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The specific role of the autonomic nervous system (ANS) in emotional and behavioral
regulation—particularly in relation to automatic processes—has gained increased
attention in the sensory modulation literature. This mini-review article summarizes current
knowledge about the role of the ANS in sensory modulation, with a focus on the
integrated functions of the ANS and the hypothalamic-pituitary-adrenal (HPA) axis and
their measurement. Research from the past decade illustrates that sympathetic and
parasympathetic interactions are more complex than previously assumed. Patterns
of ANS activation vary across individuals, with distinct physiological response profiles
influencing the reactivity underlying automatic behavioral responses. This review article
advances a deeper understanding of stress and the complex stress patterns within the
ANS and HPA axis that contribute to allostatic load (AL). We argue that using multiple
physiological measurements to capture individual ANS response variation is critical
for effectively treating children with sensory modulation disorder (SMD) and sensory
differences. We consider the relative contributions of automatic vs. deliberately controlled
processes across large-scale neural networks in the development of sensorimotor
function and their associated links with arousal patterns and sensory over- and
under-responsivity.

Keywords: autonomic nervous system, sensory modulation, stress response, physiological arousal, automatic
processes, complex systems, large-scale network, allostatic load

INTRODUCTION

Sensory modulation is commonly defined as the ability to regulate and organize reactions
to sensations in a graded and adaptive manner (Ayres, 1972; Royeen and Lane, 1991;
Parham and Mailloux, 1996; Brown et al., 2019). Yet, the occupational therapy community
has grappled with various definitions which bifurcate internal neurophysiological arousal
and external behavioral responses to stimuli (Miller et al., 2001, 2007; May-Benson and
Schaaf, 2015; Brown et al., 2019). Embedded within the definition of sensory modulation
disorder (SMD), a subtype of sensory processing disorder (SPD), is the reference to an
individual’s atypical physiological or behavioral responses to everyday stimuli (McIntosh
et al., 1999). Physiologically, SMD has historically been considered to reflect disruption in
the mechanisms of habituation and sensitization within the central nervous system (CNS;
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Kandel, 1991). Behaviorally, atypical external responses
associated with SMD have been generally categorized as
either hyper/over-responsive or hypo/under-responsive as
compared to expected response intensity (McIntosh et al.,
1999; Miller et al., 2007). However, early observations by Ayres
(1963, 2005) posited that children’s disruptions with sensory
over-responsivity (SOR) were manifestations of ‘‘fight-flight’’
responses from the autonomic nervous system (ANS) to typical,
non-aversive stimulation, suggesting a connection between
physiological arousal and behavior. Physiological arousal is
simply defined as reflecting a continuum of states of alertness
across the sleep-wake cycle (Brazelton, 1973; Barnard, 1999;
Oken et al., 2006). It is alsomore elegantly described as a property
distributed across autonomic, sensory, emotional, and motor
domains (Pfaff and Banavar, 2007; Mendes, 2016). This latter
definition affords a multi-dimensional, non-linear approach to
integrating concepts of arousal and sensory responsivity.

The relation between ANS arousal, automatic processes, and
sensory responsivity has received increased attention in the
sensory modulation literature over the last 25 years (Miller et al.,
2009). These research studies attempt to explore connections
between external behavioral and internal physiological responses
to sensory stimulation, though results are mixed. While
children often present clinically with concomitant signs of
over-responsivity with heightened arousal and likewise, under-
responsivity with lower arousal (Lane, 2002; Schoen et al.,
2009), some research finds that physiological arousal and
behavioral responsivity are uncoupled (Quas et al., 2000) or
mixed (Roubinov et al., 2019).

Multiple contributing factors potentially underlie this
inconsistent evidence, including the prevalent use of different,
yet singular measures not fully representing the complexity of
the stress response system (for full review, see Gomez et al.,
2017). Inspired by Gomez et al.’s (2017) larger systematic review,
we examine how complex stress and stress recovery models
have been researched in isolation, and we review how this
fragmentation is paralleled in SMD-focused research. Current
neuroscientific approaches featuring large-scale networks,
dual-tiered processes and computer modeling offer possibilities
to facilitate a more nuanced understanding of physiological
variances in arousal and sensory responsivity (Cisek, 2019;
Schmahmann et al., 2019). Applying complexity-informed
approaches to address the heterogeneity in stress and allostatic
load (AL) continuums complement the current shift away from
discrete Diagnostic Statistical Manual of Mental Disorders
(DSM) diagnostic categories in favor of multidimensional and
overlapping processes underlying many disorders. This review
article offers recommendations regarding integrated approaches
to both SMD research and clinical intervention.

