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Abstract—Radiative Transfer (RT) theory has established itself
as an important tool for electromagnetic remote sensing in
parallel plane geometries with random distributions of scatterers,
and most recently it has also been proposed as a model for
the propagation of elastic waves in layered ocean sediments.
In this work the capabilities of this model are illustrated,
as the RT method is used to predict backscattering strength
from laboratory models of random media. The RT model is
characterized by its flexibility on accommodating scatterers in
a broad variety of sizes, shapes, and acoustic contrast relative
to the background media. Additionally, this formulation is easily
expandable to include multiple layering and elastic effects. In
this paper, a comparison between the RT model and the results
from two laboratory experiments in the optics and the Mie
regime are presented. The experiments were designed to measure
volume scattering at high frequencies between 280 kHz and 400
kHz in monostatic configuration. The first experiment used large
aluminum spheres suspended with thin filaments, and it serves
as a benchmark for testing the RT formulation due to its high
signal-to-noise ratio, and the absence of reflective boundaries or
background attenuation. Measurements of frequency dependent
backscattering at normal incidence angle are shown for two
fractional volumes. For the second experiment, the scattering
media is a well characterized slab of a lossy resin background
containing a uniform distribution of glass beads, and angle- and
frequency-dependent measurements are presented. The levels of
volume scattering from both experiments are found in agreement
with predictions from the steady state RT model.

I. INTRODUCTION

Research on acoustic scattering from the seabed is of

importance for shallow water active sonar and remote sens-

ing applications, and great effort has been devoted to the

development of mathematical models that explain the prop-

agation and scattering of acoustic waves in media with such

complexity [1]. Current models for rough surface and volume

scattering are approximated solutions of the wave equation,

valid under particular premises. For example, the assumptions

of weak [2] or small scatterers [3] have been utilized to

obtain a solution of the scattered field by the integral method.

Other models use the assumption of high frequency to take

advantage of poor sediment penetration, simplifying the math-

ematical complexity by ignoring the effects of deep layers.

Nevertheless, compliance with the experimental conditions and

parameters that justify such assumptions is not always possible

and this might limit the range of applicability of a model.

An alternative formulation widely used in electromagnetics

and more recently in acoustics is Radiative Transfer (RT)

theory [4], [5], which models the interaction of the intensity

(as opposed to the acoustic field) with the scattering media by

solving the so called transport equation. The goal of this paper

is to present experimental evidence of the application of the

RT model, by comparing simulations of volume scattering to

measurements taken in a tank setup using well characterized

scattering media.

Transport theory is a well known technique for remote

sensing of the concentration of particles in the atmosphere [5].

More recently, research has been done to adapt the formulation

to elastic waves, with potential applications in seismics [6],

ultrasound [7] and seabed characterization [8]. The formal

mathematical derivation of the RT model can be found in

Twersky’s theory of scattering from a random distribution of

discrete inhomogeneities [4], and heuristic derivations based

on the conservation of energy can also be found in the

literature [5], [7]. The transport equation is a statement of

the conservation of energy, cast in the form of and integro-

differential equation where the unknown quantity is the spe-

cific intensity, which can be related to the power flux. It has

been suggested [5] that in general, given a system of discrete

scatterers and an excitation source, solution methods for the

scattered field are mathematically more tractable from the

approach of transport theory than from classic wave theory.

Another advantage of the RT model is that it provides more

insight into the physical phenomena of scattering, by tracking

the contribution of longitudinal and shear waves, background

attenuation and the transformation from different polarizations

at the boundaries of the scattering media as well as at the

scatterers.

The algebraic details of the RT model for ocean bottom

sediments have been presented in a previous publication [8]

and therefore only a summary is included in this work.

Additionally, a review of the relation between the specific

intensity and received power is outlined [4] and used to

compare RT simulations with volume scattering obtained in

a laboratory setup.

The validation experiments for the RT model were per-
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formed in the optics (ka >> 1) and the Mie (ka ≈ 1)

regimes, with lossless and lossy backgrounds, respectively.

The experiment in the optics regime used aluminum spheres

of radius a = 4.8 mm, randomly arranged to fit within a

volume representing a thin slab. Scattering measurements were

taken for several concentrations of spheres, starting from a

single sphere to test the calibration of the measurement system,

to fractional volumes up to 2.7%. The absence of reflective

interfaces and background attenuation provided the optimal

conditions to test the model with high signal-to-noise ratio,

and it is shown that the RT model converges to known single

scattering models [9].

