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Abstract: Recent evidence suggests that urban forms and materials can help to mediate temporal
variation of microclimates and that landscape modifications can potentially reduce temperatures and
increase accessibility to outdoor environments. To understand the relationship between urban form
and temperature moderation, we examined the spatial and temporal variation of air temperature
throughout one desert city—Doha, Qatar—by conducting vehicle traverses using highly resolved
temperature and GPS data logs to determine spatial differences in summertime air temperatures. To
help explain near-surface air temperatures using land cover variables, we employed three statistical
approaches: Ordinary Least Squares (OLS), Regression Tree Analysis (RTA), and Random Forest
(RF). We validated the predictions of the statistical models by computing the Root Mean Square
Error (RMSE) and discovered that temporal variations in urban heat are mediated by different factors
throughout the day. The average RMSE for OLS, RTA and RF is 1.25, 0.96, and 0.65 (in Celsius),
respectively, suggesting that the RF is the best model for predicting near-surface air temperatures at
this study site. We conclude by recommending the features of the landscape that have the greatest
potential for reducing extreme heat in arid climates.

Keywords: arid climate; urban heat island; spatial analysis; vehicle temperature traverse;
random forest

1. Introduction

Outdoor daytime air temperatures in desert cities test the human body’s ability to tolerate being
outdoors throughout much of the year, yet desert cities are some of the most rapidly growing areas
on the planet. The rapid rise in population, combined with extreme heat, increases the likelihood of
communities suffering from respiratory illnesses, heat stroke, and cardiac failure [1,2]. Heat stress is,
in fact, one of the leading weather-related causes of death in many parts of the globe [3,4]. Therefore,
finding ways to reduce the intensity of urban heat stress, particularly in desert cities, poses an important
challenge to public health, tourism, and the livability of cities in general.

Land surface characteristics directly relate to the surface the urban heat island (UHI) [5,6]. Recent
evidence suggests that desert cities, unlike cities in temperate zones, often show a UHI effect, inverting
the urban heat island phenomenon, with the result that specific urban areas appear colder than
suburban areas during the daytime [7,8]. As a result, urban development patterns have the potential
to reduce temperatures and increase accessibility to the outdoor environment through modifications
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to the built environment. Previous research in the arid desert cities of Phoenix, Dubai, and others
suggests that a combination of vegetation, the presence of water, and landscape design all affect the
thermal comfort of human inhabitants [9,10].

While several emerging studies of desert cities have identified those landscape features that
mediate urban heat, we currently lack the ability to describe differences in temperatures throughout
the day, in part because earlier studies relied on remotely sensed descriptions of cities, which lack
the ability to describe the diurnal profiles of temperature. Early studies using satellite imagery began
decades ago with Rao [11], who examined surface urban heat islands from thermal infrared data. Since
then, various sensor-platforms—such as NOAA, AVHRR, Landsat MSS, TM, and ASTER—have been
used to determine the urban thermal climate. More recently, land surface temperatures (LST) derived
from thermal bands of radiometric instruments flown on satellites and high-altitude aircraft have
been used to analyze the relationships among LST and landscape characteristics such as NDVI, NDBI,
percent impervious surface, and percent vegetation by using linear regression [12,13], multiple linear
regression [14], geographically-weighted regression [15] (Su et al., 2012), and correlation analysis [16].
These studies are helpful for refining UHI analysis, yet they still lack a temporal description, which
limits our ability to understand which landscape factors drive (or ameliorate) localized heat stress
throughout the day.