STRESS MODELS AND AROUSAL IN
SENSORY MODULATION DISORDER:
FROM SIMPLE TO COMPLEX

The following sections describe elements of the ongoing
evolution of ANS stress models and their frequent use of

limited biomarkers. Many SMD pediatric studies rely solely
on parent-completed behavioral checklists to measure sensory
responsivity. This review article, however, focuses on SMD
studies that also include at least one physiological measure in
the context of the Sensory Challenge Protocol (SCP; McIntosh
et al., 1999; Miller et al., 1999). This laboratory-based protocol
provides a standardized procedure for administering a range of
stimuli, which evaluates a child’s physiological arousal reactivity
(for reviews of sensory measurements, see Schaaf et al., 2014;
Jorquera-Cabrera et al., 2017).

Sympathetic Nervous System and HPA
Axis: Historical Views of Stress and
Allostatic Load
Models of stress physiology have historically defined stress
response systems as comprising forces of activation and
inhibition between two branches of the ANS: the sympathetic
nervous system (SNS) and the parasympathetic nervous system
(PNS; McEwen, 1998, 2017). The SNS instantiates the fight-
or-flight response associated behaviorally with high-intensity
motoric mobilization, while the PNS is considered the ‘‘rest-
and-digest’’ division of the ANS. Unfamiliar or noxious
stimuli can result in simultaneous activation of the SNS and
stimulation of the hypothalamic-pituitary-adrenocortical (HPA)
axis. Increased amounts of cortisol are subsequently released into
the bloodstream, in concert with the restorative response of the
PNS, with both facilitating stress recovery (Gunnar andQuevedo,
2007; McEwen, 2007).

Per models grounded in allostatic regulation, when
dysregulation prevails within the SNS-HPA axis system,
associated neurophysiological responses shift to prolonged
activation, inhibition, or both, impacting multiple organ systems
(Gunnar and Quevedo, 2007; McEwen, 2007). These subsequent
arousal patterns involve temporal dimensions of frequency,
duration, and intensity of physiological responses that can go
awry, at times accompanied by habituation failures (McEwen,
1998). Resultant wear and tear on the body and brain, impacting
both physiological and psychological functioning, is termed AL
(see Table 1; e.g., McEwen, 1998, 2017; Goldstein and McEwen,
2002; Berens et al., 2017). These internal arousal patterns often
parallel the external behavioral mismatches in grading and
regulating the degree and intensity of responses to sensory
information that define SMDs (Miller et al., 2007).

Primary biomarkers of SNS activity used in the pediatric
stress and SMD literature include a pre-ejection period (PEP)
and electrodermal activity (EDA). Derived via analysis of
electrocardiogram (ECG) data, PEP promotes the use of a
singular organ (heart) to examine the synchronicity between
the SNS and PNS. Though it is more robust in laboratory
settings (Bush et al., 2011, 2016; Schaaf et al., 2015), PEP
may be a less sensitive biomarker of SNS compared to other
measures in pediatric studies (Roder et al., 2020). Alternatively,
EDA measures the conductivity of the skin that results
from changes in sweat gland activity (Fowles, 1986) and is
well-established as a marker of physiological SNS arousal
particularly related to psychological distress (El-Sheikh, 2007;
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Gatzke-Kopp and Ram, 2018). It is predominantly used to
capture variability in physiological sympathetic arousal in the
SMD literature (Gomez et al., 2017).

Generally, greater frequency and magnitude of EDA to
either all or specific sensory stimulation was observed in
the SNS-focused SMD studies reviewed, illustrating that these
temporal dimensions were recurrent regardless of diagnosis (see
Table 2). While habituation occurred in one study (Schoen
et al., 2009), children habituated more slowly in two samples
(McIntosh et al., 1999; Su et al., 2010) and fewer children
habituated in another (Miller et al., 1999). In addition, a few
children with no EDA response to stimulation were reported
(McIntosh et al., 1999; Schoen et al., 2009). Most of the
reviewed studies found coupling between the reports of external
behaviors of SMD and physiological reactivity, and when
there was not a match, the higher or lower arousal reactivity
remained present. The higher and lower arousal patterns found
in SMD implicates sympathetic arousal impairments that may
indicate AL conditions, prompting the need for longitudinal
naturalistic studies.

