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Abstract. This paper integrates the structures considered in Reconstructability 
Analysis (RA) and those considered in Bayesian Networks (BN) into a joint lat-
tice of probabilistic graphical models. This integration and associated lattice 
visualizations are done in this paper for four variables, but the approach can 
easily be expanded to more variables. The work builds on the RA work of Klir 
(1985), Krippendorff (1986), and Zwick (2001), and the BN work of Pearl 
(1985, 1987, 1988, 2000), Verma (1990), Heckerman (1994), Chickering 
(1995), Andersson (1997), and others. The RA four variable lattice and the BN 
four variable lattice partially overlap: there are ten unique RA general graphs, 
ten unique BN general graphs, and ten general graphs common to both RA and 
BN. For example, the specific graph having probability distribution 
p(A)p(C)p(B|AC) is unique to BN, the RA specific graph AB:AC:BC,  which 
contains a loop, is unique to RA, and the specific graph ACD:BCD with proba-
bility distribution p(A|CD)p(B|CD)p(D|C)p(C) is common to both RA and BN. 
The joint RA-BN lattice of general graphs presented in this paper expands the 
set of general graphs with unique independence structures beyond what was 
previously available by either RA alone or BN alone, thus allowing for repre-
sentations of complex systems which are (i) more accurate relative to data 
and/or (ii) simpler and thus more comprehensible and more generalizable than 
would be possible by modeling only with RA or only with BN.  

1 Introduction 

Reconstructability Analysis (RA) is a data modeling approach developed in the sys-
tems community (Ashby, 1964; Klir, 1976, 1985, 1986; Conant, 1981, 1988; Krip-
pendorff, 1981, 1986; Broekstra, 1979; Cavallo, 1979; Zwick, 2001, 2004; and others) 
that combines graph theory and information theory.  Its applications are diverse, in-
cluding time-series analysis, classification, decomposition, compression, pattern 
recognition, prediction, control, and decision analysis (Zwick, 2004).  It is designed 
especially for nominal variables, but continuous variables can be accommodated if 
their values are discretized. Graph theory specifies the structure of the model (the set 
of relations between the variables), which is independent of actual data (except for 
specification of variable cardinalities); information theory uses the data to character-
ize the strength and the precise nature of the relations. Data applied to a graph struc-
ture yields a probabilistic graphical model of the data.  

In RA, graphs are undirected, although directions are implicit if one variable is 
designated as the response variable (dependent variable), while all other variables are 
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designated as explanatory variables (independent variables). In this paper, such IV-
DV designations are not made, so we are concerned with only what are called “neutral 
systems.” Graphs are either general or specific. A general graph identifies relations 
among variables that are unlabeled; a specific graph labels the variables. For example, 
for a system consisting of variables A, B, and C, AB:BC is a specific graph where 
nodes A and B are linked and B and C are also linked. In this notation, the order of 
variables in any relation is arbitrary, as is the order of the relations. Relations include 
all of their embedded relations. For example, the relation ABC includes embedded 
relations AB, AC and BC and the univariate margins A, B, and C. Specific graphs 
AB:BC, BA:AC and AC:CB are all instances of the same general graph that contains 
a unique independence structure regardless of variable labels.  

For a three variable neutral system with loops there are 5 general graphs and 9 spe-
cific graphs; for four variables there are 20 general graphs and 114 specific graphs.  
The number of graphs increases hyper-exponentially with the number of variables.   

A Bayesian Network (BN) is another graphical modeling approach for data model-
ing that is closely related to RA; indeed where it overlaps RA the two methods are 
equivalent, but RA and BN each has distinctive features absent in the other methodol-
ogy. BNs have origins in the type of path model originally described by Wright 
(1921, 1934), but it was not until the 1980s that BNs were more formally established 
(Pearl, 1985, 1987, 1988; Neapolitan, 1989).  