One approach to developing a temporal-based assessment of urban heat is to use ground-based
empirical measures of temperature. One advantage to using ground-based measurements is the
capacity to describe differences that individuals and communities directly experience. Oke [17]
measured air temperature from car traverses in Vancouver, B.C. and claimed that heat island intensity
is more directly related the physical structure of an urban area than its size. More recently, Hart
and Sailor [18] employed tree-structured regression models to investigate the spatial variability of
urban heat intensity using vehicle temperature traverse and GIS resources in Portland (Oregon, USA).
Tree-structured regression models enable the determination of the most important land-use and surface
variables affecting the UHI intensity of metropolitan areas. Later, Heusinkveld et al. [19] conducted
bicycle traverse measurements to assess the spatial variation of temperature during a summer day in
Rotterdam. They found that spatial variations in temperature were strongly affected by local vegetation
cover. Using a ground-based approach and regression analysis, Yan et al. [20] found that localized
land cover composition and site geometry were two of the most important variables affecting local
air temperatures in Beijing. Further, Ho et al. [21] examined three statistical models by calibrating
satellite-derived predictors such as LST and weather station data to map the daily maximum air
temperature distribution in greater Vancouver. They found that the random forest model was the best
among three statistical models used to map temperature distributions in the area. Finally, Yokobori
and Ohta [22] used mobile traverses to conduct air temperature observations that would clarify the
effect of land cover on ambient air temperatures in Tokyo. They found that an intra-urban heat island
existed throughout the year, and they observed that air temperatures varied significantly according to
ambient land cover types.

The use of ground-based and remote measurements of urban temperatures are a promising
step toward better describing spatial variation; however, several questions still remain unaddressed.
For example, satellite measurements can offer periodic descriptions of a city, yet temperatures vary
throughout the day, and ‘snap shots’ of surface temperatures preclude an understanding of how those
factors affect temporal variations in urban heat. While the land cover variables derived from the
satellite images do not change throughout a day, we hypothesized that the effects of these variables will
change throughout the day as temperatures change. In addition, it is unknown what techniques might
allow for the higher predictability of urban heat in cities that have limited land use and land cover
information available. To better understand the relationship between temperatures, diurnal cycles,
and built environment factors, we examined the spatial and temporal variation of air temperatures
throughout one city—Doha, Qatar. We addressed two research questions in this study: (1) which
statistical models best explain the variability of urban heat? and (2) what land use and land cover
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factors best describe the variations in urban heat island effects throughout the day? To address these
questions, we used a combination of ground-based, empirically-derived, mobile vehicle temperature
traverses and land cover features that helped to populate three types of statistical models: ordinary
least squares, regression trees, and random forests.

2. Materials and Methods

We used a cross-sectional research design to capture variations of near surface air temperatures
(referred to as “air temperature” in this paper) throughout the day in Doha, Qatar. Numerous vehicle
traverses were the primary means used to assess both spatial and temporal temperature variations in
the study area. Based on these empirically-derived data, we developed statistical models to evaluate
the extent to which specific land use variables helped to describe variations in temperature. We
begin here by describing the vehicle traverses and land cover variables, which provide the context for
subsequent descriptions of our statistical models.

2.1. Vehicle Temperature Traverses

Doha is one of the fastest growing cities in the Arabic world and is the largest city in Qatar
(Figure 1). Since the late 1970s, Doha has changed after rapid urbanization and westernization,
which have resulted in decreases in vegetation surfaces and increases in urban built-up areas. These
developments, led by petro-urbanism, represent the largest urban explosion in Doha’s history [23]. At
the same time, according to the population influx of external and internal migrants, Doha is one of
the busiest Arabic cities. According to census block data from 2013, the total population of Doha now
exceeds 1.3 million.
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Figure 1. Doha study area.

The vehicle traverses examined in this study on 8 and 9 September in 2014 and 12, 14, and 15 May
in 2015 covered all parts of the city of Doha (Figure 2). Following an established protocol [18], we used a
Type T fine (30 gauge) thermocouple mounted in a 12 cm long, 2.5 cm diameter white plastic shade tube.
The tube was supported approximately 25 cm above the vehicle roof on the passenger-side window
(Figure 3). The temperature sensors were connected to data logging temperature recorders with an
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estimated system accuracy of ˘0.5 Celsius and a 90% response time of less than 60 s at a 1 m/s airflow.
A time-synchronous GPS system was also attached to each car so that the temperature measurements
(with a sampling frequency of 1 s in September 2014 and 10 s in May 2015) could be paired with a GPS
location. Data for vehicle speeds of less than 5 km/h were discarded as the temperature sensors were
aspirated by the movement of the vehicle, and we aimed to avoid oversampling when the vehicles
were stopped (e.g., in traffic or at traffic lights). Each day’s traverse involved four cars, lasted one hour,
and was conducted at three time periods: 6:00–7:00, 13:00–14:00, and 19:00–20:00. Each car traversed
approximately 25–30 km.
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2.2. Land Use and Land Cover Variables

