change will
either fill one link and drain the other link, fill both links,
or drain both links. Each change keeps the number of full
links even, and so the number of full links cannot be odd.

• In contrast, naturalized links can be initialized to full or
empty independent of and without changing adjacent links.

This little recognized truth appears clearly in Figure 8

• Although all rings have 24 stages, only the two naturalized
Mousetrap graphs have sample points for all occupancies.

• The center graph for original Mousetrap can plot throughput
only for even link occupancy, offering fewer sample points.

Naturalized communication
restores the generality

lost to the original circuit families

A. Takeoff: From Initialization to Self-Timed Operation

Because each naturalized link stores its own full-empty state,

links require initialization. Some circuit families, like original

GasP, used specialized master-clear circuitry to initialize links

with fixed values, typically “empty.” Others, like Click, use a

scan chain to initialize links with different values.3

Some initial link states may evoke instant action from joints.

If one permits joints to act during initialization, a joint’s

action may conflict with initialization. We advocate adding

a go signal to each and every joint. The go signal can be yet

another guard term anywhere in the joint’s AND-function —

see Figure 7. A de-asserted (low) go signal makes the joint’s

fill and drain signals low, thereby freezing the joint. Frozen

joints cannot conflict with initialization.

Both the initialization signals and the go signal may suffer long

and varied delays from their source to remote parts of a large

system. Because of differences in these delays, initialization

may end at different times in remote parts of the system.

Likewise an asserted go signal may arrive, unfreeze, and start

operations for different parts of the system at different times.

A correct start after initialization depends only on avoiding

conflict between initialization and operation at every joint.

Initialization may include state-holding elements in the joints,

like those used for selective link control. We can deliver

initialization signals via a scan chain. A single global go signal

would suffice to freeze the system for initialization.

2Kees van Berkel, thank you for initiating this pun in your ASYNC 1999
Industry Demo presentation “The PCA5007 Pager IC: What Makes it Tick.”
We have encountered it several times since, but never before used it ourselves.

3The Click paper [5] includes a solution for scanning the flipflops that
determine the link states, and provides references to related work for scanning
other types of state-holding elements used in self-timed circuit designs.



B. Landing: Stopping a Self-Timed Operation in Full flight

Molnar et al. recognized long ago how to stop a self-timed

circuit [3]. When a self-timed circuit is told to stop, it must

decide cleanly whether to stop at once or to complete a

pending or underway action. Because the stop signal is entirely

independent of internal signals, a proper stopper must provide

for metastability delay. In other words, a proper stopper must

contain an arbiter or mutual exclusion element [7].

Once stopped, it is useful to sense the state of the system.

The same scan chain that provides initial values — see

Section IV-A — can sense the state of the links and the joints.

The proper stopper can be added anywhere in the joint.

C. MrGO

We have found it convenient to combine the go signal and the

arbitrated stop in one circuit: MrGO, pronounced “Mister GO”

— see Figure 9(top). When appended to the AND-functions

of the joints, as in Figure 9(bottom), it serves as proper starter

for happy takeoffs and as proper stopper for happy landings.

MrGO also helps us test the circuit, as we will show next.

For test control, it is essential that MrGO be placed inside

the joint-link-joint feedback loops. This ensures that any

arbitration contest between go and local self-timed signals will

resolve and end with the go signal taking control of the arbiter.

To start and stop each and every joint individually, each MrGO

gets a separate go signal from a scan chain.

D. Testing with MrGO: Single- and Multi-Step Operations

Selectively asserted go signals provide a wide variety of test

options. We list some below. We can make each test insensitive

to delay variation in different go signals.

1) One-shot Test of a Selected Joint:

Initialization sets the link states and internal states and data for

the joint to be tested. With all other joints frozen, permitting

the selected joint to go lets it take at most one action. 4

After re-freezing the selected joint, examination of its links

and internal state reveals if it took the expected action.

2) Following a Thread of Action:

A sequence of one-shot tests can follow a data item along a

pipeline. Each one-shot test advances the data item to joints

that might act were they not frozen. The next step freezes the

joint that previously acted and then permits the next joint to

go. Allowing joints to go only one at a time makes it possible

to track the flow of data items through a system. See Figure 13.

3) Breakpoint:

Testing a rarely used part of a system, such as memory error

correction, is possible by freezing one or more joints there.

Full-speed action of the rest of the system will stop at calls

for action of a frozen joint.

4) Testing a Single Data Item At Speed:

This test setup leaves several adjacent joints unfrozen to permit

a data item to pass at speed through them. A frozen joint

upstream of this test section blocks entry of test data input. A

frozen joint downstream prevents escape of test data output.

Unfreezing the upstream frozen joint releases the test data item

to flow through the test section at speed. See Figure 10.

5) Testing a Burst of Data Items At Speed:

Just as a single data item can flow through a test section, so

can a burst of data items. The burst of data items queues up

behind the upstream frozen joint much like water behind a

dam. Unfreezing the joint releases the burst. There must be

data storage for the entire burst in the release and capture

sections ahead of and behind the test section. See Figure 12.