As does RA, BN combines graph theory and probability theory; graph theory pro-
vides the structure and probability theory characterizes the nature of relationships 
between variables.  BNs are represented by a single type of graph structure; a directed 
acyclic graph, which is a subset of chain graphs, also known as block recursive mod-
els (Lauritzen, 1996). For a three variable BN lattice, there are 5 general graphs and 
11 specific graphs; for four variables there are 20 general graphs and 185 specific 
graphs.     

This paper integrates RA and BN and visualizes their joint lattice of general graphs 
for four variables.  

2 RA Lattice 

The lattice of four variable RA general graphs of Figure 1 (adapted from Klir, 1985; 
Krippendorff, 1986) represents all four variable RA graphs with unique independence 
structures. In these graphs, lines (which can branch) are variables; boxes are relations 
between variables. Where only two lines extend from a box, the relation is dyadic. If 
more than two lines extend from a box, the graph is a hypergraph. Bolded general 
graphs in Figure 1 are acyclic whereas non-bolded general graphs have cycles. The 
figure shows all 20 general graphs for four variables. G1 is the most complex general 
graph, in which all four variables are connected in a tetradic relation. Graphs below 
G1 are increasingly less complex decompositions of G1, ending with G20, the least 
complex graph, representing complete independence among all four variables. 
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Fig. 1. RA General Graph Lattice 
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A general graph represents a unique independence structure which disregards all pos-
sible ways that variables could be labeled. For example, the left-most and right-most 
variables in G7 in Figure 1 are independent of one another given the two central vari-
ables that connect both relations, where these four variables have not been assigned 
any specific identities.  

When, in RA or BN, the variables of a general graph are labeled, it is called a spe-
cific graph equivalence class or specific graph and is synonymous with a Markov 
equivalence class (Andersson, 1997). A specific graph, given data, produces a unique 
probability distribution. (This is the case for RA; as explained below, two different 
directed specific BN graphs can have the same distribution.) Since the number of 
graphs increases hyper-exponentially with the number of variables, searching the 
entire lattice for the best model can be very computationally expensive as the number 
of variables increases. 

The colon notation for RA specific graphs represents marginal or conditional inde-
pendence between variables. For example, G20 from Figure 1, having notation 
A:B:C:D, has the independence structure (A _|_ B, C, D), (B _|_ C, D), (C _|_D); A, 
B, C, and D are all marginally independent of each other. G17, having notation 
AB:BC:D, has the independence structure (D _|_ A, B, C), (A _|_ C | B); A, B, and C 
are all marginally independent of D, and A is conditionally independent of C given B. 
The overlap of B in the AB and BC relations encodes the conditional independence of 
A and C given B. 

3 BN Lattice 

The primary differences between RA and BN are two-fold: (1) BNs are directed and 
acyclic whereas RA graphs are undirected and can be cyclic or acyclic, and (2) some 
BN graphs contain converging edges, called a V-structure, which encodes a unique 
independence structure not found in RA general graphs.  

As in RA, there are BN general graphs and BN specific graphs, in the BN literature 
referred to as essential graphs and Markov equivalence classes respectively (Ander-
son, 1997).  BN general graphs of Figure 2 represent unique independence structures 
of variables, edges, and edge orientations, where specific identities are not assigned to 
the variables. Figure 2 shows the hierarchy of BN general graphs for four variables. 
There are 20 BN general graphs in the lattice, i.e., 20 unique general independence 
structures for four variable BNs.  

In Figure 2, general graphs are labeled BN1, BN2…BN19, BN20.  Solid squares 
represent variables, edges are represented by directed arrows from one square to an-
other. The dashed lines with arrows from one general graph to another represent the 
hierarchy of general graphs, with parent graphs being above child graphs. Child 
graphs result from the deletion of one edge from the parent graph. The bottom-right 
addition to the lattice that tabulates equivalent general graphs is discussed in 3.2. 
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 Fig. 2. BN General Graph Lattice 
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The alphabetic notation that we use for BN specific graphs is derived from the RA 
notation described previously. For a BN graph without a V-structure, the notation is 
identical to the RA notation. As in RA, the colon represents marginal or conditional 
independence among variables. For a BN graph with a V-structure, the notation adds 
subscripts to represent the independence relations encoded by the V-structure, which 
are unique to BNs and not found in RA. For example, BN17 from Figure 2, with la-
bels A, B, C, D in order of top left, top right, bottom left, bottom right respectively, is 
given the notation BCDB:C:A, where the colon between BCDB:C and A states the inde-
pendency (A _|_ B, C, D), namely that A is marginally independent of B, C, and D. 
The subscript B:C encodes marginal independence between B and C within the triadic 
BCD relation.  