We acquired 30-m resolution satellite sensor imagery from the US Geological Survey’s Landsat
OLI files taken on 12 September 2014. The study area (23.5 km ˆ 25.9 km), which encompassed the
Doha metropolitan region, was extracted from the scene of the satellite sensor imagery. All Landsat
bands (visible, near, and shortwave infrared) except the thermal band were used in the classification
process. For accuracy assessment, due to a lack of ground truth data at this study site, we used existing
QuickBird™ high-resolution imagery (acquisition date = 3 April 2013). Since the acquisition dates
of Landsat and QuickBird were separated by nearly one and a half years, we examined how the
landscapes changed over time. We employed change detection analysis using two images: Landsat
2013 (acquisition date = 3 July 2013) and Landsat 2014 (acquisition date = 9 December 2014). For this
study, we examined two types of feature indices: Vegetation Index (NDVI, Equation (1)) [24] and
Built-up Index (NDBI, Equation (2)) [25].

NDVI “ pBand 5´Band 4q{pBand 5 ` Band 4q (1)

NDBI “ pBand 6´Band 5q{pBand 6 ` Band 5q (2)

The result of the change of detection analysis suggested that the change of vegetation and built-up
areas occurred in less than 0.3% of the study area, which validated the QuickBird™ image as acceptable
ground truth data. All image processing work and accuracy assessments were carried out in ENVI
5.1 (Exelis Visual Information Solutions, Boulder, CO, USA) and ArcGIS 10.2 (ESRI Inc., Redlands,
CA, USA).

2.2.1. Classification and Albedo

In order to compensate for the lack of ancillary data at this study site, and based on the
prior satellite-based research of the study area [26], we employed a simplified hybrid classification
method [27]. Each image, with six bands, was sorted into 40 clusters using the ISODATA unsupervised
classification method. Only homogeneous clusters were labeled into one of four categories: Urban,
Vegetation, Soil, and Water (Table 1). Other clusters that exhibited mixed classes were clipped out
from the image for further classification using supervised classification. The maximum likelihood
algorithm, which evaluates both the variance and covariance of the category spectral response patterns
when classifying an unknown pixel, was applied to the clipped images [28]. The images were initially
classified into seven classes: Urban 1, Urban 2, Vegetation, Soil 1, Soil 2, Water1, and Water 2. Ten to
20 training sites for each class were selected with the aid of a panchromatic band and/or QuickBird™
imagery. The classified images were resampled to the aforementioned four classes and combined with
the ISODATA classified land use/cover map.

Table 1. Land use/cover classes and definitions used in this study.

Classes Definition

Urban All built-up surfaces, including roads, commercial, industrial pavements, and construction sites.
Vegetation All areas of vegetation, including farms, parks golf courses, and lawns.
Soil Bare and exposed rock, coastal sands, and sand dunes.
Water All areas of open water, including lakes and the ocean.

Albedo was computed from visible and near infrared bands in Landsat 8 using Equation (3) [29].
For this equation, Liang’s [30] formula to calculate Landsat shortwave albedo was normalized [31],
2010). Although this formula was developed for Landsat ETM+, it is applicable to Landsat OLI [32] as
the band numbers were adjusted to conform to the OLI standard

αshort “
0.356ρ2 ` 0.130ρ4 ` 0.373ρ5 ` 0.085ρ6 ` 0.072ρ7 ´ 0.0018

0.356` 0.130` 0.373` 0.085` 0.072
(3)



Climate 2016, 4, 32 6 of 14

where ρ represents the Top of Atmosphere (TOA) reflectance of Landsat bands 2, 4, 5, 6, and 7. The
resulting Digital Number was converted to TOA using the radiometric calibration tool in ENVI 5.1.