The second experiment measured volume scattering from a

more challenging scenario, using a lossy polyurethane slab

with embedded glass beads. The background material has

an acoustic impedance close to fresh water, with a lower

compressional sound speed and a higher density. This results

in the absence of a critical angle and favors energy penetration

at all grazing angles. The slab does not support shear prop-

agation, which is automatically accounted in the RT model

by setting the shear sound speed to a small value of 1 m/s.

The scattering material was manufactured to minimize the

presence of unintended air bubbles, as corroborated by X-ray

studies [10].

In both experiments, backscattered power was measured

with a directional source and an omni directional receiver

at ultrasonic frequencies, by exciting the media with long

broadband pulses. Predictions obtained from the solution of

the steady state RT equations are in agreement with the

experimental data.

This paper is organized as follows: section II gives a

summary of the relevant equations for transport theory, and

the transformation of specific intensity into received power

for comparison to experimental measurements. Section III is

a description of the experimental methods and apparatus uti-

lized in both experiments, followed by a comparison between

experimental results and computations from the RT model in

section IV. Section V corresponds to discussion of the results

and conclusions.

II. RADIATIVE TRANSFER MODEL

The steady-state RT model for sediment scattering has

been described in detail elsewhere [8], and therefore only a

summary is presented in this section. To simplify the notation,

and because the laboratory models used in the experiments do

not support shear waves, the RT equations presented here only

include energy of longitudinal polarization.

The RT model is well suited for layered environments

with reflective boundaries and containing discrete scatterers,

as illustrated in Fig. 1. Solutions of the volume scattering

can be found for the bistatic system in Fig. 1(a), in which

a directional source illuminates a finite patch denoted in blue.

The size of this patch is determined by the radiation pattern

of the transmitter and its distance from the media. An omni

directional hydrophone will detect energy propagating within a

solid angle that is entirely defined by the size of the illuminated

patch and the radial distance to the slab. From Fig. 1(a), this

solid angle is defined as ∆Ω = dA/R2, where dA is the area

subtended by the solid angle at a distance R from the receiver.
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Fig. 1. Measurement of volume scattering from layered media: (a) General
bistatic geometry in which a directional transmitter(TX) illuminates a patch
(blue) defined by its radiation pattern and its distance from the media. The
omni directional receiver detects the energy crossing the area dA (gray); (b)
Monostatic configuration used in the experiments presented in this paper.
Values of L and R are given in section IV.

For the experiments presented in this paper, the measure-

ment setup is the special case illustrated in Fig. 1(b), for which

θi is the elevation angle that determines the direction of the

excitation, while θs = π−θi is the elevation corresponding to

the scattered energy. The origin of the coordinate system is the

center of the illuminated patch, with the z axis pointing toward

the media. Therefore, θ > 0 represents energy propagating

from left to right. Without loss of generality the azimuth angle

of the incident radiation is defined as φi = 0o.

For a finite layer of thickness zd located between two

halfspaces, the governing transport equation is given by

∂I(µ, φ, z)

∂(z/µ)
+

1

cL1

∂I(µ, φ, z)

∂t
= − [η(κ + ν) + 2α] I(µ, φ, z)+

η

4π

∫ 1

−1

∫ 2π

0

p(µ, φ;µ
′

, φ
′

)I(µ
′

, φ
′

, z)dµ
′

dφ
′

;

(1)

where µ = cos θ and φ indicate the elevation and azimuth

corresponding to the direction of propagation of the energy,

z is the depth, η is the concentration of scatterers (number

per cubic meter), κ and ν are the scattering and absorption

cross sections of a single scatterer, respectively; α is the

background attenuation (in Np/m), cL1 is the longitudinal

sound speed in layer 1 and p(µ, φ;µ
′

, φ
′

) is the phase matrix

of a single scatterer, representing the redistribution of energy

in a scattering event. The boundary conditions required to

completely define the problem are given by:

I(µ, φ, z = 0) = R̂10I(−µ, φ, z = 0)

+FT̂10δ(µ − µo)δ(φ − φi) (0 < µ < 1);

I(µ, φ, z = zd) = R̂12I(−µ, φ, z = 0) (−1 < µ < 0);

(2)



where R̂10 and R̂12 are the reflection coefficients for the

specific intensity at the interfaces between layers 1 and 0

and layers 1 and 2, respectively, and T̂10 is the transmission

coefficient that couples the incident radiation of amplitude F
(in watt/m2) into the slab. Note that the angle dependency of

those coefficients has been omitted for brevity. The symbol δ is

the Kronecker operator, and it is used in this context to indicate

that the incident radiation is collimated in the direction given

by (θo, φi), where θo = sin−1(θicL1/cL0) is the refracted

angle into layer 1 given by Snell’s law.