3.1 Generating the lattice of BN general and specific graphs 

The BN literature on lattices predominately focuses on search algorithms to find the 
best BN given a scoring metric. Implicit in these search algorithms is a lattice of can-
didate graphs being explored in search of the best model. Chickering (2004) and oth-
ers have shown the search problem to be NP-hard, with four variables there are 543 
possible BNs, with 10 variables there are O(10^18) (Murphy, 1998).  Because of this, 
the BN literature has focused less on the description of the exhaustive lattice of BN 
structures, and more on advancing search heuristics to efficiently identify the best BN 
given a scoring metric (Buntine, 1991a, 1991b; Cooper, 1992; Bouckaert, 1994; 
Heckerman, 1994; Chickering, 1995, 1997; Friedman, 1996, 2003; Larranaga, 1996; 
Koivisto, 2004; Malone 2011; and others). 

Heckerman (1994) first showed that BNs with differing edge topologies can have 
the same independence structure and thus the same probability distribution, herein 
described as specific graphs. In contrast to heuristics that search all BNs, search heu-
ristics for BN specific graphs have proven to be more efficient because they reduce 
the dimensionality of search space (Chickering, 1995, 2002; Andersson, 1997; Gil-
lispie, 2001; Studený, 2010; Tian, 2010; Zhang, 2012; Chen 2016; and others).  For 
four variables, this reduces the search space from 543 BNs to 185 specific graphs 
(Anderson, 1997). Removing variable labels, these specific graphs can be summarized 
by 20 general graphs. 

Building from the RA work of Klir (1986) and Zwick (2001), and the BN work of 
Pearl (1985, 1987, 1988, 2000), Verma (1990), Heckerman (1994), Chickering 
(1995), Andersson (1997), and others, the following procedure was used to generate 
the four variable BN general and specific graph lattice in a way that can be integrated 
with the four variable RA general graph lattice.  While this procedure is applied in 
this paper to four variables, it could be used for any number of variables.  
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Procedure to generate the BN general and specific graph lattice for any number of 
variables 

1. Generate all graphs for n variables by permuting all possible variable labels, 
edge connections and edge orientations.  Eliminate any graphs with loops. 
The result is the set of all directed acyclic graphs for n variables. 

2. For each directed acyclic graph, evaluate the specific independence structure 
following the d-separation procedure (MIT, 2015) to generate the exhaustive 
list of independencies for each graph. 

3. Organize graphs with the same labeled independencies into specific graph 
equivalence classes. 

4. From each specific graph equivalence class, select a single edge topology to 
represent the general graph equivalence class. List any additional equivalent 
general graphs with unique edge topologies separately, as done in Figure 2. 

5. Organize general graphs into levels based upon the number of edges in each 
general graph and link nested general graphs in the lattice to reflect parent-
child general graphs. 

3.2 Additional representations of BN general graph equivalence classes 

There are 20 general graphs in the four variable BN lattice. However eight of these, 
marked with asterisks in Figure 2, can be represented by additional unique edge to-
pologies which, however, result in identical probability distributions when applied to 
data.  These are BN2*, BN4*, BN5*, BN9*, BN11*, BN14*, BN15*, and BN16*.  
Thus, for example, BN2b has edge orientations that are different from (and cannot be 
mapped onto) those of BN2*, but when variables are labeled in BN2* and BN2b, 
identical probability distributions result. This property is unique to BN and is not 
found in RA, in which there is a single unique representation of each RA general 
graph.  

