Unobserved Heterogeneity and Spatial Correlation: Statistical and Econometric Analyses of Heavy-Vehicle Hard Braking and Crash Frequency

Jason Anderson

Portland State University

Let us know how access to this document benefits you.

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Civil Engineering Commons, and the Transportation Engineering Commons

Recommended Citation
https://pdxscholar.library.pdx.edu/trec_seminar/155

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Friday Seminar Series by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Unobserved Heterogeneity and Spatial Correlation: Statistical and Econometric Analyses of Heavy-Vehicle Hard Braking and Crash Frequency by Crash Type

Jason C. Anderson, Ph.D.
Post-Doctoral Research Associate
Portland State University
Unobserved Heterogeneity and Spatial Correlation: Statistical and Econometric Analyses of Heavy-Vehicle Hard Braking and Crash Frequency by Crash Type

Jason C. Anderson, Ph.D.
Post-Doctoral Research Associate
Portland State University
Unobserved Heterogeneity and Spatial Correlation: Statistical and Econometric Analyses of Heavy Vehicle Hard Braking and Crash Frequency by Crash Type

Statistical and Econometric Analyses

How?

Jason C. Anderson, Ph.D.
Post-Doctoral Research Associate
Portland State University
Unobserved Heterogeneity and Spatial Correlation

Why?

Jason C. Anderson, Ph.D.
Post-Doctoral Research Associate
Portland State University
About Me (1/2)
About Me (2/2)

B.S. – Civil Engineering
2009
2014

M.S. – Civil Engineering
2014
2016

Ph.D. – Civil Engineering
2016
2018

Academia
Outline

• Research Motivation
• Background
• Research Contribution
• Data
• Research Methods
• Results
• Summary and Recommendations
• Moving Forward
Outline

• Research Motivation
• Background
• Research Contribution
• Data
• Research Methods
• Results
• Summary and Recommendations
• Moving Forward
Motivation (1/3)

- **What is Hard Braking?**
 - *A Hard Braking Occurrence is Often Described as an Event That Prompts the “Black Box” to Record an Abrupt Change in Speed (Fried, 2015)*

- **Can Serve as a Proxy for Several Factors**
 - Economically
 - Impacts Overall Gas Mileage ➔ Can Cost Trucking Firms Up to Three Miles Per Gallon
 - Environmentally
 - Increases Pollutants Due to High Fuel Consumption and Particle Emissions From Brake Wear
 - Aggressive Driving Behavior
 - Can Directly Impact Safety, Both for Heavy-Vehicles and All System Users

- **But…**
Motivation (2/3)

• **Such Data for Heavy-Vehicles is Often Difficult to Attain**
 - Public Data Sources (Freight Analysis Framework, Commodity Flow Survey, etc.)
 • Aggregated Picture and Intended Primarily for Commodity Flow Behavior
 - Private Data Sources (FleetSeek, TRANSEARCH, etc.)
 • More Disaggregated Picture, but Still Intended Primarily for Commodity Flow Behavior

• **To Investigate Heavy-Vehicle Hard Braking, Specific Data is Needed**
 - EROAD®
 • Freight Telematics Data
 - Heavy-Vehicle Hard Braking Locations in Oregon

• **Using EROAD® Data, Heavy-Vehicle Hard Braking Locations Are Analyzed**
Motivation (3/3)

- Density Analysis
- Hot Spot Analysis
- Random Parameters Crash Frequency Analysis
- Spatial Lag Crash Frequency Analysis
Outline

• Research Motivation
• Background
• Research Contribution
• Data
• Research Methods
• Results
• Summary and Recommendations
• Moving Forward
• Widely Known That Stopping Distances for Heavy-Vehicles Are Substantially Longer
 – Worsens When Road Surface Conditions are Wet and Slippery
• Anti-Lock Brake Systems Improve Driver Control
 – Likelihood of Jackknifing, Rear-End Crashes, Fixed-Object Crashes, etc.
• Federal Motor Vehicle Safety Standard Amendment Regarding Air Brake Systems
 – Required That the “Majority of New Heavy-Vehicles Achieve a 30% Reduction in Stopping Distance”
 – “Stop Not In More Than 250 Feet When Loaded to Their Gross Vehicle Weight Rating and Tested at a Speed of 60 mi/hr”
• Reduce Number of Fatalities and Injuries Associated With Heavy-Vehicle Braking
Background (2/3)