For the steady state form of the RT equation the time

derivative is set to zero, and solution of (1) can be found by

applying a Fourier series transformation to reduce the azimuth

component, and a numerical method that divides the elevation

component into N angles. This results in a NxN system of

equations that can be solved by matrix inversions.

In oder to relate the solution of the RT model with ex-

perimental measurements, the power received at an omni

directional hydrophone can be computed from the specific

intensity I(µ, φ, z) as:

Pr =

∫

∆Ω

T̂10I(µ, φ, z = 0)dΩ, (3)

where ∆Ω was related to dA in the discussion concerning

Fig. 1(a). The integration in (3) can be solved numerically, but

an approximation can provide some insight into the relation

between the RT model and classic models. For example, in the

far field ∆Ω is small and it can be expected that I(µ, φ, z = 0)
does not change significantly within the domain of integration,

so it can be treated as a constant in the integration which

reduces (3) to:

Pr = T̂10I(µ, φ, z = 0)
dA

R2
. (4)

Then, the scattering cross section of the media is given by

Υ = R2 Pr

Pi

= T̂10I(µ, φ, z = 0)dA. (5)

Equation (5) has straightforward interpretation for special

cases, such as small fractional volume or very thin slabs. For

example, the single scattering solution of (1) (i.e. ignoring the

integral term), with R̂10 = R̂12 = T̂10 = 0 is [4]:

I(µ, φ, z = 0) =
|f(µ, φ, µo, φi)|

2

κ

1 − e[−ηκzd( 1

µo
−

1

µ )]

µo − µ
µoF,

(6)

where |f(µ, φ, µo, θi)| is the scattering function of a single

scatterer in the direction (µ,φ) due to energy incident from the

direction (µo,φi). For thin layers or small fractional volumes,

when
[

−ηκzd

(

1
µo

− 1
µ

)]

<< 1, (5) reduces to

Υ = |f(µ, φ, µo, φo)|
2ηzddA, (7)

which is the incoherent superposition of the returns from

all the illuminated scatterers. The product ηzd has been

interpreted as a surface distribution in other models [9]. As

observed here, the RT formulation automatically converges to

this solution, but it is still applicable when the experimental

conditions are more restrictive. The next section describes the

setup for the two experiments mentioned in the introduction.

III. EXPERIMENTAL SETUP

Experiments in the optics and the Mie regimes were per-

formed using the configuration shown in Fig. 1(b). In this

section, the common features between both experiments are

described, and further details specific to each experiment are

provided in the next section.

All the measurements were performed in a rectangular tank

of dimensions 5x7x3 feet tall shown in Fig. 2, filled with fresh

water with a measured sound speed cL0 = 1468 m/s.

TX

RX Slab

Fig. 2. Picture of the water tank, transmitter (TX), hydrophone (RX),
and rotational mechanism used in the experiments. The resin slab used in
experiment 2 can be seen held in position by a supporting aluminum structure
also submerged in the tank.

The source (TX) is a piston shaped projector (Panametrics

A391S), with a radiation pattern concentrated around ± 10o,

while the receiver (RX) is an omni directional hydrophone

(Reson TC4038). The source and the receiver were fixed to

a rigid arm, driven by a rotary stage (Vemex B4836TS) that

varies the angle of incidence θi. The angle- and frequency-

dependent volume scattering was measured by transmitting

linear chirps with duration of 18 ms in the frequency band of

250 kHz to 450 kHz, and pulse compression was used to obtain

time resolution and distinguish the returns from the scattering

media, the walls of the tank and other supporting structures. In

all cases, both the incident and scattered pulses were recorded

at the hydrophone and compensated for spherical spreading

using the lengths L and R indicated in Fig. 1(b).

The angle-dependent scattering from the slab was measured

as follows: at each angle θi, N = 30 realizations were

taken by laterally shifting the slab in the ±x direction (see

Fig. 1(b)). This assures that each realization corresponds to

a different ensemble of scatterers. The frequency dependent

backscattering of the nth realization for an angle of incidence

θi was computed as:



Υn(f, θi) = C
|F (ws

n(t, θi))|
2

|F (wi
n(t, θi))|2

; (8)

where f is the frequency in Hz, C is a compensation factor

for spherical spreading, ws
n(t, θi) and wi

n(t, θi) are the time-

gated scattered and direct arrivals, F indicates the Fourier

transform and |.| is the absolute value. The obtained average

backscattering Υav(f, θi) = (1/N)
∑N

n=1 Υn(f, θi) and its

standard deviation are presented in the next section and

compared to simulations using the RT model.

