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An eigenvector-based test for local stationarity
applied to array processing
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Abstract: In sonar array processing, a challenging problem is the esti-
mation of the data covariance matrix in the presence of moving targets
in the water column, since the time interval of data local stationarity is
limited. This work describes an eigenvector-based method for proper
data segmentation into intervals that exhibit local stationarity, provid-
ing data-driven higher bounds for the number of snapshots available for
computation of time-varying sample covariance matrices. Application
of the test is illustrated with simulated data in a horizontal array for the
detection of a quiet source in the presence of a loud interferer.
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1. Introduction

Approximation of the true population covariance matrix R corresponding to a time-
dependent process by means of the sample covariance R̂ can be a challenging problem
in highly dynamic environments with large-aperture arrays.1 On one hand, a large
number of data snapshots M is required for the sample covariance to be a consistent
estimator. On the other hand, snapshots must be obtained from a limited time interval
where the data is assumed to be locally stationary. For this reason, tests for stationar-
ity that require very few samples are relevant. In this work, a statistical test for data
stationarity based on the relation between consecutive sample eigenvectors is consid-
ered. The proposed test is sensitive to non-stationarity caused by time-dependent varia-
tions in source position.

Figure 1(a) shows the simulated scenario considered in this work, consisting of
an N-element horizontal line array (HLA) in the presence of uncorrelated acoustic
sources located at time-varying azimuths in the water column. This configuration
results in a population covariance with spiked2 structure, so called due to a few eigen-
values associated to sources in the water column resulting in peaks in the eigenspectra.
Data segmentation according to local stationarity is illustrated in Fig. 1(b), in which
the continuous time axis is discretized as t0, t1, etc. In this example, from ta to taþ2
and from tb to tbþ3 the azimuths of sources 1 and 2 are constant or slowly-varying
(i.e., stationary). In contrast, between taþ2 and tb the azimuth of both sources varies
significantly. The goal of this work is to define an eigenvector-based statistical test that
requires very few snapshots to identify segments of stationary data, based on changes
of direction of the corresponding population eigenvectors, as illustrated in Fig. 1(c)
and developed in Sec. 3.

a)Author to whom correspondence should be addressed.
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Random matrix theory (RMT) has been applied to study the sample eigenval-
ues and eigenvectors of spiked covariances3–5 for N=M ! constant as N;M !1.
Research on this field has provided (among other results) methods for correcting sam-
ple eigenvalue bias4 and estimating the effective number of identifiable sources,6 as
well as tools for performance analysis of array processing techniques.7–9 More
recently, research on the high dimension, low sample size (HDLSS) regime10 (in which
M ! constant as N !1) has described the relationship between sample and popula-
tion eigenvectors of spiked covariances as a joint probability density function (pdf).
The work presented here makes use of expressions from HDLSS to derive (Sec. 3) a
full statistical description of the expected behavior of consecutive signal sample eigen-
vectors (i.e., those eigenvectors related to dominant sources in the water column) under
the hypothesis of stationarity. The obtained expression provides a quantitative metric
to decide bounds of local stationarity, as illustrated in Sec. 4 with a numerical
example.

2. Signal model

Let ya ¼ sa þ wa be an N� 1 data snapshot vector11 received at time ta at an N-
element HLA. Each entry of the noise vector wa is normally distributed with power r2

w,
while sa ¼ RQ

q¼1vqanq represents Q uncorrelated moving sources with power r2
q. Source

amplitudes are complex-valued stochastic variables nq � rqðNð0; 1Þ þ jNð0; 1ÞÞ=
ffiffiffi
2
p

,
where N(0,1) indicates a random realization from a normal distribution and j ¼

ffiffiffiffiffiffiffi
�1
p

.
For each source, the time-dependent replica vector (assuming sources in the far field) is

vqa ¼ ½1 e�jkdsinðhqaÞ � � � e�jkdðN�1ÞsinðhqaÞ�H=
ffiffiffiffiffi
N
p

; (1)

where k ¼ x=cw is the wavenumber, x is the frequency in rad/s, cw is the speed of
sound in the water, hqa � hq tað Þ is the azimuth angle of the qth source at time ta, and
d is the array inter-element spacing. The population (i.e., clairvoyant) covariance for
mutually uncorrelated sources is11

Ra ¼ VaW VH
a þ r2

w IN ; (2)