Comparison of Stopping Distances at 65 mph

Source: UDOT
1) **(Hard) Braking Literature**
 - (1) Braking Performance, (2) Brake Behavior Modeling, and (3) Naturalistic/Simulator Studies

2) **Heavy-Vehicle Braking Literature**
 - (1) Stopping Distance, (2) Vertical Loads, and (3) Safety Climates

3) **Crash Frequency Analysis**
 - (1) Few Emphasize Heavy-Vehicles, and (2) Focus on Crash Frequency at Intersections, Roadway Segments, or Junctions

- **Uniquely Addresses All Simultaneously**
 - Heavy-Vehicle Hard Braking
 - Explicitly in a Safety Context
 - Crash Frequency and Crash Type
Outline

• Research Motivation
• Background
• Research Contribution
• Data
• Research Methods
• Results
• Summary and Recommendations
• Moving Forward
Contribution (1/1)

- Utilizes a Previously Unused Freight Data Source
 - Provide a Proof-of-Concept That This Data Can Used by Researchers Moving Forward

- Investigates Heavy-Vehicle Hard Braking in a Safety Context of Users

- Contributes to Methodologies for Transportation Research
 - Spatial Econometrics to Account For Spatial Autocorrelation

- Compares Two Analytical Methods to Determine a Preferred Method When Conducting Data-Driven Analyses
 - Unobserved Heterogeneity or Spatial Autocorrelation?
Outline

- Research Motivation
- Background
- Research Contribution
- Data
- Research Methods
- Results
- Summary and Recommendations
- Moving Forward
• Several Datasets Were Used in The Current Analysis
 – EROAD®
 – Hard Braking Locations In Oregon

• Six Month Period
 – 1/01/2017 to 6/25/2017
 – 2,993 Hard Braking Events
• **Comprehensive Crash Database Provided by ODOT**
 – Consisted of all Police- and Self-Reported Crashes from 2011 to 2015
 – Crash File, Vehicle File, and Participant File

• **However…**

• **Due to the Nature of Analysis, Many of the Characteristics in the Crash Data Cannot be Used**
 – For Crash Frequency Analysis, Crashes are Aggregated (Heavy-Vehicle Hard Braking Hot Spots)
 – 10 Crashes at a Heavy-Vehicle Hot Spot ➞ 1 Observation With a New “Frequency” Variable
 – This Procedure Prevents Characteristics Related to the Driver, Crash, Weather, etc., From Being Used

• **Several Additional Datasets Consisting of Exposure-Based Variables Were Merged With Each Year of Crash Data**
Data (3/8)

Lane Width

Surface Width, Type

Shoulder Width, Type

Surface Conditions

Barrier Type

Traffic Volume
<table>
<thead>
<tr>
<th>FHWA Vehicle Classifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Motorcycles</td>
</tr>
<tr>
<td>2 axles, 2 or 3 tires</td>
</tr>
<tr>
<td>2. Passenger Cars</td>
</tr>
<tr>
<td>2 axles, can have 1- or 2-axle trailers</td>
</tr>
<tr>
<td>3. Pickups, Panel vans</td>
</tr>
<tr>
<td>2 axles, 4-tire single units</td>
</tr>
<tr>
<td>Can have 1 or 2-axle trailers</td>
</tr>
<tr>
<td>4. Buses</td>
</tr>
<tr>
<td>2 or 3 axles, full length</td>
</tr>
<tr>
<td>5. Single Unit 2-Axle Trucks</td>
</tr>
<tr>
<td>2 axles, 6 tires (dual rear tires), single-unit</td>
</tr>
<tr>
<td>6. Single Unit 3-Axle Trucks</td>
</tr>
<tr>
<td>3 axles, single unit</td>
</tr>
<tr>
<td>7. Single Unit 4 or More-Axle Trucks</td>
</tr>
<tr>
<td>4 or more axles, single unit</td>
</tr>
<tr>
<td>8. Single Trailer 3- or 4-Axle Trucks</td>
</tr>
<tr>
<td>3 or 4 axles, single trailer</td>
</tr>
<tr>
<td>9. Single Trailer 5-Axle Trucks</td>
</tr>
<tr>
<td>5 axles, single trailer</td>
</tr>
<tr>
<td>10. Single Trailer 6 or More-Axle Trucks</td>
</tr>
<tr>
<td>6 or more axles, single trailer</td>
</tr>
<tr>
<td>11. Multi-Trailer 5 or Less-Axle Trucks</td>
</tr>
<tr>
<td>5 or less axles, multiple trailers</td>
</tr>
<tr>
<td>12. Multi-Trailer 6-Axle Trucks</td>
</tr>
<tr>
<td>6 axles, multiple trailers</td>
</tr>
<tr>
<td>13. Multi-Trailer 7 or More-Axle Trucks</td>
</tr>
<tr>
<td>7 or more axles, multiple trailers</td>
</tr>
</tbody>
</table>
• **Associate Crashes With Heavy-Vehicle Hard Braking Hot Spots**
 – Spatially Joined to Hard Braking Hot Spots
 – In general, a 250 Feet Buffer is Adopted (Wang et al., 2008; AASHTO, 2010)
 – But, a 250 Feet Buffer to All Crashes and Crash Types Can Result in Statistical Errors During Analysis (AASHTO, 2010)