For experiment 1 the scattering media consisted of alu-

minum spheres of radius a = 4.8 mm suspended in wa-

ter, while experiment 2 utilized a resin slab of dimensions

30x30x5 cm, facilitated by the Laboratory of Mechanics and

Acoustics (CNRS/LMA, France). The slab contains a uniform

distribution of glass beads of 1 mm diameter, with a fractional

volume of 10 %. This model has been utilized in the past

for similar measurements [10] at a frequency of 500 kHz,

and its mechanical and acoustic properties have been well

characterized. Table I summarizes the parameters of the

scatterers and the background for both experiments. These

values, together with the corresponding fractional volume

constitute the inputs provided to the RT model.

TABLE I
ACOUSTIC PROPERTIES OF THE SCATTERING MEDIA USED IN THIS WORK.

PARAMETERS FROM [11] (EXPERIMENT 1) AND [10] (EXPERIMENT 2).

Experiment 1 Experiment 2

Variable Background Scatterers Background Scatterers

ρ1 (kg/m3) 1000 2700 1251 2539

cL1 (m/s) 1468 6290 1020 5231

cT1 (m/s) 1 3260 1 3124

αL(Np/m) 80 N/A 0 N/A

IV. RESULTS AND COMPARISON TO THE RT MODEL

In this section, experimental results for both experiments are

presented and compared to simulations using the RT model,

computed from (3). As a convention, solid lines represent

experimental results, while simulations are shown as dashed

lines in the same color.

A. Experiment 1: Aluminum spheres in water

For this experiment only normal incidence measurements

(θi = 0) were considered. The spheres were suspended with

nylon filament and positioned randomly to fit within a volume

of 16x16x1 cm, and measurements were taken for fractional

volumes of 0.9 % and 2.7 %. Scattering from the supporting

filaments was negligible, as determined by preliminary mea-

surements. From Fig. 1(b), the relative location of the source,

receiver and slab are L = 18 cm and R = 36 cm, which

results in an illuminated patch of area dA = 0.028 m2 given

the radiation pattern of the source. This value is required as

an input to the RT model, as explained in section II.

Figure 3 shows Υav(f, θi = 0) in the frequency band

280 kHz to 340 kHz with fractional volume of 0.9 % and

2.7 % as a parameter. The backscattering levels computed

with the RT model as in (5) closely match the experimental

results, and since zdηκ << 1, the RT model converges to (7).

To verify the accuracy of the measurement system, scattering

measured from a single sphere is shown and compared to the

theoretical frequency dependency, obtained by computing the

scattering function as in [12].
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Fig. 3. Comparison of the measured backscattering Υav(f, θi = 0)
(solid lines), with computations from the RT model for an ensemble of
aluminum spheres, for two values of fractional volume (FV). As a reference,
experimental and theoretical scattering from a single sphere are also shown.

B. Experiment 2: Glass beads in resin

As mentioned in the introduction, this experiment was a

better opportunity to portray the flexibility of the RT model

due to more challenging conditions. In this experiment, L =
25 cm, R = 15 cm, and the angle of incidence θi was varied

from 0o to 75o in steps of 5o.

Fig. 4(a) shows pulse-compressed realizations correspond-

ing to two scattering angles. At normal incidence (θ = 0o), the

scattered energy includes both the specular reflection from the

water-slab interface and the contribution from the scatterers,

while at θ = 10o the return is due only to volume scattering.

Figure 4(b) shows the corresponding Υav(f, θ), with thinner

solid lines that indicate ± 1 standard deviation. The large

standard deviation and frequency dependent variability of the

mean required further analysis to determine if artifacts are

being introduced in the data by taking the spectral ratio in

(8). To this end, scattering from an aluminum plate temporary

placed in front of the slab was measured and processed in

a similar fashion. The frequency-dependent scattering from

this (fairly) perfect reflector is also shown in Fig. 4(b),

and it exhibits a flat response around 0 dB for the whole

frequency band. This ruled out the existence artifacts from

(8), and confirmed the correct value of the constant C used to

compensate for spherical spreading.