Fig. 1. (a) Top-down view of the simulated scenario in this work, consisting of an N-element HLA in the pres-
ence of moving sources in the far field (drawing not to scale). (b) Illustration of time segmentation according to
data stationarity. In this example, the azimuth of sources 1 and 2 does not change significantly between ta and
taþ2 and between tb and tbþ3, thereby defining two intervals with local data stationarity. (c) Relation between
population and sample eigenvectors: At times ta and taþ2, the sample eigenvectors (û1a, û2a) lie on a cone cen-
tered on the corresponding population eigenvectors (u1a and u2a). At time tb the population eigenvectors vary in
relation to those at ta due to source movement.
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where Va ¼ ½v1av2a � � � vQa� is a matrix with source replicas as columns and
W ¼ diag ðr2

1r
2
2 � � � r2

QÞ is a Q�Q diagonal matrix of the source powers. The covariance
can also be written in terms of population eigenvalues kia and eigenvectors uia as

Ra ¼
XQ̂

n¼1

unauH
nakna þ r2

w

XN

n¼Q̂þ1

unauH
na; (3)

where Q̂ � Q is the effective number of sources determined by the actual number of
sources located at distinct azimuths. Equation (3) is partitioned into eigenpairs contain-
ing signal information versus those associated to the background noise. At time ta an
estimate of Ra is obtained by averaging the outer product of M snapshots as

R̂Ma ¼
1

M

XaþM�1

m¼a

ymyH
m ¼

XN

n¼1

ûnaûH
nak̂na; (4)

where k̂na and ûna are the sample eigenvalues and eigenvectors, respectively. The num-
ber of snapshots M available for estimation of signal statistics is determined by the
largest time interval over which ym can be considered locally stationary. Testing
whether the underlying population covariance structure has changed from that at time
ta to that at time tb can be accomplished by monitoring quantities such as the (non-
observable) population eigenvalues and eigenvectors at consecutive times, based on the
variability of the (observable) sample eigenvalues and eigenvectors. For the simulated
scenario in Fig. 1(a) the population eigenvector configuration is strongly affected by
target movement. In Sec. 3 a statistically justified metric to decide between hypothesis
H0: Ra ¼ Rb versus H1: Ra 6¼ Rb based on statistics of the sample eigenvectors is
described.

3. Probability distribution of consecutive sample eigenvectors

Consider the signal eigenspace spanned by the eigenvectors u1a and u2a at ta in Fig. 1(c),
and how it relates to the eigenspace at a later time: In the case of signal stationarity the
population eigenvectors do not change (e.g., u1a ¼ u1aþ2 and u2a ¼ u2aþ2 in this example),
although the direction of the sample eigenvectors varies from realization to realization.
On the other hand if the signal is not stationary due to source movement then the popula-
tion eigenvectors at tb point to different directions in relation to those at ta. Since the true
eigenvectors are not observable quantities, the decision of whether or not the signal
eigenspace has changed must be made based on the observable (yet inaccurate) sample
eigenvectors (û1a; û2a; û1b, and û2b in this example). This section investigates the pdf
of jûH

naûnbj2 (i.e., the squared cosine of the angle between consecutive sample eigenvec-
tors) under the H0 hypothesis. Previous work in RMT (Refs. 4 and 5) has shown that for
dominant eigenvalues, the corresponding sample eigenvectors are constrained to lie on a
cone centered on the population eigenvectors, as illustrated in Fig. 1(c). Due to this con-
straint, a relation can be expected between the sample eigenvectors at ta and tb under the
condition of data stationarity. To obtain a full probability distribution for jûH

naûnbj2 under
hypothesis H0, each sample eigenvector is written as the sum of projections parallel ðp̂naÞ
and transverse ðĝnaÞ to the signal subspace:10

ûna ¼
XQ̂

q¼1

ðûH
nauqaÞuqa

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
p̂na

þ
XN

q¼Q̂þ1

ðûH
nauqaÞuqa

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ĝna

¼ p̂na þ ĝna: (5)

Under hypothesis H0, uqa ¼ uqb for all q so p̂H
naĝnb ¼ 0. For simplicity, the case Q̂ ¼ 1

(i.e., one dominant interferer) is considered, so

J. E. Quijano and L. M. Zurk: JASA Express Letters [http://dx.doi.org/10.1121/1.4874224] Published Online 13 May 2014

J. Acoust. Soc. Am. 135 (6), June 2014 J. E. Quijano and L. M. Zurk: Eigenvector-based test for stationarity EL279

http://dx.doi.org/10.1121/1.4874224


jû1aû1bj2 ¼ jp̂H
1ap̂1bj

2 þ jĝH
1aĝ1bj

2 þ 2 Realfp̂H
1ap̂1bĝH

1aĝ1bg: (6)