6) Testing the Flow of Bubbles At Speed:

Canopy graphs (Figure 8) teach us that data flowing forward

through a pipeline tend to move at a different speed than

bubbles flowing backward. We have learned through painful

experience that testing the flow of bubbles through a congested

pipeline is as important as testing the flow of data through an

empty pipeline. A test section initialized with full rather than

empty links reveals its response to bubbles, allowing detection

of faulty behaviors often overlooked. See Figure 11.

Test options 1–3 are useful for structural testing, for instance

for stuck-at faults. Options 3–6 are useful for testing delay

faults and marginal functionality. For debug, all options matter.

4For example, the joint in Figure 9(bottom) will either do nothing or
generate a high pulse on its fill and drain signals, changing both links.
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Figure 9 MrGO with its icon inset in the grey area (top),
and a joint with MrGO (bottom). The bold central transistor
in MrGO delays active-low grant signal, out, by conducting
only after metastability ends. Transistor sizing reduces the
logical effort from in to out. Split pull-up transistors in
the left NAND gate avoid a floating out signal. Selective
metastability-protected freezing (go is low) and unfreezing
(go is high) of joints provides for testing. MrGO is inspired
by the HOLD design-for-test solution [6], proper stopper [3],
and Seitz’ mutual exclusion element [7].



test command counter stage count

init [1] - [2] - [3] - [4] - [5] - [6] - [7] 0

tunnel [1]
A

−→ [2] - 3 - 4 - 5 - [6] - [7] 0

run [1] - 2
A

−→ 3 - 4 - 5 - [6] - [7] 0

[1] - 2 - 3
A

−→ 4 - 5 - [6] - [7] 0
... [1] - 2 - 3 - 4

A
−→ 5 - [6] - [7] 1

done [1] - 2 - 3 - 4 - 5
A

−→ [6] - [7] 1

Figure 10 (testing the counter in pipeline stage 4 with a single data item, at speed)
The top row (init) shows a pipeline segment with seven joints, 1–7, and a counter attached to joint 4. Initially all seven joints are
frozen, illustrated by the square brackets “[” and “]” around each joint, all links between them are empty, illustrated by the simple
dash “-” for each link, and the counter value, count, is 0. Next, as shown in row 2, we prepare a test section (tunnel) to test the
counter at speed by permitting joints 3, 4 and 5 to go when possible, illustrated by the absent brackets. In addition, we fill the link
between joints 1 and 2 with one data item, A, illustrated by the labeled arrow. None of the joints can act yet, but as soon as we
permit joint 2 to go, as shown in row 3 (run), data item A moves to the right as far and as fast as it can, incrementing the counter.

test command counter stage count

init [1]
A

−→ [2]
B
−→ [3]

C
−→ [4]

D
−→ [5]

E
−→ [6]

F
−→ [7] 0

tunnel [1]
A

−→ [2]
B
−→ 3

C
−→ 4

D
−→ 5

E
−→ [6] - [7] 0

run [1]
A

−→ [2]
B
−→ 3

C
−→ 4

D
−→ 5 - 6

E
−→ [7] 0

[1]
A

−→ [2]
B
−→ 3

C
−→ 4 - 5

D
−→ 6

E
−→ [7] 0

... [1]
A

−→ [2]
B
−→ 3 - 4

C
−→ 5

D
−→ 6

E
−→ [7] 1

done [1]
A

−→ [2] - 3
B
−→ 4

C
−→ 5

D
−→ 6

E
−→ [7] 1

Figure 11 (testing the counter in pipeline stage 4 with a single bubble, at speed)
This test complements the one in Figure 10. The top row (init) shows all seven joints frozen, illustrated by the square brackets
around them, all links between them full, indicated by the labeled arrows, and a counter value of 0. Next, as shown in row 2, we
prepare an at-speed test section (tunnel) through joints 3, 4 and 5, as illustrated by the absent brackets. In addition, we empty the
link between joints 6 and 7, introducing one bubble, illustrated as “-.” None of the joints can act yet, but as soon as we permit joint
6 to go, in row 3 (run), the bubble moves to the left as far and as fast as it can. The counter increments as token C moves past.

test command weak stage

init [1]
A

−→ [2] . . . [6]
F
−→ [7] - [8] - [9] . . . [13] - [14]

tunnel [1]
A

−→ 2 . . . 6
F
−→ [7] - 8 - 9 . . . 13 - [14]

run at lower VDD [1]
A

−→ 2 . . . 6
F
−→ 7 - 8 - 9 . . . 13 - [14]

...
done [1] - 2 . . . 6 - 7 - 8

A
−→ 9 . . . 13

F
−→ [14]

Figure 12 (testing the marginal latch in pipeline stage 8 with a burst of data items, at speed)
Using the same notation as in Figure 10, the top row (init) shows a pipeline segment with frozen joints and six full links, followed
by a frozen weak stage — a joint with a marginal latch — followed by a pipeline segment with frozen joints and six empty links.
The data items for the full links are shifted into place as explained in Figure 13. Next, as shown in row 2, we prepare an at-speed
test section (tunnel) through joints 8 to 13, as illustrated by the absent brackets. None of the joints can act until we permit joint
7 to go. Before giving permission, in row 3 (run), we reduce the supply voltage to aggravate the error condition of the marginal
latch. The resulting behavior is captured in the pipeline segment after the weak stage. Various data patterns of successive bits such
as 101010, 110110, 001001 exercise the weak latch. Competing patterns for adjacent bits can check for sensitivity to crosstalk.