Several SMD-focused studies explored the HPA axis, which
modulates ANS activity, by including salivary cortisol collection
in their protocols. In a small pilot study, SOR was examined
as a moderator of HPA activity in children diagnosed with
attention-deficit/hyperactivity disorder (ADHD; Reynolds et al.,
2010). Children with ADHD and SOR displayed similar cortisol
patterns to typically developing children, while children with
ADHD without SOR displayed lower, possibly blunted, cortisol
responses (Reynolds et al., 2010). While blunted cortisol is
frequently observed in children with ADHD (Ma et al., 2011;
Pinto et al., 2016), it is also observed in individuals with early
adversity (Bunea et al., 2017; Kuras et al., 2017), illustrating
the complex relationship between sensory modulation and
stress arousal patterns. Emerging models of HPA reactivity also
support various trajectories of ‘‘typical’’ daily cortisol patterns
(Van Ryzin et al., 2009). In a larger study that did use more
than one physiological measure (EDA and cortisol), Lane et al.
(2010) found that the combined measures in conjunction with
trait anxiety scores were more predictive of children’s SOR scores
than any of these indicators alone, supporting the need to use
multiple markers to have a more complete picture of arousal
and reactivity. Complex variations in cortisol patterns support
exploring within-person differences, furthering the investigation
of heterogeneity in multifaceted allostatic arousal patterns within
SMD (Gatzke-Kopp and Ram, 2018). Stress response models
solely considering solely sympathetic andHPA axis activation via
EDA or cortisol collection are limited in that they fail to capture
the complexity of the ANS, including the role of the PNS.

Parasympathetic Nervous System Focus
The PNS was historically considered to counterbalance SNS
activation, conserving energy as the vagus nerve slows heart
rate, facilitating digestion by increasing intestinal activity and
relaxing sphinctermuscles in the gastrointestinal tract (Browning
et al., 2017). The Polyvagal Theory describes two branches of
the PNS (Porges, 2001, 2007). The first branch of the vagus
nerve comprises the myelinated ventral vagal brake, which
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TABLE 2 | Selected SMD articles by stress response model and physiological patterns.

Study Sample age Diagnosis (n) Physiological
measurement

Activation patterns of
physiology

Inhibition patterns of
physiology

Stress Model: SNS and HPA Axis Focus

Miller et al. (1999) 4–49 Fragile × Syndrome (15)
Fragile × Mutation (25)

EDA
(for SNS)

Greater EDA frequency and
magnitude; Lower habituation rate

–

McIntosh et al.
(1999)

3–9 SMD (19)
TYP (19)

EDA
(for SNS)

Greater EDA frequency and
magnitude; Lower habituation rates

No EDA response to stimulation
(n = 4)

Mangeot et al.
(2001)

5–13 ADHD (26)
TYP (30)

EDA
(for SNS)

Greater EDA magnitude (early
response to sensations)

–

Schoen et al. (2009) 4–15 SMD (31)
ASD (38)
TYP (33)

EDA
(for SNS)

Greater response arousal of EDA
(1st trial of sensory stimulation)
(SMD); Greater EDA magnitude and
amplitude (SMD); Habituation
occurred

Lower arousal at baseline (ASD)
No EDA response to stimulation
found 20–35% of each subgroup

Su et al. (2010) 4–8 SMD (14)
TYP (17)

EDA
(for SNS)

Greater EDA frequency and
magnitude;
Slower habituation

–

Miller et al. (2012) 6–12 SMD (37)
ADHD (28)
SMD and ADHD (12)
TYP (30)

EDA
(for SNS)

Greater EDA magnitude (SMD vs.
ADHD and TYP)

–

Reynolds et al.
(2010)

6–12 ADHD w/ SMD (13)
ADHD w/o SMD (11)
TYP (24)

Salivary Cortisol
(for HPA axis)

– Blunted cortisol response (ADHD
w/o SMD)

Lane et al. (2010) 6–12 ADHD (18);
TYP (36);
ADHD w SOR (21);
TYP w SOR (9)

EDA (for SNS)
Salivary Cortisol
(for HPA axis)

Twice as many non-specific EDA
spikes post a challenge, during the
recovery phase (ADHD w/ SOR)
Elevated cortisol post a challenge
(TYP and ADHD with SOR)