According to RMT, for k1a > r2
wð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
N=M

p
Þ the transverse component ĝ1a is a vec-

tor with direction uniformly distributed on an N� 1 dimensional sphere, making
jĝH

1aĝ1bj ! 0. For HDLSS, the asymptotic regimes10 for eigenvector convergence
depend on the magnitude of k1a compared to N. In this paper we focus on the HDLSS
regime for which k1a � N (i.e., loud interferers if N is large), for which jĝH

1aĝ1bj ! 0 is
still valid since the RMT condition N > r2

wð1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
N=M

p
Þ is met for r2

w=N 	 1 (as
expected for usual background noise levels). Notice that from Eq. (5) with u1a

¼ u1b; p̂
H
1ap̂1b ¼ ððûH

1au1aÞu1aÞH ððûH
1bu1aÞu1aÞ. Finally,

jû1aû1bj2 
 jp̂H
1ap̂1bj

2 ¼ jðûH
1au1aÞ � ðûH

1bu1aÞj2 ¼ XaXb; (7)

where Xa ¼ jûH
1au1aj2 and Xb ¼ jûH

1bu1aj2 are independent random variables and * indicates
the complex conjugate operator. It has been shown10 that Xa (or Xb) is distributed as

PXaðxaÞ ¼ v2
M

r2
wN
k1a

xa

1� xa

� �
r2

wN
r2

1

1
1� xa

� �2

; 0 � xa � 1; (8)

where v2
Mð � Þ is the Chi-square distribution with M degrees of freedom. Then, the

pdf of z ¼ jp̂H
1ap̂1bj

2 under hypothesis H0 is given by12

PZðzjH0Þ ¼
ð1

0
PXaðxaÞPXaðz=xaÞ

1
jxaj

dxa; 0 � z � 1; Z ¼ XaXb: (9)

The integral in Eq. (9) can be computed numerically for any value of z by discretizing
the integration variable xa. For M 	 N snapshots, the test provides a quantitative
expression to distinguish between sample eigenvector variability due to true changes on
the underlying signal statistics (i.e., non-stationarity) versus variability due to the lack
of snapshots. Application of Eq. (9) to data segmentation is illustrated in Sec. 4 with
an example.

To conclude this section, it is important to comment on the extension of the
proposed stationarity metric to the case of multiple interferers. For Q̂ > 1 the statio-
narity metric is a function of the scalar products jûH

naûmbj2 where m; n ¼ 1;…; Q̂.
Similar to the procedure described in this section, expressing each sample eigenvector
according to Eq. (5) allows defining the metric function in terms of random variables
juH

naûmbj2 (i.e., population vs sample eigenvector), the statistics of which are described
in the literature10 and can be used to obtain the first and second moments of the statio-
narity metric.

4. Numerical example

This section considers the case of a fast maneuvering quiet source (received signal
strength of r2

2¼ 5 dB) initially located at h2 ¼ 0� azimuth in the presence of a slow and
loud interferer (r2

1¼ 18 dB) initially at h1 ¼ 3:5�. For this simulation cw¼ 1500 m/s,
f¼ 500 Hz, N¼ 120 sensors, d¼ 1.5 m, and the background noise is set to r2

w¼ 0 dB.
Tracking of the source azimuth is accomplished by applying minimum variance distor-
tionless response beamforming to the data covariance matrix. Ideally, if the clairvoyant
covariance is known,11

B FCaðhÞ ¼ wCaðhÞHRawCaðhÞ; with wCaðhÞ ¼ ðvHðhÞR�1
a vðhÞÞ�1R�1

a vðhÞ; (10)

where vðhÞ is the replica vector for a plane wave impinging the array with angle h. The
beamformer output corresponding to Eq. (10) is shown in Fig. 2(a) and it provides a
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benchmark for beamformer simulations in which Ra must be estimated. The results are
plotted with time in the vertical axis and azimuth in the horizontal axis, showing the
time-varying azimuth for the fast source and the loud interferer. In realistic situations,
the covariance matrix must be estimated from limited samples and the beamformer
becomes

B FMaðhÞ ¼ wMaðhÞHR̂awMaðhÞ; with wMðhÞ ¼ vHðhÞ~R�1
a vðhÞ

� ��1
~R
�1
a vðhÞ; (11)

where ~Ra ¼ RQ̂
q¼1

~kqa ~uqa ~uH
qa þ �I is a modified sample covariance matrix8,13 (note the ~

indicator) that retains the dominant eigenvectors. The � loading is used to stabilize
the inverse ~R