2.2.2. Accuracy Assessment

To address the lack of ground-level land use/land cover data, we conducted an accuracy
assessment using high resolution satellite sensor imagery with half of the total images that we classified.
To conduct an accuracy assessment of the Landsat images, the Quickbird™ imagery was ortho-rectified
and pan-sharpened. Orthorectification is the correction of the image, pixel-by-pixel, for topographic
distortion and results in every pixel appearing to be viewed from directly above [33]. Pan-sharpening,
meanwhile, is a process of combining a lower resolution multispectral imagery with high resolution
panchromatic imagery to create a high resolution color image. For this study, Gram-Schmidt Pan
Sharpening [34] was applied to obtain 60-cm multispectral data. All images were georeferenced using
1st order polynomial transformation, and the overall root mean square errors were less than half
a pixel.

We also used a standard confusion matrix method by randomly sampling approximately
240 points (about 60 points for each of the four classes) and laying those points over the QuickBird™
imagery. We categorized each point into one of the four classes by visually determining the dominant
land cover types within 30 ˆ 30 m polygons that coincided with the Landsat imagery’s pixel
footprints. The categorized data were used as reference data and the matrix was created to compare
the relationship between the reference data and the corresponding classified data (Table 2). The
overall classification accuracy was 85.6% and the kappa coefficient was 0.81, which is consistent with
the standard minimum accuracy of 85 [35] Some of the 15% misclassification consists of spectral
differentiation between sand/soil and other urban features (e.g., roof tops and parking lots that consist
of sand and/or soil).

Table 2. Confusion matrix of accuracy assessment of the land cover classification for 2014.

Reference Data User’s Accuracy
(%)Urban Vegetation Soil Water Total

Classified
Data

Urban 63 1 4 0 68 92.7
Vegetation 8 47 4 0 59 79.7

Soil 7 1 52 0 60 86.7
Water 7 1 1 40 49 81.6
Total 85 50 61 40 236

Producer’s accuracy (%) 74.1 94.0 85.3 100.0

2.3. Analysis

Each 30-m pixel was further evaluated in terms of four additional land surface variables:
urban/non-urban, vegetation/non-vegetation, distance to the coast, and albedo. Urban, Vegetation,
and Water classes, which were derived through hybrid classification, were used for these variables.
Based on Heusinkveld et al.’s [19] approach of using a linear regression correlation coefficient
between urban temperature and greenery density as a function of pie-shaped distance (ArcMap
10.x, geostatistical analyst), we quantified the area of wind-induced influence on each of the land
surface variables for each discrete temperature measurement. We did not find a directional effect on
the correlation coefficient, so we employed a circular-shaped area (called a buffer) and tested buffer
distances between 50 m and 600 m at 50 m increments. Based on the correlations found between
buffer size and temperature, we selected the most influential buffer sizes for each date/time by
determining the buffer distances with the largest positive or negative effects on temperatures (Table 3).
The maximum buffer size of 600 m was selected based on previous studies, which commonly employed
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several hundred meters [36] and 500 m/1000 m [37] as buffer distances. The land surface variables
employed, and the strongest distance effects, were as follows:

- Mean albedo within a certain radius (a#)
- Percentage of urban area within a certain radius (u#)
- Percentage of vegetation cover within a certain radius (v#)
- Distance to the coast (w_dist)

Table 3. Buffer sizes for each variable (in meters).

8 September 2014 9 September 2014

6 am 1 pm 7 pm 6 am 1 pm 7 pm

Albedo 50 400 150 50 400 50
Urban 500 600 600 600 600 600

Vegetation 100 400 150 50 350 150

12 May 2015 14 May 2015 15 May 2015

6 am 1 pm 7 pm 6 am 1 pm 7 pm 6 am 1 pm 7 pm

Albedo 150 600 600 50 400 600 50 600 200
Urban 600 50 50 100 600 300 50 600 600

Vegetation 50 300 600 600 100 200 50 600 600

We employed three statistical approaches to model air temperatures using these relevant
predictors: ordinary least squares (OLS), regression tree analysis (RTA), and random forest (RF).
OLS is the most commonly employed approach to understand the strength of independent variables
in order to explain dependent variables [12–14].