–

Stress Models: PNS Focus

Schaaf et al. (2003) 4–8 SMD (9)
TYP (6)

HRV
(for PNS)

– Significantly lower cardiac vagal
tone
Lower heart period

Schaaf et al. (2010) 5–12 TYP (40);
Severe SMD (15);
Moderate SMD (13)
Borderline SMD (11)

HRV
(for PNS)

– Severe SMD—lower mean vagal
tone during baseline, tones, and
prolonged auditory stimulation

Stress Models: SNS and PNS Focus
No studies specific to SMD done at this time with both biomarkers

Note: All studies included used Sensory Challenge Protocol (SCP). SMD, Sensory modulation disorder; TYP, Typical; ADHD, Attention-deficit/hyperactivity disorder; EDA, Electrodermal activity; HRV, Heart-rate Variability; SNS, Sympathetic
nervous system; PNS, Parasympathetic nervous system; HPA-axis, Hypothalamic-pituitary-adrenal axis.
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modulates heart rate to encourage calm engagement with sensory
or relational stimulation. The second branch comprises the
unmyelinated dorsal vagal brake, which contributes to the freeze
stress response and influences under-responsive and less reactive
stress patterns. For example, varying degrees of the behavioral
shutdown and motoric immobilization are clinically associated
with an under-responsive continuum of depression, dissociation,
and fainting, including bradycardia (Porges, 2004, 2009).

Measures of PNS activity are typically derived through
ECG, and include heart rate variability (HRV) and respiratory
sinus arrhythmia (RSA). Controversy exists regarding the
interpretation of HRV measurement output given the
complexity and nonlinearity of sympathetic and parasympathetic
interactions (for full review, see Laborde et al., 2017). Earlier
research regarding the implications of poor vagal tone on
regulation, including sleep, feeding, self-soothing, and behavioral
challenges (Degangi et al., 1991; Porges et al., 1996), supported
the shift in SMD research to consider how poor parasympathetic
functioning impacts stress vulnerability and SOR, possibly
providing better insight to ANS functioning (Schaaf et al.,
2003). In a small pilot study aligned with Porges’s research,
children with SMD showed significantly lower cardiac vagal
tone than typically developing children (Schaaf et al., 2003).
In subsequent research, children with severe SMD displayed
lower PNS activity than typically developing children during
the use of the SCP, including during prolonged auditory
stimulation (Schaaf et al., 2010). In children with SMD as
compared to typically developing children, parasympathetic
reactivity was found to couple with extreme sensory over- and
under-responsivity (Schaaf et al., 2003) and poorer adaptive
behavior (Schaaf et al., 2010). These results imply that children
with SMD are impacted by both a diminished sympathetic
system and parasympathetic impairments that contribute to
poor arousal and behavioral adaptations to sensations, possibly
contributing to AL conditions. Yet, these studies do not include
robust integration of the HPA axis, nor direct measurement of
the SNS or capture the nonlinearity of the ANS.

Sympathetic and Parasympathetic Focus
Traditionally, the SNS is thought to cause activation of the
physiological structures it innervates, while the PNS inhibits
these same structures in a mutually oppositional fashion. The
doctrine of autonomic space asserts that the interaction between
sympathetic and parasympathetic branches of the nervous
system is not solely inhibitory in nature and that autonomic
control is dynamic and synchronous (see Table 1; Berntson et al.,
1994; Berntson and Cacioppo, 2004). Berntson and Cacioppo
(2004) proposed nine possible interactions within patterns of
coupled (including coactivation and co-inhibition), reciprocal,
and uncoupled activation and inhibition (independent)
within SNS and PNS branches (Berntson et al., 1991, 1993;
Koizumi and Kollai, 1992). Others exploring patterns within
autonomic space using both SNS and PNS biomarkers found
combinations of coupled and reciprocal stress response patterns,
concluding that standard stress models often fail to capture such
variability (Salomon et al., 2000; Rotenberg and McGrath, 2016;
Brush et al., 2019).

To date, SMD-focused research has not used multiple
measures to track simultaneous SNS-PNS interaction, though
related research focused on sensory differences in autism and
ADHD populations have used multiple physiological markers
with findings that reveal inconsistent stress patterns supporting
heterogeneity in ANS-HPA axis functions (Lane et al., 2010;
Schaaf et al., 2015).