The large standard deviation of roughly ±5 dB shown in

Fig. 4(b) was present at all scattering angles, with even

larger values for θi > 40o.This amount of variability was also

observed in experimental and simulated data by Canepa et

al [10] at 500 kHz, and it will be discussed in section V.

Fig. 5 shows volume scattering measured at 300 kHz and

400 kHz (solid lines). The mean value of the backscattered
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data, Υav(f, θ), exhibits angle-dependent variations and be-

havior similar to the measurements at 500 kHz [10], and

due to the large variability noted before, it is not possible

to make a clear distinction between the scattering at different

frequencies.
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Fig. 5. Comparison of the measured backscattering, Υav(f, θ) (solid lines),
with computations from the RT model at 300 kHz and 400 kHz (dashed lines).
Computation of backscattering at 500 kHz is also shown (black, dashed line)
for comparison to experimental and simulated results by Canepa et al [10].

Simulations using the steady state RT model are shown with

dashed lines for 300, 400 and 500 kHz. At 500 kHz, previous

work has concluded that αL = 80 Np/m is a reasonable value

for the attenuation of the resin matrix. Using this value in

the RT model results in scattering levels comparable to those

previously reported [10]. The background attenuation at lower

frequencies was not measured for this material, and it was

used as a free parameter in the RT simulations in Fig. 5. At

300 kHz and 400 kHz, attenuation coefficients of 50 Np/m

and 65 Np/m respectively yield a good fit of the model to the

mean value of the experimental data.

It is important to note that due to the small size of the

slab, measurements at shallow angles were affected by edge

effects of the slab as well as by scattering from the supporting

structure depicted in Fig. 2, located within the tank and used

to hold the slab in position. To estimate the effect of this

structure, measurements were taken without the slab at all

angles, and this revealed that significant contamination of the

data occurred for θ > 40o. This was evident from the data,

which presented increasing standard deviations (not shown in

Fig. 5) at larger angles of incidence.

V. DISCUSSION AND CONCLUSIONS

The experiments presented in this paper show the adapt-

ability of the radiative transfer formulation for a variety

of experimental conditions, including the effect of reflective

boundaries and a wide frequency range. Experiment 1 was

utilized as a calibration for the measurement system due to its

high SNR. This experiment allowed variation of the fractional

volume step by step, starting from a single scatterer. The

obtained results can be verified by approximate solutions as

in (7), which has already been used for analysis of field

experimental data from a layer of trapped gas bubbles [9].

Results from experiment 2 evaluate the RT model in the Mie

regime at a higher fractional volume and including boundary

conditions. The scattering media in this experiment has two

advantageous features for validation experiments: first, the

acoustic impedance is matched to fresh water, increasing

energy penetration and favoring volume scattering. Second

the background compressional sound speed is slower than in

water, allowing to test the model in the presence of refraction

at the water-slab interface.

The large standard deviation observed in the experimental

measurements for θi > 40o has been justified in section IV(b)

as the result of data contamination. Nevertheless, the standard

deviation of around 5 dB for θi < 40o deserves further

explanation. In previous work by Canepa et al [10], scattering

from the same material was studied using a time domain model

that generates realizations of the ensemble of scatterers at

each incident angle, and the simulated data exhibits similar

behavior. This suggests that the variability observed in the

experimental data is caused by frequency dependent charac-

teristics of the ensemble of glass beads rather than by sources

of experimental uncertainty. This also indicates that Υav(f, θi)
can be smoothed by incorporating more realizations.

In the RT simulations for the resin slab, the background

attenuation was used as a free parameter, since direct mea-

surements are not possible due to the thickness of the slab. An

alternative for estimation of the background attenuation is by

running time domain simulations of backscattering [10] with

attenuation as a parameter, with the goal of matching the shape

of the scattered waveform to experimental measurements. The



possibility of using this technique, as well as the simulation of

short excitation pulses motivates the ongoing study of the time

domain solution of (1), which can be obtained by expressing

the time derivative as
∂I(µ,φ,z)

∂t
= jΩI(µ, φ, z). Here, Ω is

the rate of change of the specific intensity, expected to be

much lower than the frequency of the excitation source. This

transient RT formulation has been the subject of recent devel-

opments in modeling the propagation of fast laser excitation

pulses through random media [13], and also in ultrasound

characterization of materials [14]. It is still an open question

whether the resulting time-dependent diffuse intensity will

resemble the envelope of the instantaneous power in exper-

imental data, which would make the time domain solution

suitable as an inversion technique.
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