RTA offers an alternative technique for handling nonlinear relationships between the dependent
variable and the predictive variables [38]. The RTA algorithm uses a set of independent variables
to recursively split dependent variables into subsets, which maximizes the reduction in the residual
sum of squares [39]. Based on conditional probabilities, the tree contains left and right nodes. In our
case, the left node indicated that a condition was true and the right node indicated that it was false
(Figure 4). The study area was divided into four to six categories based on the node criteria. The
values at each terminating node were considered the mean temperature for that terminal node, and
served as an input for the multiple linear regression model. Depending on the specific parameters of
each pixel in the study area, the regression tree was constructed to predict the temperature of each
pixel. The first terminating node indicated the highest explanatory power for determining urban heat.
While the specific regression trees varied by time of day—for 12 May at 1 pm, for example, most of the
variation of temperature was based on distance to coast—the regression tree analysis offered a visual
and analytical approach to describing factors that affect local variations in temperature.

RF, a machine learning technique, is one of the data mining methods designed to produce accurate
predictions that do not overfit the data. In a random forest analysis, a group of regression trees is
created using samples from the training data, which is called ‘bagging.’ Unlike a regression tree,
a random forest tree splits each node by using the best of a randomly chosen subset at that node.
For the regression, the average prediction for all trees are considered; for classification, predictions
are considered the ‘vote’ for the most popular class among all trees [40–42]. RF has been used with
satellite-derived predictors to map air temperature distributions [21,37]. We used RF to test variables
for both selected buffer sizes and all buffer sizes. Based on preliminary studies, the number of variables
randomly sampled as candidates at each split was set to 20 for all variables and, for selected variables,
to four. We selected a total of 500 trees to be grown. We used the R statistical software [43] for OLS, an
additional extension called “rpart” for the regression tree analysis [44] and “randomForest” for the
random forest analysis [41].
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In order to compare the accuracy of each statistical model, we employed a ‘holdout method,’
which partitions the data into two mutually exclusive subsets called a training set and a test (i.e.,
holdout, set). Common applications of the holdout method suggest selecting 2/3 of the data as the
training set and the remaining 1/3 as the test set [45]. For this study, we used 70% of the traverse data,
randomly selected, as the training set and the remaining 30% of the data as the test set.

3. Results and Discussion

Using the results of the three models, we developed spatial descriptions of temperature variability
for each date/time. The prediction of the air temperature map, using the three statistical models on
the 12 May 2015, 1 pm vehicle traverse data, showed considerable variation in the results (Figure 5).
Specifically, while all three models indicated a gradient of cooler to hotter moving inland, the OLS
model seemed to generalize the differences while the random forest (RF) model indicated sharp
contrast within smaller units across the study region. The regression tree analysis indicated a notable
and sharp contrast, visible as ‘rings’ moving inland.
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We validated the models by computing the Root Mean Square Error (RMSE) between the predicted
air temperatures and the measured air temperatures at 30% of the traverse points (Table 4). In all cases,
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RMSE was lower using RF than using RTA and OLS. This result suggested that the RF model more
accurately predicted the surface temperatures than the other methods for this study site. Ho [21] also
found that the RA model produced the lowest prediction errors for mapping urban air temperatures.
For the RF model, the difference between using all buffers and using selected buffers was negligible.
Therefore, we used all buffer sizes as input variables rather than selecting the most influential buffer
sizes for all variables.

Table 4. Root Mean Square Error (RMSE) between predicted near-surface air temperatures and
measured temperatures at the testing site (in Celsius).

8 September 2014 9 September 2014

6 am 1 pm 7 pm 6 am 1 pm 7 pm

OLS 1.28 1.21 0.62 0.96 1.22 0.63
RTA 1.05 1.09 0.53 0.80 1.06 0.57
RF 0.43 0.75 0.34 0.35 0.79 0.39

12 May 2014 14 May 2014 15 May 2014

6 am 1 pm 7 pm 6 am 1 pm 7 pm 6 am 1 pm 7 pm

OLS 1.19 1.81 1.72 1.44 2.71 0.96 0.79 1.15 1.00
RTA 0.93 1.44 0.82 1.34 1.33 0.76 0.72 1.05 0.93
RF 0.63 1.05 0.54 0.82 0.99 0.47 0.46 0.97 0.79

We further assessed the important variables for predicting air temperature. Random Forest
produces a measure of the importance of the predictor variable, which is called a mean decrease in
accuracy. For each tree, the prediction error on the out-of-bag portion of the data is recorded, and the
same is done after permuting each predictor variable. The difference between the two is then averaged
over all trees and normalized by the standard deviation of the differences [41,46]. Table 5 lists the top
three variables in terms of variable importance, and its value of the mean decreases in accuracy; a plus
or minus sign shows whether the variable is positively or negatively related to temperature.