• **Therefore, Highest Observed Speed (85th Percentile) is Used to Determine Adequate Buffer Area** (Fambro et al., 1997; Dolastsara, 2014)
 – A 500-Foot Buffer Was Then Applied (i.e., Any Crash That Occurred Within 500 Feet of a Hot Spot was Spatially Joined to That Hot Spot)

• **Now, All Data Has Been Merged and the Crash Types That Occurred Most Often Can be Identified** (13,734 Crashes)
Data (6/8)

- Rear-End Crashes (57%)
- Turning Movement Crashes (17%)
- Sideswipe (Overtaking) Crashes (8%)
- Fixed-Object Crashes (8%)
Outline

- Research Motivation
- Background
- Research Contribution
- Data
- Research Methods
- Results
- Summary and Recommendations
- Moving Forward
Methods (1/9)

- Kernel Density Analysis
 - Calculates the Magnitude-per-Unit Area From Point Features (ESRI, 2018)
 - Gain a General Understanding of High Density Hard Braking Areas
 - ArcGIS® is Used to Conduct the Kernel Density Analysis
Methods (2/9)

- **Hot Spot Analysis**
 - Utilizes a Getis-Ord G_i^* to Investigate Each Hard Braking Event With the Context of Neighboring Hard Braking Events
 - Produces a z-statistic to Determine Statistical Significance ("hot" or "cold")
 - These Hot Spot Locations Are Use for the Crash Frequency Analysis
 - ArcGIS® is Used to Conduct the Hot Spot Analysis
Methods (3/9)

- **Crash Frequency Analysis**
 - Crash Frequencies (i.e., Counts) are Non-Negative Integer Values
 - Data is Not Over- or Under-Dispersion → Poisson Regression

\[
P(y_i) = \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}
\]

\[
\lambda_i = e^{(\beta X_i)}
\]

<table>
<thead>
<tr>
<th>(P(y_i))</th>
<th>Probability of Heavy-Vehicle Hard Braking Hot Spot (i) Having (y_i) Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_i)</td>
<td>Poisson Parameter for Heavy-Vehicle Hard Braking Hot Spot (i)</td>
</tr>
</tbody>
</table>

\(X_i\) Vector of Explanatory Variables
\(\beta\) Vector of Estimable Parameters

What Happens if There is Over- or Under-Dispersion (i.e., \(E[y_i] < \text{Var}[y_i]\) or \(E[y_i] > \text{Var}[y_i]\))?
Crash Frequency Analysis

- Crash Frequencies (i.e., Counts) are Non-Negative Integer Values
- Data is Over- or Under-Dispersed → Negative Binomial Regression

\[
P(y_i | \varepsilon_i) = \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!}
\]

\[
\lambda_i = e^{(\beta X_i + \varepsilon_i)}
\]

| \(P(y_i | \varepsilon_i)\) | Probability of Heavy-Vehicle Hard Braking Hot Spot \(i\) Having \(y_i\) Crashes |
|--------------------------|--|
| \(\lambda_i\) | Poisson Parameter for Heavy-Vehicle Hard Braking Hot Spot \(i\) |