4 Integrating the Rho, RA and BN Lattices 

This section integrates the RA and BN general graph lattices using the four variable 
Rho lattice (Klir, 1985).  The joint RA-BN lattice of general graphs presented in this 
paper expands the set of general graphs with unique independence structures beyond 
what was previously available by either RA alone or BN alone. The lattice identifies 
general independence structures unique to RA, general independence structures 
unique to BNs, and general independence structures that are equivalent across RA and 
BNs.  Where two or more RA or BN graphs have the same general independence 
structure regardless of variable labels, they are equivalent.   
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4.1 Lattice of four variable Rho 
graphs 

The four variable Rho (ρ) lattice of Fig-
ure 3 (adapted from Klir, 1985, p. 237) is 
a simplification of the RA lattice of gen-
eral graphs of Figure 1. The Rho lattice 
represents all possible undirected rela-
tions between four variables, an even 
more general lattice than that of the RA 
general graph lattice and general enough 
to map both RA and BN four variable 
general graphs to one of the eleven rep-
resented structures. Solid dots represent 
variables; lines connecting dots represent 
relations between variables. In terms of 
the RA general graph lattice of Figure 1, 
if two variables are directly connected by 
any box (a relation of arbitrary ordinali-
ty), a line connects them in the Rho lat-
tice. Arrows from one Rho graph to 
another represent hierarchy, i.e., the 
generation of a child graph from a parent 
graph. The graph ρ1 represents maximal 
connectedness, or interdependence, be-
tween variables, and the graph ρ11 rep-
resents independence among all varia-
bles.  Graphs in-between ρ1 and ρ11 
represent a mix of dependence and in-
dependence among variables. Each RA 
or BN graph corresponds to one, and 
only one, of the eleven Rho graphs.  

4.2 Equivalent RA and BN general graphs 

Out of 20 RA general graphs and 20 BN general graphs, there are 10 RA general 
graphs, comprising all of the acyclic graphs in the RA lattice that are equivalent to 
BN general graphs. Each of these RA-BN equivalent pairs corresponds to one of the 
11 Rho graphs from Figure 3, with the exception of ρ4.  ρ4 has corresponding RA and 
BN general graphs, but these do not have equivalent independence structures, and are 
discussed in the following section on non-equivalent RA and BN general graphs. 

 
 
 

ρ1 

ρ2

ρ3 ρ4

ρ5 ρ6 ρ7

ρ8 ρ9

ρ10

ρ11

 

Fig. 3. Rho Lattice 
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Figure 4 shows an example of equivalent RA and BN graphs, namely G7 and 
BN2*, respectively. Labeled variables in G7 results in independencies (A _|_ B | C, 
D) and thus the RA specific graph notation ACD:BCD. Assigning labels to BN2* 
yields the same independencies and thus the same specific graph ACD:BCD.   

 

 
Fig. 4. RA G7 and BN2* general and specific graph example 

Table 1 shows the list of all equivalent Rho, RA and BN four variable general graphs, 
an example of their specific graph notation, and their independences. These specific 
graph examples align with the BN general graphs of Figure 2 assuming labeling of 
nodes A, B, C, D in the order of top left, top right, bottom left, bottom right.  

4.3 Non-equivalent RA and BN general graphs 

In addition to the 10 equivalent RA and BN general graphs, there are 10 general 
graphs unique to the RA lattice and 10 general graphs unique to the BN lattice. All 10 
non-equivalent RA general graphs in the four variable lattice are cyclic and require 
iteration to generate their probability distributions. BNs are acyclic and have analytic 
solutions, so there are no BN graphs that are equivalent to these cyclic RA graphs.  
Since cyclic RA graphs are undirected, one might think that there could be some 
equivalent directed acyclic BN graphs, but this is not the case, because BN graphs 
that are acyclic when directions are considered but cyclic if directions are ignored 
have V-structure interpretations, as described previously. All 10 non-equivalent BN 
graphs have such V-structures, which encode independence relations unique to BNs.  

ρ2 RA G7 BN2*

(A _|_ B | C, D)

Specific Graphs

A B

C D

A B

C D

A B
C

D

ρ2 RA G7 BN2*

( . _|_ .. | … , ….)