Table 5. Top three variables in terms of variable importance derived from RF. Each variable is described
as follows: w_dist: distance to the coast, a: albedo, v: vegetation, u: urban, the number indicates the
buffer distance.

8 September 2014 9 September 2014 12 May 2015 14 May 2015 15 May 2015

6 am
w_dist 91.9 w_dist 104.6 w_dist 75.7 w_dist 61.0 w_dist 67.0

a50 47.5 v600 52.1 u600 32.0 a50 35.4 v600 31.8
v600 41.1 v550 38.3 v600 28.5 a600 31.0 a600 25.7

1 pm
w_dist 133.8 w_dist 134.0 w_dist 151.8 w_dist 63.4 w_dist 113.7
v600 36.8 u200 34.9 a50 37.6 v550 19.6 a50 26.5
a150 31.0 u350 34.6 a600 29.8 a600 19.3 v600 21.7

7 pm
w_dist 105.8 w_dist 129.2 w_dist 59.4 w_dist 105.9 w_dist 73.5
v600 37.3 v600 37.5 v600 24.8 v550 23.6 v600 24.1
a50 37.1 a50 35.6 v550 20.2 v600 19.4 v550 23.9

Across the five days of our sample, we noted three important results. First, regardless of day
or time, the distance to the coast is the most important predictor of temperature. Specifically, in
the afternoon (1 pm), the large value of the distance to the coast has its most significant impact on
temperature. This is a result of the relative temperatures of the sea surface and land surface. Specifically,
while daytime air temperatures on the land are in the range of 33 to 48 ˝C, the average sea surface
temperature in the gulf during the summer is 33 ˝C [47]. This temperature difference drives a sea
breeze that provides local cooling near the coast. Although the prevailing wind in most months is from
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the North-Northwest in Doha, these winds are from the East and Northeast in summer. We acquired
wind direction data from the weather station near Doha’s city center, and the data supported this
trend. Second, for five days in the evening (7 pm), the second most important variable was measures
of vegetation. Third, the results for the morning indicated the most inconsistency across five days for
predicting the important variable. For example, the morning results indicated that the proximity to the
water had both a cooling and heating effect, depending on the day. Overall, the results suggest that
higher albedo corresponds to lower temperatures in the morning and evening, while farther distances
from the coast result in higher temperatures in the afternoon and evening. Finally, more vegetation
corresponds to lower temperatures in the evening.

Based on these results, we used the random forest model to divide the region into five categories,
from the lowest (T1) to the highest temperatures (T5). By combining the time periods, we were able to
identify those areas exhibiting the hottest temperatures (Figure 6). A visual description of the hottest
areas in the morning show that they are near the central business district and at the Doha international
airport, which is located near the southeast side of the coast. In the afternoon, the hottest areas are
located furthest from the coast. In the evening, the hottest areas are located along two major highways,
Salwa Road and Doha Expressway.
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4. Conclusions

The creation of impervious surfaces is centrally important to the creation of cities. In areas where
high temperatures can cause major health impacts, understanding the role of landscape features is
essential to developing mitigation strategies. Our analysis provides insight into the role of local
land-cover and times of day in temperature variations across one city. Unlike earlier studies that
suggest one urban heat island for a city, we were able to illustrate a dynamic description of urban heat
effects throughout a day. Our empirical assessments, models, and predictions indicated that urban
heat islands migrate throughout the day. This is the first such description of the phenomenon that we
know of. We speculate that specific features of the landscape gain thermal capacity at different rates
and also release temperatures at different rates. This results, our analysis suggests, in locations where
such accumulations and dissipations of thermal difference occur.