test command weak stage

init [1] - [2] - [3] - [4] - [5] - [6] - [7] - [8]

go 1
F
−→ [2] - [3] - [4] - [5] - [6] - [7] - [8]

nogo [1]
F
−→ [2] - [3] - [4] - [5] - [6] - [7] - [8]

go [1] - 2
F
−→ [3] - [4] - [5] - [6] - [7] - [8]

nogo [1] - [2]
F
−→ [3] - [4] - [5] - [6] - [7] - [8]

...
nogo [1] - [2] - [3] - [4] - [5] - [6]

F
−→ [7] - [8]

Figure 13 (shifting the data items into place for the marginal latch test of Figure 12)
Like non-overlapping clocks go and nogo commands can shift a single data item or many data items at once through a pipeline.
Rows 1–13 above, shift exactly one data item, F, into place for row 1 of Figure 12. Similar steps place data items E through A.
The low activity factor of such a single-shift approach makes it possible to shift data reliably to and from the marginal latch.



V. SILICON TEST AND DEBUG EXAMPLES

We have two working chip experiments, Weaver and Anvil,

both built in 40nm TSMC CMOS. Both experiments use rings

of normally-opaque GasP pipelines with naturalized commu-

nication to recirculate data at high speed. Anvil has a MrGO

circuit in each and every GasP stage, i.e. joint, to provide

go control, including arbitrated stop. Weaver has go control

in each and every GasP stage and arbitrated stop capability

in nearly all stages. Although the intended purposes of these

two silicon experiments are beyond the scope of this paper,

the few examples in this section show how naturalized testing

has provided assurance of their correct operation. Weaver and

Anvil each have an IEEE standard JTAG test access port and

scan interface [4] to provide a low speed interface to their

high-speed operation. Software in a control computer sets up

and runs test commands, and evaluates the results of each test.

Each of several re-circulating rings in Weaver and Anvil has

a binary counter attached to one of its stages. The counter

is supposed to increment each time a data item passes by.

Reading counts via the JTAG interface before and after a full-

speed run of known duration allows test software to compute

throughput and to make canopy graphs of each ring. The

Weaver has measured throughput of about 6 Giga data items

per second. Before using a counter, we test its correct operation

using tests through pipeline segments around the counter stage

— like the two at-speed tests for a single data item and a single

bubble passing the counter in Figures 10–11. Correct counter

operation is essential to many tests and measurements.

Note that although it takes hours to write the software to test

correct operation of a counter, and milliseconds for the test

computer to set up suitable initial conditions, the actual tests

in Figures 10 and 11 run to completion in half a nanosecond.

Anvil includes latches of many different designs. One par-

ticular latch gave erratic results at reduced power supply

voltage. Exploring the details of its behavior required testing

the marginal latch with a variety of data patterns run at speed

with reduced supply voltage, VDD. Figure 12 shows how

selective go control made this possible.

Anvil limits the area cost of its scan chain by limiting the

number of places in a relatively long pipeline where the scan

chain can insert or retrieve data values. As a result, Anvil

allows data entry only dozens of pipeline stages ahead of

the marginal latch. Moreover, because the noise of full-speed

operation might cause errors, slow and careful delivery of

the test patterns seemed essential. The method described in

Figure 13 provides slow but accurate delivery of suitable data

input patterns shown in the first row of Figure 12 and slow

but accurate retrieval of data results shown in the last row.

Weaver has some joints that steer data items to alternate links.

To detect a data item that might stray outside its planned path,

test software freezes all joints outside that path. Each such

frozen joint acts as a breakpoint — stray data items fill links

that terminate at such frozen joints. An overview of scanned-

out full links quickly identifies not only that there are stray

data items, but also whither they have strayed.

VI. CONCLUSION

This paper is built around a novel point of view. We differ-

entiate links from joints and actions from states, empowering

each to play its natural role during system design and test.

Differentiating links from joints is a simple idea of great power

because it offers a higher level of abstraction for each. The

simple interface between links and joints of Figure 5 and the

resulting unification of four bundled-data two-phase circuit

families attest to the impact of the new abstractions. Such

abstractions and the unification of families simplify computer

aided design, and herald circuit improvements that extend the

geographic reach and reduce the energy consumption of links.

Differentiating actions from states is a simple idea of great

power because it clarifies how self-timed systems work. Unlike

actions in synchronous systems that occur simultaneously in

response to an external clock, the actions of self-timed systems

are spontaneous, self-generated, and widely distributed in

both space and time. Separate action control with MrGO

of Figure 9, combined with traditional scan access to state,

enables single-step and local at-speed operations essential to

silicon test and debug. Although every action changes local

state, we can test that those actions conform to expectation.
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