�1
a . The results of BFMaðhÞ corresponding to M¼ 5 snapshots per covari-

ance are shown in Fig. 2(b). Due to the lack of snapshot support the power of the
interferer is underestimated at all times and the quiet source is not detected at some
time instances. Figure 2(c) shows the beamformer output using improved weights,
obtained from sample covariance matrices with increased snapshot support determined
by data segmentation based on Eq. (9). For example, between 0 and 25 s the interferer
azimuth remains constant, so the dominant eigenvalue/eigenvector (~k1a and ~u1a, respec-
tively) can be estimated with all the data snapshots for this time interval as opposed to
just M¼ 5 snapshots. A similar situation is observed between 50 and 65 s, where the
variation in azimuth for the interferer is slow enough to consider the data as stationary
within this interval. The importance of Eq. (9) is that it allows objective data segmen-
tation based on the observable sample eigenvectors. This is shown in Fig. 2(d), where
the theoretical PZ zjH0ð Þ is shown in the background indicating the probability of
random realizations of jûH

1aû1bj2 under hypothesis H0. In this panel, Monte Carlo real-
izations of jûH

1aû1bj2 at each time step are over-plotted as a solid white line.
Segmentation bounds indicated as horizontal dashed lines are placed whenever
jûH

1aû1bj2 < 0:32 or jûH
1aû1bj2 > 0:67, selected to exclude values of z with low probabil-

ity. Notice that the theoretical PZ zjH0ð Þ was computed assuming knowledge of the
(unobservable) ratio r2

w=k1a. While estimates of k1a and r2
w based on sample eigenvec-

tors for N M have been suggested in the literature,4 the impact of using such esti-
mates in PZ zjH0ð Þ is subject of future research.

In general, slow variations of the interferer azimuth cause z ¼ jûH
1aû1bj2 to

remain around the value where PZ zjH0ð Þ peaks. Deviations from this peak can be

Fig. 2. (Color online) Example of data stationarity detection for a fast maneuvering target in the presence of a
loud interferer: (a) BFCa [Eq. (10)] corresponding to the clairvoyant covariance. (b) BFMa [Eq. (11)] using the
sample covariance matrix obtained from M¼ 5 at each time step. (c) Improved beamforming results, with
weights computed from M � 5 snapshots. (d) PZ zjH0ð Þ, indicating the pdf of jûH

1aû1bj2 assuming hypothesis H0.
The white overplot lines indicate realizations of jûH

1aû1bj2, while the horizontal-dashed lines provide the
bounds for data segmentation based on stationarity. (e) Scalar products juH

1a~u1aj and juH
1aû1aj, showing improve-

ment on estimating the dominant eigenvector.
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interpreted as statistical evidence to select H1 over H0, thereby providing a data-driven
segmentation approach. The advantage of setting M according to the segmentation in
Fig. 2(d) can be quantified by comparing the scalar product between the first (and
dominant) population eigenvector to the sample eigenvectors û1a (obtained with
M¼ 5) and ~u1a (obtained with M� 5, according to stationarity bounds). This is shown
in Fig. 2(e), which demonstrates the improvement achieved with the segmentation pro-
cedure on estimating the dominant eigenvector: In all cases, juH

1a~u1aj > juH
1aû1aj,

approaching the ideal value of 1 for time intervals with slow or no interferer motion.
A comparison of Figs. 2(b) and 2(c) highlights the advantage of using the

improved weights in the beamformer: For Fig. 2(c), the power of both sources is esti-
mated more accurately compared to Fig. 2(b), and in some cases it also improves the
detection of the quiet source, such as at times 23.8 and 104.72 s, for example. This
comparison is shown in Fig. 3, in which the improvement in detecting the quiet source
is evident.

5. Summary

An eigenvector-based test for data stationarity, suitable for snapshot-starved experi-
mental scenarios with large arrays in the presence of maneuvering targets, has been
described in this work. The test gives an ability to estimate from the data the number
of snapshots that should be used to compute a sample covariance matrix where statio-
narity is ensured. This suggests applications to beamforming techniques with a variable
number of snapshots according to the dynamics of dominant sources in the water col-
umn. Application of the test for improvement of the detection levels of targets and
interferers using Dominant Mode Rejection (DMR) beamforming was illustrated with
an example that includes a fast-maneuvering target in the presence of a loud interferer.
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