Progression Towards Heterogeneity in
Stress Response Patterns
Recent stress research examines heterogeneous stress response
patterns by including multiple facets of the ANS-HPA axis (Del
Giudice et al., 2011; Quas et al., 2014). The adaptive calibration
model, based on biological sensitivity to context theory, aimed
to capture heterogeneity through four proposed stress response
patterns based on measures of SNS, PNS, and HPA reactivity
(Del Giudice et al., 2012). Quas et al. (2014) empirically
examined this more nuanced picture of stress response patterns
via secondary data analysis of four independent studies. These
data include PEP, HRV, and cortisol collected at baseline and
in response to stimulation. This analysis yielded six distinct
profiles of stress reactivity, adding complexity to aforementioned
coupled, reciprocal, and uncoupled patterns (see Table 1). While
some SMD-focused research also attempts to capture categorical
differences (e.g., Schaaf et al., 2010), no studies of SMD have
yet implemented this latest approach to stress response research
by accounting for multiple biomarkers and patterns of stress
reactivity in typical and neurodiverse populations. This approach
would deepen our understanding of heterogeneity in stress
arousal patterns with the potential for recognizing AL conditions
existing within SMD.

LARGE-SCALE NETWORKS AND
DUAL-TIERED MODELS

While physiologic reactivity does not always correlate directly
with the behavioral response, it does provide an indication
that internal levels of arousal and stress are connected to
emotional, behavioral, social, and health outcomes (LeDoux and
Hofmann, 2018). Widely distributed neural networks developed
over millions of years across species help manage our continual
process of environmental interaction and exposure to sensory
information by maximizing automatized processes (Cisek and
Kalaska, 2010; Cisek, 2019). Automatic processes and behaviors
are those performed implicitly, while deliberate processes and
behaviors are those performed explicitly, although these exist
on a continuum and are rarely discrete (Boraud et al., 2018;
LeDoux and Daw, 2018). Dual-tier models of automatic vs.
deliberate processes and behavior in conjunction with large-scale
network functions provide further means of conceptualizing
the relationship between internal stress physiology, sensory
responsivity, and external behavior.

Two large-scale networks have been presented as contributing
to the development of automatic or habitual emotional and
behavioral responses. Cerebro-cerebellar and Cerebro-striatal-
thalamic circuitry are particularly relevant to sensorimotor
development, providing essential regulatory functions in
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information processing across distributed networks, including
autonomic, sensorimotor, affective, and cognitive domains
(Koziol et al., 2011, 2012; Shine and Shine, 2014; Schmahmann
et al., 2019). The cerebellum potentially plays a central role
in which processes become automatic and related circuits are
thought to contribute to the gradation of rate, rhythm, and force
involved in motor or behavioral modulation challenges resulting
in ‘‘over-shooting’’ and ‘‘under-shooting’’ target behaviors
often seen in occupational and neurological clinical settings
(Engel-Yeger, 2019). For example, the slower and lower rates of
habituation reported in several SMD-EDA focused studies (see
Table 2) can be viewed through this automaticity-relevant large-
scale network lens, and it is consistent with the aforementioned
definition of SMD as an inability to grade responses to sensation
(Ayres, 1972; Royeen and Lane, 1991; Parham and Mailloux,
1996; Brown et al., 2019). Both Cerebro-cerebellar and Cerebro-
striatal-thalamic circuitries are active in mobilizing arousal
responses to sensations experienced as threatening. Their
complex interactions can contribute to sensitization, which is an
increase in arousal reactivity with exposure to the same stimuli,
as well as the more typically expected habituation, which is a
decrease of arousal with repeated exposure. Sensitization can
be found underlying multiple diagnostic categories including
autism and trauma-related syndromes (De Bellis and Zisk, 2014;
Sinclair et al., 2017).

Additionally, theories of generalized arousal of the CNS
(Pfaff and Banavar, 2007; Quinkert et al., 2011; Calderon
et al., 2016) propose that arousal reactivity, emotional processes
(Tops et al., 2017), and sensory responsivity (Deneve and
Pouget, 2004; Olcese et al., 2018), in concert with motor
activation (Torres and Whyatt, 2018; Wu et al., 2018),
can be considered ongoing, parallel, intersecting processes
with automaticity. For example, the neurovisceral integration
model (NVI; Thayer and Lane, 2000), spans automatic
and deliberate processes (Smith et al., 2016), providing
emerging neuroanatomical and experimental support (from
rodents and primates) for a variety of distributed control
networks supporting the integration of autonomic, emotional,
attentional, and cognitive information. To best explore the
complex, integrated relationships between temporal dynamics
across various large-scale networks, nonlinear approaches
and computational modeling are used (Wiley et al., 2016;
Shine et al., 2019).