<table>
<thead>
<tr>
<th>(X_i)</th>
<th>Vector of Explanatory Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>Vector of Estimable Parameters</td>
</tr>
<tr>
<td>(\varepsilon_i)</td>
<td>Gamma-Distributed Disturbance Term With Mean 1 and Variance (\alpha)</td>
</tr>
</tbody>
</table>

\(\alpha\)
• Variation (i.e., Unobserved Heterogeneity) is Often Present in Most Datasets
 – Variation Within Existing Variables Due to Unobserved Factors
 – Missing Variables

• To Account for This Variation, Extend the Previous Methods to Include Random Parameter Estimation

\[
\lambda_i = e^{(\beta X_i)}
\]

\[
\lambda_i = e^{(\beta X_i + \varepsilon_i)}
\]

\[
\beta_i = \beta + \varphi_i
\]

\[
\lambda_i \mid \varphi_i = e^{(\beta X_i + \varepsilon_i)}
\]

\[
\lambda_i \mid \varphi_i = e^{(\beta X_i)}
\]

\[\varphi_i \text{ Randomly Distributed Term}\]
• Are Heavy-Vehicle Hard Braking Hot Spots Spatially Correlated?
 – Test for Spatial Autocorrelation
 • Moran’s I Statistic
 • Moran’s I Statistic on Model Residuals
 – Determine Number of Nearest Neighbors
 • 1 to k-Nearest Neighbors Were to be Assessed
 – Create Spatial Weights Matrix
 – Conduct a Spatial Lag of X Analysis (SLX Model)
Methods (7/9)
Methods (8/9)

3 K-Nearest Neighbors
3 K-Nearest Neighbors for Heavy-Vehicle Hard Braking
Hot Spots and Rear-End Crashes

4 K-Nearest Neighbors
4 K-Nearest Neighbors for Heavy-Vehicle Hard Braking
Hot Spots and Turning Movement Crashes

2 K-Nearest Neighbors
2 K-Nearest Neighbors for Heavy-Vehicle Hard Braking
Hot Spots and Fixed-Object Crashes

5 K-Nearest Neighbors
5 K-Nearest Neighbors for Heavy-Vehicle Hard Braking
Hot Spots and Sideswipe (Overtaking) Crashes
• Spatial Lag of X Model

<table>
<thead>
<tr>
<th>Poisson Model</th>
<th>Negative Binomial Model</th>
<th>Spatial Lag of X Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_i = e^{(\beta x_i)})</td>
<td>(\lambda_i = e^{(\beta x_i + \epsilon_i)})</td>
<td>(\lambda_i = e^{(\beta x_i + W \cdot \beta x_i)})</td>
</tr>
</tbody>
</table>

- No Disturbance Term
- Addition of Disturbance Term

\(W \) Spatial Weights Matrix
Outline

- Research Motivation
- Background
- Research Contribution
- Data
- Research Methods
- Results
- Summary and Recommendations
- Moving Forward
Results (1/10)

Rear-End

- Over-Dispersed (Mean Less Than Variance)
 - $\alpha = 3.03$, $\theta = 12.95$
- Negative Binomial Model
- 16 Significant Variables
- 9 Normally Distributed Random Parameters

Turning Movement

- Over-Dispersed (Mean Less Than Variance)
 - $\alpha = 5.93$, $\theta = 3.52$
- Negative Binomial Model
- 13 Significant Variables
- 6 Normally Distributed Random Parameters

Fixed-Object

- Equal Mean and Variance
 - $\theta = 1.08$
- Poisson Model
- 11 Significant Variables
- 4 Normally Distributed Random Parameters

Sideswipe (Overtaking)

- Over-Dispersed (Mean Less Than Variance)
 - $\alpha = 15.2$, $\theta = 1.71$
- Negative Binomial
- 10 Significant Variables
- 3 Normally Distributed Random Parameters

* α = Dispersion Parameter; θ = Manual Check Using Poisson Estimates
Summary of Roadway Characteristics by Crash Type