These results suggest specific recommendations for future development in the region. While
temperatures during the middle of the day may be intolerable for the human body, our results suggest
that the interaction between land cover and temporal variation may lead to opportunities for reducing
temperatures during “shoulder periods”, which we define as transition times during late morning and
early evenings, may offer chances for changing the urban design such that more people can spend
time outside. If planning agencies are considering options for mediating temperatures to provide
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pedestrians greater access to outdoor spaces, then reducing the amount of urban area (a direct measure
of impervious surfaces) may be a first step. While changing land cover may not be cost effective or a
feasible option in places containing large amount of impervious surface, covering the concrete with
trees may be a reasonable alternative. Despite the arid climate, given the abundant amount of water
from desalination in Doha, water resources for expanding the urban canopy may be readily available.
Of course, this solution raises other questions of sustainability related to desalination effects on the
salinity of gulf waters. Ultimately, there will be tradeoffs between heat mitigation strategies and other
environmental factors that must be thoroughly considered.

As expected, we found that the albedo was negatively related to local temperatures in the morning
and evening. However, this relationship was positive during mid-day periods. Although increasing
the albedo of surfaces is a common practice, one that could reduce the absorption of solar radiation,
it might not work for Doha. Higher albedo could help the temperature in the morning and evening,
but it could also have the adverse effect of increasing temperatures during the daytime. Finally, the
distance from the coastline indicates that the mediating influence of coastal waters can significantly
impact inland air temperatures. If, however, coastal winds are blocked by high-rise buildings along
the coastline, inland areas may not benefit from this mediating influence. Restricting development
along the coast, especially those buildings that prevent these coastal processes from meditating inland
temperatures, is a policy that has traction in scholarly research [48], and it may be a policy option that
can improve the short- and long-term quality of life of Doha’s residents.

In this study, several methodological limitations that may obscure the implications of our findings.
First, our study was designed as correlational and not causational. Therefore, we were only able to
describe, in likelihood terms, the impact of different land cover factors on air temperatures. Second, the
maximum buffer size was set to 600 m, which was selected based on the existing literature [18] and our
interest in identifying localized actions that could mitigate urban heat. The plot of the linear regression
correlation coefficient between the buffer size and temperature for several variables, especially for the
Urban class, did not reach a plateau by 600 m. This indicated the possibility of a larger influential
area. Reviewers have noted other studies indicating that land cover changes at distances 1 km from
the monitoring site could impact air temperatures, and we expected to examine those relationships in
future research. Finally, one of our research questions asked what land use and land cover factors best
describe the variation of urban heat throughout the day. Since land use variables are generally not
available to researchers in our study location, we only employed land cover factors. Accordingly, we
were not able to discern the extent to which the urban form of different land uses (e.g., commercial,
single family, residential, etc.) affects urban heat. Finally, as Nichol [49] found in a related study,
satellite-derived surface temperatures are highly correlated to air temperatures. Our study did not
include satellite-derived surface temperatures, and we believe that the accuracy of our models could
be improved by adding relevant surface temperatures variables.

In future directions of this project, we expect to include satellite-derived surface temperatures,
which will help us to understand the extent to which our techniques for assessing ambient temperatures
can be enhanced through remotely-sensed satellite data. Such an approach will dramatically reduce
the costs of conducting urban heat analysis for cities across the planet. Further, we were unable to
evaluate the effectiveness of varying land cover modifications on ambient temperatures. In future
work, we expect to expand these analyses by incorporating real and hypothesized changes into surface
characteristics and materials. An emerging and promising literature suggests the need to provide
context-specific applications for reducing urban heat, and we anticipate doing so in the near future.

The eventual outcome of the present project was to support decision-making efforts in order
to improve livability in the ever-increasing outdoor temperatures of Doha. Several recent studies
indicate that Doha and many other parts of the Middle East will encounter steady increases in
daytime temperatures over the coming decades. Accordingly, our findings provide early evidence
about the land cover factors that can hinder or amplify outdoor air temperatures. Difficult to find is
information about how the local government is evaluating current mitigation options. Still needed are
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additional studies that attempt to integrate our findings about the physical characteristic of Doha with
decision-making frameworks that may reduce harm caused by future increases in urban climates.
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