General Graphs

Table 1. Rho, RA and BN equivalent graphs 

Rho graph
RA general 

graph
BN general 

graph

Specific Graph 
Example 

(RA notation)
Independencies

ρ1 G1 BN1 ABCD no independencies
ρ2 G7 BN2* ACD:BCD (A _|_ B | C, D)
ρ3 G10 BN5* BCD:AD (A _|_ B, C | D)
ρ5 G13 BN10 BCD:A (A _|_ B, C, D)
ρ6 G15 BN11* AD:BD:CD (A _|_ B, C | D), (B _|_C | D)
ρ7 G16 BN14* AD:BC:BD (A _|_ B | D), (C _|_ A, D | B)
ρ8 G17 BN16* BD:CD:A (B _|_ C | D), (A_|_B, C, D)
ρ9 G18 BN18 AD:BC (A, D _|_ B, C)
ρ10 G19 BN19 CD:A:B (B _|_ C, D), (A _|_ B, C, D)
ρ11 G20 BN20 A:B:C:D (A_|_B, C, D), (B_|_ C, D), (C_|_D)
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To illustrate: the structure A→B, B→C, C→D, D→A is cyclic and not a legitimate 
BN structure, but the directed structure of A→B, B→C, C→D, A→D, which has the 
same undirected links, is not cyclic, and is a legitimate BN structure, namely BN9b. 
However, this latter structure is not interpreted as a set of dyadic relations, which 
would be written in RA notation as AB:BC:CD:AD. Rather, the V-structure consist-
ing of C→D and A→D is interpreted as a triadic relation, which contributes a 
p(D|AC) to the probability expression, p(A) p(B|A)p(C|B) p(D|AC), which does not 
correspond to any RA structure.  

4.4 Joint lattice of RA and BN general graphs  

The joint lattice of RA and BN general graphs is organized using the Rho lattice (Klir, 
1985) of Figure 3, the RA general lattice of Figure 1 (Klir 1985, Krippendorff 1986) 
and the BN general lattice of Figure 2. All 20 RA general graphs and all 20 BN gen-
eral graphs for each Rho graph are shown in the joint lattice of RA and BN general 
graphs of Figure 5. 

In Figure 5, within each Rho graph, where RA and BN general graphs are equiva-
lent, that is, their independence structures are identical, the BN graph is placed under-
neath the RA equivalent graph. Where RA or BN graphs are not equivalent, represent-
ing an independence structure unique to RA or to BN, they stand alone side-by-side. 
Arrows from one graph to another in the joint lattice represent the hierarchy of the RA 
lattice only. 

5 Conclusions 

The joint lattice of RA and BN general graphs for four variables increases the number 
of general graphs with unique independence structures from 20 in the four variable 
RA lattice and 20 in the four variable BN lattice to 30 in the joint RA-BN lattice, and 
when variable labels are added, increases the number of unique specific graphs from 
114 in the RA lattice and 185 in the BN lattice to 238 in the joint lattice.  

The integration of the two lattices offers a richer and more expansive way to model 
complex systems leveraging the V-structure unique to BN graphs and the allowability 
of cycles in RA graphs. The joint RA-BN lattice of general graphs presented in this 
paper expands the set of general graphs with unique independence structures (or, 
equivalently, with unique interdependence structures) beyond what was previously 
available by either RA alone or BN alone, thus allowing for representations of com-
plex systems which are (i) more accurate relative to data and/or (ii) simpler and thus 
more comprehensible and more generalizable than would be possible by modeling 
only with RA or only with BN. This joint lattice thus demonstrates how these two 
related frameworks – RA and BN – both members of the family of probabilistic 
graphical modeling methodologies, can be integrated into a unified framework. Ex-
tension of this work will include designing algorithms to search this joint RA-BN 
lattice, analysis of RA and BN predictive models in which the IV-DV distinction is 
made, consideration of “hybrid” RA-BN models, and other topics. 
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Fig. 5. Joint Lattice of RA and BN General Graphs 
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