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Rear-End Crashes</th>
<th>Turning Movement Crashes</th>
<th>Fixed-Object Crashes</th>
<th>Sideswipe (Overtaking) Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural Roadway Classifications</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Urban Roadway</td>
<td>–</td>
<td>–</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Low Posted Speed Limits</td>
<td>↓↑</td>
<td>↓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>High Posted Speed Limits</td>
<td>↓</td>
<td>↓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Solid Median Barriers</td>
<td>↓↑</td>
<td>–</td>
<td>↑</td>
<td>–</td>
</tr>
<tr>
<td>Jersey Barrier</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>↓↑</td>
</tr>
<tr>
<td>Earth, Grass, or Paved Median</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Width of Roadway (In Feet)</td>
<td>↑↑</td>
<td>↑↑</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Number of Lanes</td>
<td>↓↑</td>
<td>↓</td>
<td>–</td>
<td>↑</td>
</tr>
<tr>
<td>Vertical Geometrics (Grade)</td>
<td>↓↑</td>
<td>–</td>
<td>–</td>
<td>↑</td>
</tr>
<tr>
<td>Horizontal Curve</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>↑</td>
</tr>
<tr>
<td>Straight Segments</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>↓↑</td>
</tr>
<tr>
<td>Lane Width</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bridge Structure</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Work Zone</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Legend
- **↓** Decrease
- **↑** Increase
- **↓↑** Heterogeneous
- **–** Insignificant
Summary of Intersection and Traffic Control Characteristics by Crash Type

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Rear–End Crashes</th>
<th>Turning Movement Crashes</th>
<th>Fixed–Object Crashes</th>
<th>Sideswipe (Overtaking) Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Intersections</td>
<td>↓↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Signal</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left–Turn Refuge</td>
<td>–</td>
<td>↓↑</td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>One–Way Street</td>
<td>–</td>
<td></td>
<td></td>
<td>↓</td>
</tr>
</tbody>
</table>

Legend
- **↓**: Decrease
- **↑**: Increase
- **↓↑**: Heterogeneous
- **-**: Insignificant

Summary of Roadway Surface Characteristics by Crash Type

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Rear–End Crashes</th>
<th>Turning Movement Crashes</th>
<th>Fixed–Object Crashes</th>
<th>Sideswipe (Overtaking) Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good Pavement Condition</td>
<td>–</td>
<td>↓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Good Pavement Condition</td>
<td>–</td>
<td>–</td>
<td>↑</td>
<td>–</td>
</tr>
<tr>
<td>Asphalt Concrete Surface</td>
<td>–</td>
<td>–</td>
<td>↑</td>
<td>–</td>
</tr>
</tbody>
</table>
Summary of Traffic Characteristics by Crash Type

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Rear-End Crashes</th>
<th>Turning Movement Crashes</th>
<th>Fixed-Object Crashes</th>
<th>Sideswipe (Overtaking) Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>↑</td>
<td>↑</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>High HV-AADT</td>
<td>-</td>
<td>↓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Percentage of Heavy-Vehicles</td>
<td>-</td>
<td>-</td>
<td>↓</td>
<td>-</td>
</tr>
<tr>
<td>Class 01 Vehicles</td>
<td>↓</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Class 03 Vehicles</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Class 04 Vehicles</td>
<td>↑</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Class 06 Vehicles</td>
<td>↑</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Class 07 Vehicles</td>
<td>↑</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Class 08 Vehicles</td>
<td>-</td>
<td>↑</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Class 09 Vehicles</td>
<td>-</td>
<td>-</td>
<td>↑</td>
<td>-</td>
</tr>
<tr>
<td>Class 10 Vehicles</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>↑</td>
</tr>
<tr>
<td>Class 12 Vehicles</td>
<td>↑</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Legend
- **↓** Decrease
- **↑** Increase
- **↑↑** Heterogeneous
- **-** Insignificant
Results (5/10)

Moran I Statistic Standard Deviate $\rightarrow p$-value

<table>
<thead>
<tr>
<th>Moran I Statistic</th>
<th>Standard Deviate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.358</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>5.6997</td>
<td></td>
<td>0.000</td>
</tr>
</tbody>
</table>
Results (6/10)

Moran Scatter Plot (2 K-Nearest Neighbors) for Heavy-Vehicle Hard Braking Hot Spots and Fixed-Object Crashes

Moran Scatter Plot (5 K-Nearest Neighbors) for Heavy-Vehicle Hard Braking Hot Spots and Sideswipe (Overtaking) Crashes

<table>
<thead>
<tr>
<th>Moran I Statistic Standard Deviate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1932</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moran I Statistic Standard Deviate</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4913</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Results (7/10)