CONCLUSION

While many stress models call for a more complex view of
physiological stress responses, none until recently have described
interactions between more than two physiological branches
of the ANS-HPA axis (Quas et al., 2014). This fragmentation
and associated dominance of singular physiological biomarkers
in both stress model-related and SMD-focused research
constrain advancement in both fields towards greater complexity
and heterogeneity. Large-scale network models offer several
possible frameworks capable of managing the highly complex
physiological and behavioral aspects of both stresses- and
SMD-related research. First, the multiple reactivities and

patterns of arousal should be studied in a more complex and
coordinated manner. However, in line with earlier reviews
(e.g., Rogers and Ozonoff, 2005; Gomez et al., 2017), we
highlight the variability in children’s ANS-HPA axis responses
to sensory stimuli, regardless of diagnosis. We view this
heterogeneity as a natural and expected continuum of arousal
occurring across individual nervous systems. Aligning with
NIMH Research Domain Criteria (RDoC; Sanislow et al.,
2019), SMD can be viewed as an integral aspect of stress
response physiology, providing an underlying dimension to
join other categorical diagnostic entities formerly considered
discrete. This supports work wherein SMD is expanded beyond
neurodiverse populations, and considered an essential means of
accessing evidence of autonomic dysregulation characteristic of
various populations with vulnerable nervous systems, including
individuals with prematurity, mental health diagnosis, or early
adversity (Shonkoff et al., 2012; Paul-Ward and Lambdin-
Pattavina, 2016; Pears et al., 2016; Andersen et al., 2018;
Germain, 2018; Machingura et al., 2018; Brown et al., 2019;
Mulkey and du Plessis, 2019).

Second, large scale network models emphasize measuring
multiple processes and temporal dimensions occurring across
physiological biomarkers. Evidence within SMD and stress
research suggests that each biomarker, including EDA, PEP,
cortisol, and HRV, can display coupled, reciprocal, and
uncoupled activation patterns. These patterns occur in varying
frequency, intensity, periodicity, rhythm, and duration. These
temporal dimensions can match or mismatch associated context
resulting in a heightened or dampened stress response. Further
study of ANS-HPA axis heterogeneity as potential indicators of
AL patterns (McEwen, 1998) requires simultaneous use of three
or more physiological markers across multiple time scales in a
variety of settings, more closely representing behavior observed
outside of laboratory settings. We suggest that future SMD and
stress arousal-focused research track both the external behavioral
responses and internal physiological reactivity by capturing
ANS-HPA axis activation-inhibition in both short-term and
longitudinal time scales. As research-quality wearable sensors
become more accessible, integrated arousal and SMD studies
can move from the laboratory to community settings to further
illuminate the variety of internal and external mismatches that
can occur in daily occupations. Thus, non-linear dynamical
models are most appropriate for managing the varying temporal
dynamics related to ANS-HPA axis systems. Complex systems
modeling, which strives to portray causal interrelationships
within a system, has been used to generate insight into a wide
range of biomedical applications (Wittenborn et al., 2016; Kenzie
et al., 2018) and could be advantageous. Finally, automatic and
deliberate processes from dual-tiered models inform effective
treatment planning by supporting the alignment of treatment
approaches across distributed systems. Integrating awareness
of arousal regulation with sensorimotor-based treatments are
necessary, including a promising trend towards decreasing EDA
magnitude (e.g., Miller et al., 2007; Bodison and Parham,
2018; Foitzik and Brown, 2018). Sensorimotor-focused treatment
strategies can impact a variety of distributed properties and
benefit from being coupled with socio-emotional and play-based
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relational approaches (Greenspan et al., 1998; Bundy et al.,
2008; Lillas et al., 2018; Pfeiffer et al., 2018; Roberts et al.,
2018; Schaaf et al., 2018; Delahooke, 2019; Porges et al.,
2019). This integrated, interdisciplinary lens better addresses
sensorimotor over- and under-responsivity in tandem with
the arousal and emotional dysregulation related to internal
stress responses.
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