Rear-End

Log-Likelihood = -1,890.23
McFadden Pseudo R-Squared = 0.08

Log-Likelihood = -1,871.00
McFadden Pseudo R-Squared = 0.09
Results (8/10)

Turning Movement

Log–Likelihood = -1,029.19
McFadden Pseudo R–Squared = 0.11

Log–Likelihood = -1,033.00
McFadden Pseudo R–Squared = 0.11
Results (9/10)

Fixed-Object

Log-Likelihood = -832.45
McFadden Pseudo R-Squared = 0.18

Log-Likelihood = -821.21
McFadden Pseudo R-Squared = 0.19
Results (10/10)

Sideswipe (Overtaking)

Log-Likelihood = -630.98
Mcfadden Pseudo R-Squared = 0.10

Log-Likelihood = -618.10
Mcfadden Pseudo R-Squared = 0.12
Outline

- Research Motivation
- Background
- Research Contribution
- Data
- Research Methods
- Results
- Summary and Recommendations
- Moving Forward
• Crash Frequencies at Heavy-Vehicle Hard Braking Hot Spots
 – Previously Unused Freight Data Source
 – Several Datasets Were Merged and Used for Analysis
• Rear-End, Turning Movement, and Sideswipe Data Over-Dispersed
 – Fixed-Object Data Met Poisson Assumptions
• 50 Total Significant Variables Across Crash Type Models
 – 22 Are Heterogeneous (Have Random Parameters)
• Two Factors Significant in At Least Three Crash Frequency Models
 – Urban Roadway Classifications
 – Class 12 Vehicles (6-Axle Multi-Trailer Trucks)
 – Some Factors Significant in Two Crash Frequency Models (Roadway Width, High Posted Speed Limits, AADT, Rural Classifications, Solid Medians, Number of Lanes, Grade)
• **Heavy-Vehicle Hard Braking Hot Spots Are Spatially Correlated**
 – Statistically Significant Moran’s I Statistic
 – Errors Terms do Have Spatial Autocorrelation

• **A Spatial Lag of X Model is Fit**
 – Accounts for Spatial Correlation by the Addition of Lagged Variables and a Spatial Weights Matrix

• **Factors Found to Have Direct and Spillover (Indirect) Effects on Crash Frequency by Crash Type**
 – Significant Direct Effect, But Insignificant Spillover Effect
 – Insignificant Direct Effect, But Significant Spillover Effect
 – Insignificant Direct, Significant Spillover Effect, and Opposite Effects

• **Spatial Lag of X Provided Slightly Better Overall Model Fit**
 – Random Parameters Model Had Superior Predictability Power
Summary/Recommendations (3/5)

• Monitor and Mitigate Hard Braking Events of Heavy-Vehicles
 – Mandate for ELDs (1st Deadline to Comply in Dec. 2017)
 – Trucking Firms Can Put More Emphasis on Hard Braking Mitigation (e.g., Bonus System)
 • Monthly Fuel Incentives
 • New Car Giveaway
 • $25,000 Prize for Driver With Best End-of-Year MPG

• Monitoring and Mitigating Hard Braking is Something All Drivers Can Do
 – If A Driver Can Monitor Hard Braking, They May Be Able to Adapt Their Driving Behavior
 – Smartphone Application, such as GasBuddy
Summary/Recommendations (5/5)

• What Can Oregon DOT Take From This?
 – Investigate Hard Braking Hot Spot Locations
 – Visibility, Lighting, Signage, Poor Pavement Conditions, etc.

• Traffic Signals and Left-Turn Refuges Increase Expected Number of Crashes
 – Focus on Locations of These Traffic Control Devices
 – Signage, Speed Drop Zones, Horizontal Curves, Crests

• Very Good Pavement Conditions Decrease Expected Number of Crashes
 – Prompt Projects to Improve Pavement Conditions

• Can Use Methodological Approach to Predict Crash Frequency
 – Develop a R-Studio Toolbox to Estimate These Models and Predict Crash Frequency
Outline

• Research Motivation
• Background
• Research Contribution
• Data
• Research Methods
• Results
• Summary and Recommendations
• Moving Forward
Moving Forward (1/1)

- Explore EROAD Dataset
- Hard-Braking and Other Safety Metrics
- Spatial Econometrics in Other Contexts
- Algorithm Development
The End

Thank You, Questions?

Email:
jason.c.anderson@pdx.edu